adv7604.c 96.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * adv7604 - Analog Devices ADV7604 video decoder driver
 *
 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
 *
 * This program is free software; you may redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

/*
 * References (c = chapter, p = page):
 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
 *		Revision 2.5, June 2010
 * REF_02 - Analog devices, Register map documentation, Documentation of
 *		the register maps, Software manual, Rev. F, June 2010
 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
 */

30
#include <linux/delay.h>
31
#include <linux/gpio/consumer.h>
H
Hans Verkuil 已提交
32
#include <linux/hdmi.h>
33
#include <linux/i2c.h>
34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
37
#include <linux/v4l2-dv-timings.h>
38 39
#include <linux/videodev2.h>
#include <linux/workqueue.h>
40
#include <linux/regmap.h>
41

42
#include <media/i2c/adv7604.h>
43
#include <media/v4l2-ctrls.h>
44
#include <media/v4l2-device.h>
45
#include <media/v4l2-event.h>
46
#include <media/v4l2-dv-timings.h>
47
#include <media/v4l2-of.h>
48 49 50 51 52 53 54 55 56 57 58

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");

MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
MODULE_LICENSE("GPL");

/* ADV7604 system clock frequency */
59
#define ADV76XX_FSC (28636360)
60

61
#define ADV76XX_RGB_OUT					(1 << 1)
62

63
#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
64
#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
65
#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
66

67
#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
68
#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
69
#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
70
#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
71
#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
72 73
#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)

74 75 76 77 78 79
#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
80

81
#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
82

83
enum adv76xx_type {
84 85
	ADV7604,
	ADV7611,
86
	ADV7612,
87 88
};

89
struct adv76xx_reg_seq {
90 91 92 93
	unsigned int reg;
	u8 val;
};

94
struct adv76xx_format_info {
95
	u32 code;
96 97 98 99 100 101
	u8 op_ch_sel;
	bool rgb_out;
	bool swap_cb_cr;
	u8 op_format_sel;
};

H
Hans Verkuil 已提交
102 103 104 105 106 107 108
struct adv76xx_cfg_read_infoframe {
	const char *desc;
	u8 present_mask;
	u8 head_addr;
	u8 payload_addr;
};

109 110
struct adv76xx_chip_info {
	enum adv76xx_type type;
111 112 113 114 115 116 117 118 119 120 121 122

	bool has_afe;
	unsigned int max_port;
	unsigned int num_dv_ports;

	unsigned int edid_enable_reg;
	unsigned int edid_status_reg;
	unsigned int lcf_reg;

	unsigned int cable_det_mask;
	unsigned int tdms_lock_mask;
	unsigned int fmt_change_digital_mask;
123
	unsigned int cp_csc;
124

125
	const struct adv76xx_format_info *formats;
126 127
	unsigned int nformats;

128 129 130 131 132 133
	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
	void (*setup_irqs)(struct v4l2_subdev *sd);
	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);

	/* 0 = AFE, 1 = HDMI */
134
	const struct adv76xx_reg_seq *recommended_settings[2];
135 136 137
	unsigned int num_recommended_settings[2];

	unsigned long page_mask;
138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/* Masks for timings */
	unsigned int linewidth_mask;
	unsigned int field0_height_mask;
	unsigned int field1_height_mask;
	unsigned int hfrontporch_mask;
	unsigned int hsync_mask;
	unsigned int hbackporch_mask;
	unsigned int field0_vfrontporch_mask;
	unsigned int field1_vfrontporch_mask;
	unsigned int field0_vsync_mask;
	unsigned int field1_vsync_mask;
	unsigned int field0_vbackporch_mask;
	unsigned int field1_vbackporch_mask;
152 153
};

154 155 156 157 158 159 160
/*
 **********************************************************************
 *
 *  Arrays with configuration parameters for the ADV7604
 *
 **********************************************************************
 */
161

162 163 164
struct adv76xx_state {
	const struct adv76xx_chip_info *info;
	struct adv76xx_platform_data pdata;
165

166 167
	struct gpio_desc *hpd_gpio[4];

168
	struct v4l2_subdev sd;
169
	struct media_pad pads[ADV76XX_PAD_MAX];
170
	unsigned int source_pad;
171

172
	struct v4l2_ctrl_handler hdl;
173

174
	enum adv76xx_pad selected_input;
175

176
	struct v4l2_dv_timings timings;
177
	const struct adv76xx_format_info *format;
178

179 180 181 182 183
	struct {
		u8 edid[256];
		u32 present;
		unsigned blocks;
	} edid;
184
	u16 spa_port_a[2];
185 186 187 188
	struct v4l2_fract aspect_ratio;
	u32 rgb_quantization_range;
	struct workqueue_struct *work_queues;
	struct delayed_work delayed_work_enable_hotplug;
189
	bool restart_stdi_once;
190 191

	/* i2c clients */
192
	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
193

194 195 196
	/* Regmaps */
	struct regmap *regmap[ADV76XX_PAGE_MAX];

197 198 199 200 201 202 203 204
	/* controls */
	struct v4l2_ctrl *detect_tx_5v_ctrl;
	struct v4l2_ctrl *analog_sampling_phase_ctrl;
	struct v4l2_ctrl *free_run_color_manual_ctrl;
	struct v4l2_ctrl *free_run_color_ctrl;
	struct v4l2_ctrl *rgb_quantization_range_ctrl;
};

205
static bool adv76xx_has_afe(struct adv76xx_state *state)
206 207 208 209
{
	return state->info->has_afe;
}

210
/* Supported CEA and DMT timings */
211
static const struct v4l2_dv_timings adv76xx_timings[] = {
212 213 214 215 216 217 218 219 220 221 222 223
	V4L2_DV_BT_CEA_720X480P59_94,
	V4L2_DV_BT_CEA_720X576P50,
	V4L2_DV_BT_CEA_1280X720P24,
	V4L2_DV_BT_CEA_1280X720P25,
	V4L2_DV_BT_CEA_1280X720P50,
	V4L2_DV_BT_CEA_1280X720P60,
	V4L2_DV_BT_CEA_1920X1080P24,
	V4L2_DV_BT_CEA_1920X1080P25,
	V4L2_DV_BT_CEA_1920X1080P30,
	V4L2_DV_BT_CEA_1920X1080P50,
	V4L2_DV_BT_CEA_1920X1080P60,

224
	/* sorted by DMT ID */
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	V4L2_DV_BT_DMT_640X350P85,
	V4L2_DV_BT_DMT_640X400P85,
	V4L2_DV_BT_DMT_720X400P85,
	V4L2_DV_BT_DMT_640X480P60,
	V4L2_DV_BT_DMT_640X480P72,
	V4L2_DV_BT_DMT_640X480P75,
	V4L2_DV_BT_DMT_640X480P85,
	V4L2_DV_BT_DMT_800X600P56,
	V4L2_DV_BT_DMT_800X600P60,
	V4L2_DV_BT_DMT_800X600P72,
	V4L2_DV_BT_DMT_800X600P75,
	V4L2_DV_BT_DMT_800X600P85,
	V4L2_DV_BT_DMT_848X480P60,
	V4L2_DV_BT_DMT_1024X768P60,
	V4L2_DV_BT_DMT_1024X768P70,
	V4L2_DV_BT_DMT_1024X768P75,
	V4L2_DV_BT_DMT_1024X768P85,
	V4L2_DV_BT_DMT_1152X864P75,
	V4L2_DV_BT_DMT_1280X768P60_RB,
	V4L2_DV_BT_DMT_1280X768P60,
	V4L2_DV_BT_DMT_1280X768P75,
	V4L2_DV_BT_DMT_1280X768P85,
	V4L2_DV_BT_DMT_1280X800P60_RB,
	V4L2_DV_BT_DMT_1280X800P60,
	V4L2_DV_BT_DMT_1280X800P75,
	V4L2_DV_BT_DMT_1280X800P85,
	V4L2_DV_BT_DMT_1280X960P60,
	V4L2_DV_BT_DMT_1280X960P85,
	V4L2_DV_BT_DMT_1280X1024P60,
	V4L2_DV_BT_DMT_1280X1024P75,
	V4L2_DV_BT_DMT_1280X1024P85,
	V4L2_DV_BT_DMT_1360X768P60,
	V4L2_DV_BT_DMT_1400X1050P60_RB,
	V4L2_DV_BT_DMT_1400X1050P60,
	V4L2_DV_BT_DMT_1400X1050P75,
	V4L2_DV_BT_DMT_1400X1050P85,
	V4L2_DV_BT_DMT_1440X900P60_RB,
	V4L2_DV_BT_DMT_1440X900P60,
	V4L2_DV_BT_DMT_1600X1200P60,
	V4L2_DV_BT_DMT_1680X1050P60_RB,
	V4L2_DV_BT_DMT_1680X1050P60,
	V4L2_DV_BT_DMT_1792X1344P60,
	V4L2_DV_BT_DMT_1856X1392P60,
	V4L2_DV_BT_DMT_1920X1200P60_RB,
269
	V4L2_DV_BT_DMT_1366X768P60_RB,
270 271 272 273 274
	V4L2_DV_BT_DMT_1366X768P60,
	V4L2_DV_BT_DMT_1920X1080P60,
	{ },
};

275
struct adv76xx_video_standards {
276 277 278 279 280 281
	struct v4l2_dv_timings timings;
	u8 vid_std;
	u8 v_freq;
};

/* sorted by number of lines */
282
static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
283 284 285 286 287 288 289 290 291 292 293 294 295 296
	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	/* TODO add 1920x1080P60_RB (CVT timing) */
	{ },
};

/* sorted by number of lines */
297
static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
	/* TODO add 1600X1200P60_RB (not a DMT timing) */
	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
	{ },
};

/* sorted by number of lines */
325
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
326 327 328 329 330 331 332 333 334 335 336 337 338
	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
	{ },
};

/* sorted by number of lines */
339
static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
	{ },
};

358 359 360 361 362
static const struct v4l2_event adv76xx_ev_fmt = {
	.type = V4L2_EVENT_SOURCE_CHANGE,
	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

363 364
/* ----------------------------------------------------------------------- */

365
static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
366
{
367
	return container_of(sd, struct adv76xx_state, sd);
368 369 370 371
}

static inline unsigned htotal(const struct v4l2_bt_timings *t)
{
372
	return V4L2_DV_BT_FRAME_WIDTH(t);
373 374 375 376
}

static inline unsigned vtotal(const struct v4l2_bt_timings *t)
{
377
	return V4L2_DV_BT_FRAME_HEIGHT(t);
378 379 380 381
}

/* ----------------------------------------------------------------------- */

382 383
static int adv76xx_read_check(struct adv76xx_state *state,
			     int client_page, u8 reg)
384
{
385
	struct i2c_client *client = state->i2c_clients[client_page];
386
	int err;
387
	unsigned int val;
388

389 390 391 392 393 394
	err = regmap_read(state->regmap[client_page], reg, &val);

	if (err) {
		v4l_err(client, "error reading %02x, %02x\n",
				client->addr, reg);
		return err;
395
	}
396
	return val;
397 398
}

399 400 401 402 403 404 405 406 407
/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
 * size to one or more registers.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
			      unsigned int init_reg, const void *val,
			      size_t val_len)
408
{
409 410 411 412
	struct regmap *regmap = state->regmap[client_page];

	if (val_len > I2C_SMBUS_BLOCK_MAX)
		val_len = I2C_SMBUS_BLOCK_MAX;
413

414
	return regmap_raw_write(regmap, init_reg, val, val_len);
415 416 417 418 419 420
}

/* ----------------------------------------------------------------------- */

static inline int io_read(struct v4l2_subdev *sd, u8 reg)
{
421
	struct adv76xx_state *state = to_state(sd);
422

423
	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
424 425 426 427
}

static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
428
	struct adv76xx_state *state = to_state(sd);
429

430
	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
431 432
}

433
static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
434
{
435
	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
436 437 438 439
}

static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
{
440
	struct adv76xx_state *state = to_state(sd);
441

442
	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
443 444 445 446
}

static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
447
	struct adv76xx_state *state = to_state(sd);
448

449
	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
450 451 452 453
}

static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
{
454
	struct adv76xx_state *state = to_state(sd);
455

456
	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
457 458 459 460
}

static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
461
	struct adv76xx_state *state = to_state(sd);
462

463
	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
464 465 466 467
}

static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
{
468
	struct adv76xx_state *state = to_state(sd);
469

470
	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
471 472 473 474
}

static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
475
	struct adv76xx_state *state = to_state(sd);
476

477
	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
478 479 480 481
}

static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
{
482
	struct adv76xx_state *state = to_state(sd);
483

484
	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
485 486 487 488
}

static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
489
	struct adv76xx_state *state = to_state(sd);
490

491
	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
492 493 494 495
}

static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
{
496
	struct adv76xx_state *state = to_state(sd);
497

498
	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
499 500 501 502
}

static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
503
	struct adv76xx_state *state = to_state(sd);
504

505
	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
506 507
}

508
static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
509
{
510
	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
511 512 513 514
}

static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
{
515
	struct adv76xx_state *state = to_state(sd);
516

517
	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
518 519 520 521
}

static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
522
	struct adv76xx_state *state = to_state(sd);
523

524
	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
525 526 527
}

static inline int edid_write_block(struct v4l2_subdev *sd,
528
					unsigned int total_len, const u8 *val)
529
{
530
	struct adv76xx_state *state = to_state(sd);
531
	int err = 0;
532 533
	int i = 0;
	int len = 0;
534

535 536 537 538 539 540 541 542 543 544 545 546
	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
				__func__, total_len);

	while (!err && i < total_len) {
		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
				I2C_SMBUS_BLOCK_MAX :
				(total_len - i);

		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
				i, val + i, len);
		i += len;
	}
547

548 549
	return err;
}
550

551
static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
552 553 554
{
	unsigned int i;

555
	for (i = 0; i < state->info->num_dv_ports; ++i)
556 557
		gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));

558
	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
559 560
}

561
static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
562 563
{
	struct delayed_work *dwork = to_delayed_work(work);
564
	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
565 566
						delayed_work_enable_hotplug);
	struct v4l2_subdev *sd = &state->sd;
567

568
	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
569

570
	adv76xx_set_hpd(state, state->edid.present);
571 572 573 574
}

static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
{
575
	struct adv76xx_state *state = to_state(sd);
576

577
	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
578 579
}

580 581 582 583 584
static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
}

585 586
static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
587
	struct adv76xx_state *state = to_state(sd);
588

589
	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
590 591
}

592
static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
593
{
594
	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
595 596
}

597 598
static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
599
	struct adv76xx_state *state = to_state(sd);
600

601
	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
602 603 604 605
}

static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
{
606
	struct adv76xx_state *state = to_state(sd);
607

608
	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
609 610
}

611 612 613 614 615
static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
{
	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
}

616 617
static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
618
	struct adv76xx_state *state = to_state(sd);
619

620
	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
621 622
}

623
static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
624
{
625
	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
626 627 628 629
}

static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
{
630
	struct adv76xx_state *state = to_state(sd);
631

632
	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
633 634 635 636
}

static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
637
	struct adv76xx_state *state = to_state(sd);
638

639
	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
640
}
641

642 643
#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
#define ADV76XX_REG_SEQ_TERM		0xffff
644 645

#ifdef CONFIG_VIDEO_ADV_DEBUG
646
static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
647
{
648
	struct adv76xx_state *state = to_state(sd);
649
	unsigned int page = reg >> 8;
650 651
	unsigned int val;
	int err;
652 653 654 655 656

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;
657
	err = regmap_read(state->regmap[page], reg, &val);
658

659
	return err ? err : val;
660 661 662
}
#endif

663
static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
664
{
665
	struct adv76xx_state *state = to_state(sd);
666 667 668 669 670 671 672
	unsigned int page = reg >> 8;

	if (!(BIT(page) & state->info->page_mask))
		return -EINVAL;

	reg &= 0xff;

673
	return regmap_write(state->regmap[page], reg, val);
674 675
}

676 677
static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
				  const struct adv76xx_reg_seq *reg_seq)
678 679 680
{
	unsigned int i;

681 682
	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
683 684
}

685 686 687 688
/* -----------------------------------------------------------------------------
 * Format helpers
 */

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static const struct adv76xx_format_info adv7604_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
728 729
};

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
static const struct adv76xx_format_info adv7611_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
757 758
};

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static const struct adv76xx_format_info adv7612_formats[] = {
	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
};

776 777
static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state *state, u32 code)
778 779 780 781 782 783 784 785 786 787 788
{
	unsigned int i;

	for (i = 0; i < state->info->nformats; ++i) {
		if (state->info->formats[i].code == code)
			return &state->info->formats[i];
	}

	return NULL;
}

789 790
/* ----------------------------------------------------------------------- */

791 792
static inline bool is_analog_input(struct v4l2_subdev *sd)
{
793
	struct adv76xx_state *state = to_state(sd);
794

795 796
	return state->selected_input == ADV7604_PAD_VGA_RGB ||
	       state->selected_input == ADV7604_PAD_VGA_COMP;
797 798 799 800
}

static inline bool is_digital_input(struct v4l2_subdev *sd)
{
801
	struct adv76xx_state *state = to_state(sd);
802

803
	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
804 805 806
	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
807 808 809 810
}

/* ----------------------------------------------------------------------- */

811
#ifdef CONFIG_VIDEO_ADV_DEBUG
812
static void adv76xx_inv_register(struct v4l2_subdev *sd)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
{
	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
}

829
static int adv76xx_g_register(struct v4l2_subdev *sd,
830 831
					struct v4l2_dbg_register *reg)
{
832 833
	int ret;

834
	ret = adv76xx_read_reg(sd, reg->reg);
835
	if (ret < 0) {
836
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
837
		adv76xx_inv_register(sd);
838
		return ret;
839
	}
840 841 842 843

	reg->size = 1;
	reg->val = ret;

844 845 846
	return 0;
}

847
static int adv76xx_s_register(struct v4l2_subdev *sd,
848
					const struct v4l2_dbg_register *reg)
849
{
850
	int ret;
851

852
	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
853
	if (ret < 0) {
854
		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
855
		adv76xx_inv_register(sd);
856
		return ret;
857
	}
858

859 860 861 862
	return 0;
}
#endif

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return ((value & 0x10) >> 4)
	     | ((value & 0x08) >> 2)
	     | ((value & 0x04) << 0)
	     | ((value & 0x02) << 2);
}

static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
{
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

880 881 882 883 884 885 886 887 888 889
static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
{
	/*  Reads CABLE_DET_A_RAW. For input B support, need to
	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
	 */
	u8 value = io_read(sd, 0x6f);

	return value & 1;
}

890
static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
891
{
892 893
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
894 895

	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
896
				info->read_cable_det(sd));
897 898
}

899 900
static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
		u8 prim_mode,
901
		const struct adv76xx_video_standards *predef_vid_timings,
902 903 904 905 906
		const struct v4l2_dv_timings *timings)
{
	int i;

	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
907
		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
908
				is_digital_input(sd) ? 250000 : 1000000, false))
909 910 911 912 913 914 915 916 917 918 919 920
			continue;
		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
				prim_mode); /* v_freq and prim mode */
		return 0;
	}

	return -1;
}

static int configure_predefined_video_timings(struct v4l2_subdev *sd,
		struct v4l2_dv_timings *timings)
921
{
922
	struct adv76xx_state *state = to_state(sd);
923 924 925 926
	int err;

	v4l2_dbg(1, debug, sd, "%s", __func__);

927
	if (adv76xx_has_afe(state)) {
928 929 930 931
		/* reset to default values */
		io_write(sd, 0x16, 0x43);
		io_write(sd, 0x17, 0x5a);
	}
932
	/* disable embedded syncs for auto graphics mode */
933
	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
934 935 936 937 938 939 940 941 942 943 944
	cp_write(sd, 0x8f, 0x00);
	cp_write(sd, 0x90, 0x00);
	cp_write(sd, 0xa2, 0x00);
	cp_write(sd, 0xa3, 0x00);
	cp_write(sd, 0xa4, 0x00);
	cp_write(sd, 0xa5, 0x00);
	cp_write(sd, 0xa6, 0x00);
	cp_write(sd, 0xa7, 0x00);
	cp_write(sd, 0xab, 0x00);
	cp_write(sd, 0xac, 0x00);

945
	if (is_analog_input(sd)) {
946 947 948 949 950
		err = find_and_set_predefined_video_timings(sd,
				0x01, adv7604_prim_mode_comp, timings);
		if (err)
			err = find_and_set_predefined_video_timings(sd,
					0x02, adv7604_prim_mode_gr, timings);
951
	} else if (is_digital_input(sd)) {
952
		err = find_and_set_predefined_video_timings(sd,
953
				0x05, adv76xx_prim_mode_hdmi_comp, timings);
954 955
		if (err)
			err = find_and_set_predefined_video_timings(sd,
956
					0x06, adv76xx_prim_mode_hdmi_gr, timings);
957 958 959
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
960 961 962 963 964 965 966 967 968 969
		err = -1;
	}


	return err;
}

static void configure_custom_video_timings(struct v4l2_subdev *sd,
		const struct v4l2_bt_timings *bt)
{
970
	struct adv76xx_state *state = to_state(sd);
971 972 973 974 975 976 977
	u32 width = htotal(bt);
	u32 height = vtotal(bt);
	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
	u16 cp_start_eav = width - bt->hfrontporch;
	u16 cp_start_vbi = height - bt->vfrontporch;
	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
978
		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
979 980 981 982
	const u8 pll[2] = {
		0xc0 | ((width >> 8) & 0x1f),
		width & 0xff
	};
983 984 985

	v4l2_dbg(2, debug, sd, "%s\n", __func__);

986
	if (is_analog_input(sd)) {
987 988 989 990
		/* auto graphics */
		io_write(sd, 0x00, 0x07); /* video std */
		io_write(sd, 0x01, 0x02); /* prim mode */
		/* enable embedded syncs for auto graphics mode */
991
		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
992

993
		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
994 995
		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
996 997
		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
					0x16, pll, 2))
998 999 1000 1001
			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");

		/* active video - horizontal timing */
		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1002
		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1003
				   ((cp_start_eav >> 8) & 0x0f));
1004 1005 1006 1007
		cp_write(sd, 0xa4, cp_start_eav & 0xff);

		/* active video - vertical timing */
		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1008
		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1009
				   ((cp_end_vbi >> 8) & 0xf));
1010
		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1011
	} else if (is_digital_input(sd)) {
1012
		/* set default prim_mode/vid_std for HDMI
1013
		   according to [REF_03, c. 4.2] */
1014 1015
		io_write(sd, 0x00, 0x02); /* video std */
		io_write(sd, 0x01, 0x06); /* prim mode */
1016 1017 1018
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1019 1020
	}

1021 1022 1023 1024 1025
	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
	cp_write(sd, 0xab, (height >> 4) & 0xff);
	cp_write(sd, 0xac, (height & 0x0f) << 4);
}
1026

1027
static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1028
{
1029
	struct adv76xx_state *state = to_state(sd);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	u8 offset_buf[4];

	if (auto_offset) {
		offset_a = 0x3ff;
		offset_b = 0x3ff;
		offset_c = 0x3ff;
	}

	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_offset ? "Auto" : "Manual",
			offset_a, offset_b, offset_c);

	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
	offset_buf[3] = offset_c & 0x0ff;

	/* Registers must be written in this order with no i2c access in between */
1048 1049
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			0x77, offset_buf, 4))
1050 1051 1052
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
}

1053
static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1054
{
1055
	struct adv76xx_state *state = to_state(sd);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	u8 gain_buf[4];
	u8 gain_man = 1;
	u8 agc_mode_man = 1;

	if (auto_gain) {
		gain_man = 0;
		agc_mode_man = 0;
		gain_a = 0x100;
		gain_b = 0x100;
		gain_c = 0x100;
	}

	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
			__func__, auto_gain ? "Auto" : "Manual",
			gain_a, gain_b, gain_c);

	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
	gain_buf[3] = ((gain_c & 0x0ff));

	/* Registers must be written in this order with no i2c access in between */
1078 1079
	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
			     0x73, gain_buf, 4))
1080 1081 1082
		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
}

1083 1084
static void set_rgb_quantization_range(struct v4l2_subdev *sd)
{
1085
	struct adv76xx_state *state = to_state(sd);
1086 1087 1088 1089 1090 1091
	bool rgb_output = io_read(sd, 0x02) & 0x02;
	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;

	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
			__func__, state->rgb_quantization_range,
			rgb_output, hdmi_signal);
1092

1093 1094
	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1095

1096 1097
	switch (state->rgb_quantization_range) {
	case V4L2_DV_RGB_RANGE_AUTO:
1098
		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1099 1100
			/* Receiving analog RGB signal
			 * Set RGB full range (0-255) */
1101
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1102 1103 1104
			break;
		}

1105
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1106 1107
			/* Receiving analog YPbPr signal
			 * Set automode */
1108
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1109 1110 1111
			break;
		}

1112
		if (hdmi_signal) {
1113 1114
			/* Receiving HDMI signal
			 * Set automode */
1115
			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1116 1117 1118 1119 1120 1121
			break;
		}

		/* Receiving DVI-D signal
		 * ADV7604 selects RGB limited range regardless of
		 * input format (CE/IT) in automatic mode */
1122
		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1123
			/* RGB limited range (16-235) */
1124
			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1125 1126
		} else {
			/* RGB full range (0-255) */
1127
			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1128 1129

			if (is_digital_input(sd) && rgb_output) {
1130
				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1131
			} else {
1132 1133
				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1134
			}
1135 1136 1137
		}
		break;
	case V4L2_DV_RGB_RANGE_LIMITED:
1138
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1139
			/* YCrCb limited range (16-235) */
1140
			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1141
			break;
1142
		}
1143 1144

		/* RGB limited range (16-235) */
1145
		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1146

1147 1148
		break;
	case V4L2_DV_RGB_RANGE_FULL:
1149
		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1150
			/* YCrCb full range (0-255) */
1151
			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1152 1153 1154 1155
			break;
		}

		/* RGB full range (0-255) */
1156
		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1157 1158 1159 1160 1161 1162

		if (is_analog_input(sd) || hdmi_signal)
			break;

		/* Adjust gain/offset for DVI-D signals only */
		if (rgb_output) {
1163
			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1164
		} else {
1165 1166
			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1167
		}
1168 1169 1170 1171
		break;
	}
}

1172
static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1173
{
1174
	struct v4l2_subdev *sd =
1175
		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1176

1177
	struct adv76xx_state *state = to_state(sd);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

	switch (ctrl->id) {
	case V4L2_CID_BRIGHTNESS:
		cp_write(sd, 0x3c, ctrl->val);
		return 0;
	case V4L2_CID_CONTRAST:
		cp_write(sd, 0x3a, ctrl->val);
		return 0;
	case V4L2_CID_SATURATION:
		cp_write(sd, 0x3b, ctrl->val);
		return 0;
	case V4L2_CID_HUE:
		cp_write(sd, 0x3d, ctrl->val);
		return 0;
	case  V4L2_CID_DV_RX_RGB_RANGE:
		state->rgb_quantization_range = ctrl->val;
		set_rgb_quantization_range(sd);
		return 0;
	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1197
		if (!adv76xx_has_afe(state))
1198
			return -EINVAL;
1199 1200 1201 1202 1203 1204 1205 1206 1207
		/* Set the analog sampling phase. This is needed to find the
		   best sampling phase for analog video: an application or
		   driver has to try a number of phases and analyze the picture
		   quality before settling on the best performing phase. */
		afe_write(sd, 0xc8, ctrl->val);
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
		/* Use the default blue color for free running mode,
		   or supply your own. */
1208
		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		return 0;
	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
		return 0;
	}
	return -EINVAL;
}

/* ----------------------------------------------------------------------- */

static inline bool no_power(struct v4l2_subdev *sd)
{
	/* Entire chip or CP powered off */
	return io_read(sd, 0x0c) & 0x24;
}

static inline bool no_signal_tmds(struct v4l2_subdev *sd)
{
1229
	struct adv76xx_state *state = to_state(sd);
1230 1231

	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1232 1233 1234 1235
}

static inline bool no_lock_tmds(struct v4l2_subdev *sd)
{
1236 1237
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1238 1239

	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1240 1241
}

1242 1243 1244 1245 1246
static inline bool is_hdmi(struct v4l2_subdev *sd)
{
	return hdmi_read(sd, 0x05) & 0x80;
}

1247 1248
static inline bool no_lock_sspd(struct v4l2_subdev *sd)
{
1249
	struct adv76xx_state *state = to_state(sd);
1250 1251 1252 1253 1254

	/*
	 * Chips without a AFE don't expose registers for the SSPD, so just assume
	 * that we have a lock.
	 */
1255
	if (adv76xx_has_afe(state))
1256 1257
		return false;

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	/* TODO channel 2 */
	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
}

static inline bool no_lock_stdi(struct v4l2_subdev *sd)
{
	/* TODO channel 2 */
	return !(cp_read(sd, 0xb1) & 0x80);
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
	bool ret;

	ret = no_power(sd);

	ret |= no_lock_stdi(sd);
	ret |= no_lock_sspd(sd);

1277
	if (is_digital_input(sd)) {
1278 1279 1280 1281 1282 1283 1284 1285 1286
		ret |= no_lock_tmds(sd);
		ret |= no_signal_tmds(sd);
	}

	return ret;
}

static inline bool no_lock_cp(struct v4l2_subdev *sd)
{
1287
	struct adv76xx_state *state = to_state(sd);
1288

1289
	if (!adv76xx_has_afe(state))
1290 1291
		return false;

1292 1293 1294 1295 1296
	/* CP has detected a non standard number of lines on the incoming
	   video compared to what it is configured to receive by s_dv_timings */
	return io_read(sd, 0x12) & 0x01;
}

1297 1298 1299 1300 1301
static inline bool in_free_run(struct v4l2_subdev *sd)
{
	return cp_read(sd, 0xff) & 0x10;
}

1302
static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1303 1304 1305 1306
{
	*status = 0;
	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1307 1308 1309
	if (!in_free_run(sd) && no_lock_cp(sd))
		*status |= is_digital_input(sd) ?
			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);

	return 0;
}

/* ----------------------------------------------------------------------- */

struct stdi_readback {
	u16 bl, lcf, lcvs;
	u8 hs_pol, vs_pol;
	bool interlaced;
};

static int stdi2dv_timings(struct v4l2_subdev *sd,
		struct stdi_readback *stdi,
		struct v4l2_dv_timings *timings)
{
1328 1329
	struct adv76xx_state *state = to_state(sd);
	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1330 1331 1332
	u32 pix_clk;
	int i;

1333 1334
	for (i = 0; adv76xx_timings[i].bt.height; i++) {
		if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1335
			continue;
1336
		if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1337 1338
			continue;

1339
		pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1340

1341 1342 1343
		if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
		    (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
			*timings = adv76xx_timings[i];
1344 1345 1346 1347
			return 0;
		}
	}

1348
	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1349 1350
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1351
			false, timings))
1352 1353 1354 1355
		return 0;
	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1356
			false, state->aspect_ratio, timings))
1357 1358
		return 0;

1359 1360 1361 1362
	v4l2_dbg(2, debug, sd,
		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
		stdi->hs_pol, stdi->vs_pol);
1363 1364 1365
	return -1;
}

1366

1367 1368
static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
{
1369 1370
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1371 1372
	u8 polarity;

1373 1374 1375 1376 1377 1378
	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
		return -1;
	}

	/* read STDI */
1379
	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1380
	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1381 1382 1383
	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
	stdi->interlaced = io_read(sd, 0x12) & 0x10;

1384
	if (adv76xx_has_afe(state)) {
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		/* read SSPD */
		polarity = cp_read(sd, 0xb5);
		if ((polarity & 0x03) == 0x01) {
			stdi->hs_pol = polarity & 0x10
				     ? (polarity & 0x08 ? '+' : '-') : 'x';
			stdi->vs_pol = polarity & 0x40
				     ? (polarity & 0x20 ? '+' : '-') : 'x';
		} else {
			stdi->hs_pol = 'x';
			stdi->vs_pol = 'x';
		}
1396
	} else {
1397 1398 1399
		polarity = hdmi_read(sd, 0x05);
		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	}

	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
		v4l2_dbg(2, debug, sd,
			"%s: signal lost during readout of STDI/SSPD\n", __func__);
		return -1;
	}

	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
		memset(stdi, 0, sizeof(struct stdi_readback));
		return -1;
	}

	v4l2_dbg(2, debug, sd,
		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
		stdi->hs_pol, stdi->vs_pol,
		stdi->interlaced ? "interlaced" : "progressive");

	return 0;
}

1423
static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1424 1425
			struct v4l2_enum_dv_timings *timings)
{
1426
	struct adv76xx_state *state = to_state(sd);
1427

1428
	if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1429
		return -EINVAL;
1430 1431 1432 1433

	if (timings->pad >= state->source_pad)
		return -EINVAL;

1434
	memset(timings->reserved, 0, sizeof(timings->reserved));
1435
	timings->timings = adv76xx_timings[timings->index];
1436 1437 1438
	return 0;
}

1439
static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1440
			struct v4l2_dv_timings_cap *cap)
1441
{
1442
	struct adv76xx_state *state = to_state(sd);
1443 1444 1445 1446

	if (cap->pad >= state->source_pad)
		return -EINVAL;

1447 1448 1449
	cap->type = V4L2_DV_BT_656_1120;
	cap->bt.max_width = 1920;
	cap->bt.max_height = 1200;
1450
	cap->bt.min_pixelclock = 25000000;
1451

1452
	switch (cap->pad) {
1453
	case ADV76XX_PAD_HDMI_PORT_A:
1454 1455 1456
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
1457
		cap->bt.max_pixelclock = 225000000;
1458 1459 1460 1461
		break;
	case ADV7604_PAD_VGA_RGB:
	case ADV7604_PAD_VGA_COMP:
	default:
1462
		cap->bt.max_pixelclock = 170000000;
1463 1464 1465
		break;
	}

1466 1467 1468 1469 1470 1471 1472 1473
	cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
			 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
	cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
		V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
	return 0;
}

/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1474 1475
   if the format is listed in adv76xx_timings[] */
static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1476 1477 1478 1479
		struct v4l2_dv_timings *timings)
{
	int i;

1480 1481
	for (i = 0; adv76xx_timings[i].bt.width; i++) {
		if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1482
				is_digital_input(sd) ? 250000 : 1000000, false)) {
1483
			*timings = adv76xx_timings[i];
1484 1485 1486 1487 1488
			break;
		}
	}
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	unsigned int freq;
	int a, b;

	a = hdmi_read(sd, 0x06);
	b = hdmi_read(sd, 0x3b);
	if (a < 0 || b < 0)
		return 0;
	freq =  a * 1000000 + ((b & 0x30) >> 4) * 250000;

	if (is_hdmi(sd)) {
		/* adjust for deep color mode */
		unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;

		freq = freq * 8 / bits_per_channel;
	}

	return freq;
}

static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
{
	int a, b;

	a = hdmi_read(sd, 0x51);
	b = hdmi_read(sd, 0x52);
	if (a < 0 || b < 0)
		return 0;
	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
}

1521
static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1522 1523
			struct v4l2_dv_timings *timings)
{
1524 1525
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1526 1527 1528 1529 1530 1531 1532 1533 1534
	struct v4l2_bt_timings *bt = &timings->bt;
	struct stdi_readback stdi;

	if (!timings)
		return -EINVAL;

	memset(timings, 0, sizeof(struct v4l2_dv_timings));

	if (no_signal(sd)) {
1535
		state->restart_stdi_once = true;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
		return -ENOLINK;
	}

	/* read STDI */
	if (read_stdi(sd, &stdi)) {
		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
		return -ENOLINK;
	}
	bt->interlaced = stdi.interlaced ?
		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

1548
	if (is_digital_input(sd)) {
1549 1550
		timings->type = V4L2_DV_BT_656_1120;

1551 1552
		bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
		bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1553
		bt->pixelclock = info->read_hdmi_pixelclock(sd);
1554 1555 1556 1557 1558 1559 1560 1561
		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
		bt->vfrontporch = hdmi_read16(sd, 0x2a,
			info->field0_vfrontporch_mask) / 2;
		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
		bt->vbackporch = hdmi_read16(sd, 0x32,
			info->field0_vbackporch_mask) / 2;
1562 1563 1564
		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
		if (bt->interlaced == V4L2_DV_INTERLACED) {
1565 1566 1567 1568 1569 1570 1571 1572
			bt->height += hdmi_read16(sd, 0x0b,
				info->field1_height_mask);
			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
				info->field1_vfrontporch_mask) / 2;
			bt->il_vsync = hdmi_read16(sd, 0x30,
				info->field1_vsync_mask) / 2;
			bt->il_vbackporch = hdmi_read16(sd, 0x34,
				info->field1_vbackporch_mask) / 2;
1573
		}
1574
		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1575 1576
	} else {
		/* find format
H
Hans Verkuil 已提交
1577
		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
		 */
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs += 1;
		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
		if (!stdi2dv_timings(sd, &stdi, timings))
			goto found;
		stdi.lcvs -= 2;
		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
		if (stdi2dv_timings(sd, &stdi, timings)) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			/*
			 * The STDI block may measure wrong values, especially
			 * for lcvs and lcf. If the driver can not find any
			 * valid timing, the STDI block is restarted to measure
			 * the video timings again. The function will return an
			 * error, but the restart of STDI will generate a new
			 * STDI interrupt and the format detection process will
			 * restart.
			 */
			if (state->restart_stdi_once) {
				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
				/* TODO restart STDI for Sync Channel 2 */
				/* enter one-shot mode */
1602
				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1603
				/* trigger STDI restart */
1604
				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1605
				/* reset to continuous mode */
1606
				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1607 1608 1609
				state->restart_stdi_once = false;
				return -ENOLINK;
			}
1610 1611 1612
			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
			return -ERANGE;
		}
1613
		state->restart_stdi_once = true;
1614 1615 1616 1617 1618 1619 1620 1621 1622
	}
found:

	if (no_signal(sd)) {
		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
		memset(timings, 0, sizeof(struct v4l2_dv_timings));
		return -ENOLINK;
	}

1623 1624
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1625 1626 1627 1628 1629 1630
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}

	if (debug > 1)
1631
		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1632
				      timings, true);
1633 1634 1635 1636

	return 0;
}

1637
static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1638 1639
		struct v4l2_dv_timings *timings)
{
1640
	struct adv76xx_state *state = to_state(sd);
1641
	struct v4l2_bt_timings *bt;
1642
	int err;
1643 1644 1645 1646

	if (!timings)
		return -EINVAL;

1647
	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1648 1649 1650 1651
		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
		return 0;
	}

1652 1653
	bt = &timings->bt;

1654 1655
	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1656 1657 1658 1659
		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
				__func__, (u32)bt->pixelclock);
		return -ERANGE;
	}
1660

1661
	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1662 1663 1664

	state->timings = *timings;

1665
	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1666 1667 1668 1669 1670 1671 1672 1673

	/* Use prim_mode and vid_std when available */
	err = configure_predefined_video_timings(sd, timings);
	if (err) {
		/* custom settings when the video format
		 does not have prim_mode/vid_std */
		configure_custom_video_timings(sd, bt);
	}
1674 1675 1676 1677

	set_rgb_quantization_range(sd);

	if (debug > 1)
1678
		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1679
				      timings, true);
1680 1681 1682
	return 0;
}

1683
static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1684 1685
		struct v4l2_dv_timings *timings)
{
1686
	struct adv76xx_state *state = to_state(sd);
1687 1688 1689 1690 1691

	*timings = state->timings;
	return 0;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
}

static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
{
	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
}

1702
static void enable_input(struct v4l2_subdev *sd)
1703
{
1704
	struct adv76xx_state *state = to_state(sd);
1705

1706
	if (is_analog_input(sd)) {
1707
		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1708
	} else if (is_digital_input(sd)) {
1709
		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1710
		state->info->set_termination(sd, true);
1711
		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1712
		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1713 1714 1715
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1716 1717 1718 1719 1720
	}
}

static void disable_input(struct v4l2_subdev *sd)
{
1721
	struct adv76xx_state *state = to_state(sd);
1722

1723
	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1724
	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1725
	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1726
	state->info->set_termination(sd, false);
1727 1728
}

1729
static void select_input(struct v4l2_subdev *sd)
1730
{
1731 1732
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1733

1734
	if (is_analog_input(sd)) {
1735
		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1736 1737 1738 1739

		afe_write(sd, 0x00, 0x08); /* power up ADC */
		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
		afe_write(sd, 0xc8, 0x00); /* phase control */
1740 1741
	} else if (is_digital_input(sd)) {
		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1742

1743
		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1744

1745
		if (adv76xx_has_afe(state)) {
1746 1747 1748 1749 1750
			afe_write(sd, 0x00, 0xff); /* power down ADC */
			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
			afe_write(sd, 0xc8, 0x40); /* phase control */
		}

1751 1752 1753
		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1754 1755 1756
	} else {
		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
				__func__, state->selected_input);
1757 1758 1759
	}
}

1760
static int adv76xx_s_routing(struct v4l2_subdev *sd,
1761 1762
		u32 input, u32 output, u32 config)
{
1763
	struct adv76xx_state *state = to_state(sd);
1764

1765 1766 1767 1768 1769
	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
			__func__, input, state->selected_input);

	if (input == state->selected_input)
		return 0;
1770

1771 1772 1773
	if (input > state->info->max_port)
		return -EINVAL;

1774
	state->selected_input = input;
1775 1776

	disable_input(sd);
1777 1778
	select_input(sd);
	enable_input(sd);
1779

1780 1781
	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);

1782 1783 1784
	return 0;
}

1785
static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1786
				  struct v4l2_subdev_pad_config *cfg,
1787
				  struct v4l2_subdev_mbus_code_enum *code)
1788
{
1789
	struct adv76xx_state *state = to_state(sd);
1790 1791

	if (code->index >= state->info->nformats)
1792
		return -EINVAL;
1793 1794 1795

	code->code = state->info->formats[code->index].code;

1796 1797 1798
	return 0;
}

1799
static void adv76xx_fill_format(struct adv76xx_state *state,
1800
				struct v4l2_mbus_framefmt *format)
1801
{
1802
	memset(format, 0, sizeof(*format));
1803

1804 1805 1806
	format->width = state->timings.bt.width;
	format->height = state->timings.bt.height;
	format->field = V4L2_FIELD_NONE;
1807
	format->colorspace = V4L2_COLORSPACE_SRGB;
1808

1809
	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1810
		format->colorspace = (state->timings.bt.height <= 576) ?
1811
			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1812 1813 1814 1815 1816 1817 1818 1819 1820
}

/*
 * Compute the op_ch_sel value required to obtain on the bus the component order
 * corresponding to the selected format taking into account bus reordering
 * applied by the board at the output of the device.
 *
 * The following table gives the op_ch_value from the format component order
 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1821
 * adv76xx_bus_order value in row).
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
 *
 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
 * ----------+-------------------------------------------------
 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
 */
1832
static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1833 1834
{
#define _SEL(a,b,c,d,e,f)	{ \
1835 1836
	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
#define _BUS(x)			[ADV7604_BUS_ORDER_##x]

	static const unsigned int op_ch_sel[6][6] = {
		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
	};

	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
}

1851
static void adv76xx_setup_format(struct adv76xx_state *state)
1852 1853 1854
{
	struct v4l2_subdev *sd = &state->sd;

1855
	io_write_clr_set(sd, 0x02, 0x02,
1856
			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1857 1858
	io_write(sd, 0x03, state->format->op_format_sel |
		 state->pdata.op_format_mode_sel);
1859
	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1860
	io_write_clr_set(sd, 0x05, 0x01,
1861
			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1862 1863
}

1864 1865
static int adv76xx_get_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1866 1867
			      struct v4l2_subdev_format *format)
{
1868
	struct adv76xx_state *state = to_state(sd);
1869 1870 1871 1872

	if (format->pad != state->source_pad)
		return -EINVAL;

1873
	adv76xx_fill_format(state, &format->format);
1874 1875 1876 1877

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1878
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1879 1880 1881
		format->format.code = fmt->code;
	} else {
		format->format.code = state->format->code;
1882
	}
1883 1884 1885 1886

	return 0;
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
static int adv76xx_get_selection(struct v4l2_subdev *sd,
				 struct v4l2_subdev_pad_config *cfg,
				 struct v4l2_subdev_selection *sel)
{
	struct adv76xx_state *state = to_state(sd);

	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
		return -EINVAL;
	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
		return -EINVAL;

	sel->r.left	= 0;
	sel->r.top	= 0;
	sel->r.width	= state->timings.bt.width;
	sel->r.height	= state->timings.bt.height;

	return 0;
}

1907 1908
static int adv76xx_set_format(struct v4l2_subdev *sd,
			      struct v4l2_subdev_pad_config *cfg,
1909 1910
			      struct v4l2_subdev_format *format)
{
1911 1912
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_format_info *info;
1913 1914 1915 1916

	if (format->pad != state->source_pad)
		return -EINVAL;

1917
	info = adv76xx_format_info(state, format->format.code);
1918
	if (info == NULL)
1919
		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1920

1921
	adv76xx_fill_format(state, &format->format);
1922 1923 1924 1925 1926
	format->format.code = info->code;

	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		struct v4l2_mbus_framefmt *fmt;

1927
		fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1928 1929 1930
		fmt->code = format->format.code;
	} else {
		state->format = info;
1931
		adv76xx_setup_format(state);
1932 1933
	}

1934 1935 1936
	return 0;
}

1937
static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1938
{
1939 1940
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	const u8 irq_reg_0x43 = io_read(sd, 0x43);
	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
	const u8 irq_reg_0x70 = io_read(sd, 0x70);
	u8 fmt_change_digital;
	u8 fmt_change;
	u8 tx_5v;

	if (irq_reg_0x43)
		io_write(sd, 0x44, irq_reg_0x43);
	if (irq_reg_0x70)
		io_write(sd, 0x71, irq_reg_0x70);
	if (irq_reg_0x6b)
		io_write(sd, 0x6c, irq_reg_0x6b);
1954

1955 1956
	v4l2_dbg(2, debug, sd, "%s: ", __func__);

1957
	/* format change */
1958
	fmt_change = irq_reg_0x43 & 0x98;
1959 1960 1961
	fmt_change_digital = is_digital_input(sd)
			   ? irq_reg_0x6b & info->fmt_change_digital_mask
			   : 0;
1962

1963 1964
	if (fmt_change || fmt_change_digital) {
		v4l2_dbg(1, debug, sd,
1965
			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1966
			__func__, fmt_change, fmt_change_digital);
1967

1968
		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1969

1970 1971 1972
		if (handled)
			*handled = true;
	}
1973 1974 1975 1976 1977 1978 1979 1980 1981
	/* HDMI/DVI mode */
	if (irq_reg_0x6b & 0x01) {
		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
		set_rgb_quantization_range(sd);
		if (handled)
			*handled = true;
	}

1982
	/* tx 5v detect */
1983
	tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1984 1985 1986
	if (tx_5v) {
		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
		io_write(sd, 0x71, tx_5v);
1987
		adv76xx_s_detect_tx_5v_ctrl(sd);
1988 1989 1990 1991 1992 1993
		if (handled)
			*handled = true;
	}
	return 0;
}

1994
static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1995
{
1996
	struct adv76xx_state *state = to_state(sd);
1997
	u8 *data = NULL;
1998

1999
	memset(edid->reserved, 0, sizeof(edid->reserved));
2000 2001

	switch (edid->pad) {
2002
	case ADV76XX_PAD_HDMI_PORT_A:
2003 2004 2005
	case ADV7604_PAD_HDMI_PORT_B:
	case ADV7604_PAD_HDMI_PORT_C:
	case ADV7604_PAD_HDMI_PORT_D:
2006 2007 2008 2009 2010 2011
		if (state->edid.present & (1 << edid->pad))
			data = state->edid.edid;
		break;
	default:
		return -EINVAL;
	}
2012 2013 2014 2015 2016 2017 2018

	if (edid->start_block == 0 && edid->blocks == 0) {
		edid->blocks = data ? state->edid.blocks : 0;
		return 0;
	}

	if (data == NULL)
2019 2020
		return -ENODATA;

2021 2022 2023 2024 2025 2026 2027 2028
	if (edid->start_block >= state->edid.blocks)
		return -EINVAL;

	if (edid->start_block + edid->blocks > state->edid.blocks)
		edid->blocks = state->edid.blocks - edid->start_block;

	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);

2029 2030 2031
	return 0;
}

2032
static int get_edid_spa_location(const u8 *edid)
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
{
	u8 d;

	if ((edid[0x7e] != 1) ||
	    (edid[0x80] != 0x02) ||
	    (edid[0x81] != 0x03)) {
		return -1;
	}

	/* search Vendor Specific Data Block (tag 3) */
	d = edid[0x82] & 0x7f;
	if (d > 4) {
		int i = 0x84;
		int end = 0x80 + d;

		do {
			u8 tag = edid[i] >> 5;
			u8 len = edid[i] & 0x1f;

			if ((tag == 3) && (len >= 5))
				return i + 4;
			i += len + 1;
		} while (i < end);
	}
	return -1;
}

2060
static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2061
{
2062 2063
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2064
	int spa_loc;
2065
	int err;
2066
	int i;
2067

2068 2069
	memset(edid->reserved, 0, sizeof(edid->reserved));

2070
	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2071 2072 2073 2074
		return -EINVAL;
	if (edid->start_block != 0)
		return -EINVAL;
	if (edid->blocks == 0) {
2075
		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2076
		state->edid.present &= ~(1 << edid->pad);
2077
		adv76xx_set_hpd(state, state->edid.present);
2078
		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2079

2080 2081 2082
		/* Fall back to a 16:9 aspect ratio */
		state->aspect_ratio.numerator = 16;
		state->aspect_ratio.denominator = 9;
2083 2084 2085 2086 2087 2088

		if (!state->edid.present)
			state->edid.blocks = 0;

		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
				__func__, edid->pad, state->edid.present);
2089 2090
		return 0;
	}
2091 2092
	if (edid->blocks > 2) {
		edid->blocks = 2;
2093
		return -E2BIG;
2094 2095
	}

2096 2097 2098
	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
			__func__, edid->pad, state->edid.present);

2099
	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2100
	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2101
	adv76xx_set_hpd(state, 0);
2102
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2103

2104 2105 2106 2107
	spa_loc = get_edid_spa_location(edid->edid);
	if (spa_loc < 0)
		spa_loc = 0xc0; /* Default value [REF_02, p. 116] */

2108
	switch (edid->pad) {
2109
	case ADV76XX_PAD_HDMI_PORT_A:
2110 2111
		state->spa_port_a[0] = edid->edid[spa_loc];
		state->spa_port_a[1] = edid->edid[spa_loc + 1];
2112
		break;
2113
	case ADV7604_PAD_HDMI_PORT_B:
2114 2115
		rep_write(sd, 0x70, edid->edid[spa_loc]);
		rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2116
		break;
2117
	case ADV7604_PAD_HDMI_PORT_C:
2118 2119
		rep_write(sd, 0x72, edid->edid[spa_loc]);
		rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2120
		break;
2121
	case ADV7604_PAD_HDMI_PORT_D:
2122 2123
		rep_write(sd, 0x74, edid->edid[spa_loc]);
		rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2124
		break;
2125 2126
	default:
		return -EINVAL;
2127
	}
2128 2129 2130

	if (info->type == ADV7604) {
		rep_write(sd, 0x76, spa_loc & 0xff);
2131
		rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2132 2133
	} else {
		/* FIXME: Where is the SPA location LSB register ? */
2134
		rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2135
	}
2136

2137 2138
	edid->edid[spa_loc] = state->spa_port_a[0];
	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2139 2140 2141

	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
	state->edid.blocks = edid->blocks;
2142 2143
	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
			edid->edid[0x16]);
2144
	state->edid.present |= 1 << edid->pad;
2145 2146 2147

	err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
	if (err < 0) {
2148
		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2149 2150 2151
		return err;
	}

2152
	/* adv76xx calculates the checksums and enables I2C access to internal
2153
	   EDID RAM from DDC port. */
2154
	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2155 2156

	for (i = 0; i < 1000; i++) {
2157
		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2158 2159 2160 2161 2162 2163 2164 2165
			break;
		mdelay(1);
	}
	if (i == 1000) {
		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
		return -EIO;
	}

2166 2167 2168 2169
	/* enable hotplug after 100 ms */
	queue_delayed_work(state->work_queues,
			&state->delayed_work_enable_hotplug, HZ / 10);
	return 0;
2170 2171 2172 2173
}

/*********** avi info frame CEA-861-E **************/

H
Hans Verkuil 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182
static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
	{ "AVI", 0x01, 0xe0, 0x00 },
	{ "Audio", 0x02, 0xe3, 0x1c },
	{ "SDP", 0x04, 0xe6, 0x2a },
	{ "Vendor", 0x10, 0xec, 0x54 }
};

static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
				  union hdmi_infoframe *frame)
2183
{
H
Hans Verkuil 已提交
2184 2185
	uint8_t buffer[32];
	u8 len;
2186 2187
	int i;

H
Hans Verkuil 已提交
2188 2189 2190 2191
	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
		v4l2_info(sd, "%s infoframe not received\n",
			  adv76xx_cri[index].desc);
		return -ENOENT;
2192
	}
H
Hans Verkuil 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

	for (i = 0; i < 3; i++)
		buffer[i] = infoframe_read(sd,
					   adv76xx_cri[index].head_addr + i);

	len = buffer[2] + 1;

	if (len + 3 > sizeof(buffer)) {
		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
			 adv76xx_cri[index].desc, len);
		return -ENOENT;
2204 2205
	}

H
Hans Verkuil 已提交
2206 2207 2208 2209 2210 2211 2212 2213
	for (i = 0; i < len; i++)
		buffer[i + 3] = infoframe_read(sd,
				       adv76xx_cri[index].payload_addr + i);

	if (hdmi_infoframe_unpack(frame, buffer) < 0) {
		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
			 adv76xx_cri[index].desc);
		return -ENOENT;
2214
	}
H
Hans Verkuil 已提交
2215 2216
	return 0;
}
2217

H
Hans Verkuil 已提交
2218 2219 2220
static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
{
	int i;
2221

H
Hans Verkuil 已提交
2222 2223
	if (!is_hdmi(sd)) {
		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2224
		return;
H
Hans Verkuil 已提交
2225
	}
2226

H
Hans Verkuil 已提交
2227 2228 2229
	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
		union hdmi_infoframe frame;
		struct i2c_client *client = v4l2_get_subdevdata(sd);
2230

H
Hans Verkuil 已提交
2231 2232 2233 2234
		if (adv76xx_read_infoframe(sd, i, &frame))
			return;
		hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
	}
2235 2236
}

2237
static int adv76xx_log_status(struct v4l2_subdev *sd)
2238
{
2239 2240
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
2241 2242 2243
	struct v4l2_dv_timings timings;
	struct stdi_readback stdi;
	u8 reg_io_0x02 = io_read(sd, 0x02);
2244 2245
	u8 edid_enabled;
	u8 cable_det;
2246

2247
	static const char * const csc_coeff_sel_rb[16] = {
2248 2249 2250 2251 2252
		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
		"reserved", "reserved", "reserved", "reserved", "manual"
	};
2253
	static const char * const input_color_space_txt[16] = {
2254 2255
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2256
		"xvYCC Bt.601", "xvYCC Bt.709",
2257 2258 2259 2260
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"invalid", "invalid", "invalid", "invalid", "invalid",
		"invalid", "invalid", "automatic"
	};
2261 2262 2263 2264 2265 2266 2267 2268
	static const char * const hdmi_color_space_txt[16] = {
		"RGB limited range (16-235)", "RGB full range (0-255)",
		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
		"xvYCC Bt.601", "xvYCC Bt.709",
		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
		"sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
		"invalid", "invalid", "invalid"
	};
2269
	static const char * const rgb_quantization_range_txt[] = {
2270 2271 2272 2273
		"Automatic",
		"RGB limited range (16-235)",
		"RGB full range (0-255)",
	};
2274
	static const char * const deep_color_mode_txt[4] = {
2275 2276 2277 2278 2279
		"8-bits per channel",
		"10-bits per channel",
		"12-bits per channel",
		"16-bits per channel (not supported)"
	};
2280 2281 2282

	v4l2_info(sd, "-----Chip status-----\n");
	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2283
	edid_enabled = rep_read(sd, info->edid_status_reg);
2284
	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2285 2286 2287 2288
			((edid_enabled & 0x01) ? "Yes" : "No"),
			((edid_enabled & 0x02) ? "Yes" : "No"),
			((edid_enabled & 0x04) ? "Yes" : "No"),
			((edid_enabled & 0x08) ? "Yes" : "No"));
2289 2290 2291 2292
	v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
			"enabled" : "disabled");

	v4l2_info(sd, "-----Signal status-----\n");
2293
	cable_det = info->read_cable_det(sd);
2294
	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2295 2296
			((cable_det & 0x01) ? "Yes" : "No"),
			((cable_det & 0x02) ? "Yes" : "No"),
2297
			((cable_det & 0x04) ? "Yes" : "No"),
2298
			((cable_det & 0x08) ? "Yes" : "No"));
2299 2300 2301 2302 2303 2304 2305 2306
	v4l2_info(sd, "TMDS signal detected: %s\n",
			no_signal_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "TMDS signal locked: %s\n",
			no_lock_tmds(sd) ? "false" : "true");
	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
	v4l2_info(sd, "CP free run: %s\n",
2307
			(in_free_run(sd)) ? "on" : "off");
2308 2309 2310
	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
			(io_read(sd, 0x01) & 0x70) >> 4);
2311 2312 2313 2314 2315 2316 2317 2318 2319

	v4l2_info(sd, "-----Video Timings-----\n");
	if (read_stdi(sd, &stdi))
		v4l2_info(sd, "STDI: not locked\n");
	else
		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
				stdi.lcf, stdi.bl, stdi.lcvs,
				stdi.interlaced ? "interlaced" : "progressive",
				stdi.hs_pol, stdi.vs_pol);
2320
	if (adv76xx_query_dv_timings(sd, &timings))
2321 2322
		v4l2_info(sd, "No video detected\n");
	else
2323 2324 2325 2326
		v4l2_print_dv_timings(sd->name, "Detected format: ",
				      &timings, true);
	v4l2_print_dv_timings(sd->name, "Configured format: ",
			      &state->timings, true);
2327

2328 2329 2330
	if (no_signal(sd))
		return 0;

2331 2332 2333 2334 2335
	v4l2_info(sd, "-----Color space-----\n");
	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
			rgb_quantization_range_txt[state->rgb_quantization_range]);
	v4l2_info(sd, "Input color space: %s\n",
			input_color_space_txt[reg_io_0x02 >> 4]);
2336
	v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2337 2338
			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
			(reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2339
			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2340 2341
				"enabled" : "disabled",
			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2342
	v4l2_info(sd, "Color space conversion: %s\n",
2343
			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2344

2345
	if (!is_digital_input(sd))
2346 2347 2348
		return 0;

	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2349 2350 2351 2352
	v4l2_info(sd, "Digital video port selected: %c\n",
			(hdmi_read(sd, 0x00) & 0x03) + 'A');
	v4l2_info(sd, "HDCP encrypted content: %s\n",
			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2353 2354 2355
	v4l2_info(sd, "HDCP keys read: %s%s\n",
			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2356
	if (is_hdmi(sd)) {
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
		bool audio_mute = io_read(sd, 0x65) & 0x40;

		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
				audio_pll_locked ? "locked" : "not locked",
				audio_sample_packet_detect ? "detected" : "not detected",
				audio_mute ? "muted" : "enabled");
		if (audio_pll_locked && audio_sample_packet_detect) {
			v4l2_info(sd, "Audio format: %s\n",
					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
		}
		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
				(hdmi_read(sd, 0x5c) << 8) +
				(hdmi_read(sd, 0x5d) & 0xf0));
		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
				(hdmi_read(sd, 0x5e) << 8) +
				hdmi_read(sd, 0x5f));
		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");

		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2378
		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2379

H
Hans Verkuil 已提交
2380
		adv76xx_log_infoframes(sd);
2381 2382 2383 2384 2385
	}

	return 0;
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
				   struct v4l2_fh *fh,
				   struct v4l2_event_subscription *sub)
{
	switch (sub->type) {
	case V4L2_EVENT_SOURCE_CHANGE:
		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
	case V4L2_EVENT_CTRL:
		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
	default:
		return -EINVAL;
	}
}

2400 2401
/* ----------------------------------------------------------------------- */

2402 2403
static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
	.s_ctrl = adv76xx_s_ctrl,
2404 2405
};

2406 2407 2408
static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
	.log_status = adv76xx_log_status,
	.interrupt_service_routine = adv76xx_isr,
2409
	.subscribe_event = adv76xx_subscribe_event,
2410
	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2411
#ifdef CONFIG_VIDEO_ADV_DEBUG
2412 2413
	.g_register = adv76xx_g_register,
	.s_register = adv76xx_s_register,
2414 2415 2416
#endif
};

2417 2418 2419 2420 2421 2422
static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
	.s_routing = adv76xx_s_routing,
	.g_input_status = adv76xx_g_input_status,
	.s_dv_timings = adv76xx_s_dv_timings,
	.g_dv_timings = adv76xx_g_dv_timings,
	.query_dv_timings = adv76xx_query_dv_timings,
2423 2424
};

2425 2426
static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
	.enum_mbus_code = adv76xx_enum_mbus_code,
2427
	.get_selection = adv76xx_get_selection,
2428 2429 2430 2431 2432 2433
	.get_fmt = adv76xx_get_format,
	.set_fmt = adv76xx_set_format,
	.get_edid = adv76xx_get_edid,
	.set_edid = adv76xx_set_edid,
	.dv_timings_cap = adv76xx_dv_timings_cap,
	.enum_dv_timings = adv76xx_enum_dv_timings,
2434 2435
};

2436 2437 2438 2439
static const struct v4l2_subdev_ops adv76xx_ops = {
	.core = &adv76xx_core_ops,
	.video = &adv76xx_video_ops,
	.pad = &adv76xx_pad_ops,
2440 2441 2442 2443 2444
};

/* -------------------------- custom ctrls ---------------------------------- */

static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2445
	.ops = &adv76xx_ctrl_ops,
2446 2447 2448 2449 2450 2451 2452 2453 2454
	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
	.name = "Analog Sampling Phase",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0,
	.max = 0x1f,
	.step = 1,
	.def = 0,
};

2455 2456
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
	.ops = &adv76xx_ctrl_ops,
2457 2458 2459 2460 2461 2462 2463 2464 2465
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
	.name = "Free Running Color, Manual",
	.type = V4L2_CTRL_TYPE_BOOLEAN,
	.min = false,
	.max = true,
	.step = 1,
	.def = false,
};

2466 2467
static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
	.ops = &adv76xx_ctrl_ops,
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
	.name = "Free Running Color",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.min = 0x0,
	.max = 0xffffff,
	.step = 0x1,
	.def = 0x0,
};

/* ----------------------------------------------------------------------- */

2479
static int adv76xx_core_init(struct v4l2_subdev *sd)
2480
{
2481 2482 2483
	struct adv76xx_state *state = to_state(sd);
	const struct adv76xx_chip_info *info = state->info;
	struct adv76xx_platform_data *pdata = &state->pdata;
2484 2485 2486 2487 2488 2489 2490

	hdmi_write(sd, 0x48,
		(pdata->disable_pwrdnb ? 0x80 : 0) |
		(pdata->disable_cable_det_rst ? 0x40 : 0));

	disable_input(sd);

2491 2492 2493 2494 2495 2496 2497
	if (pdata->default_input >= 0 &&
	    pdata->default_input < state->source_pad) {
		state->selected_input = pdata->default_input;
		select_input(sd);
		enable_input(sd);
	}

2498 2499 2500 2501 2502 2503
	/* power */
	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */

	/* video format */
2504
	io_write_clr_set(sd, 0x02, 0x0f,
2505 2506 2507
			pdata->alt_gamma << 3 |
			pdata->op_656_range << 2 |
			pdata->alt_data_sat << 0);
2508
	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2509 2510
			pdata->insert_av_codes << 2 |
			pdata->replicate_av_codes << 1);
2511
	adv76xx_setup_format(state);
2512 2513

	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2514 2515

	/* VS, HS polarities */
2516 2517
	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2518 2519 2520 2521 2522 2523

	/* Adjust drive strength */
	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
				pdata->dr_str_clk << 2 |
				pdata->dr_str_sync);

2524 2525 2526
	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
H
Hans Verkuil 已提交
2527
				      ADI recommended setting [REF_01, c. 2.3.3] */
2528
	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
H
Hans Verkuil 已提交
2529
				      ADI recommended setting [REF_01, c. 2.3.3] */
2530 2531 2532
	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
				     for digital formats */

2533
	/* HDMI audio */
2534 2535 2536
	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2537

2538 2539 2540
	/* TODO from platform data */
	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */

2541
	if (adv76xx_has_afe(state)) {
2542
		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2543
		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2544
	}
2545 2546

	/* interrupts */
2547
	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2548
	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2549 2550 2551
	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
	info->setup_irqs(sd);
2552 2553 2554 2555

	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static void adv7604_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
}

static void adv7611_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
}

2566 2567 2568 2569 2570
static void adv7612_setup_irqs(struct v4l2_subdev *sd)
{
	io_write(sd, 0x41, 0xd0); /* disable INT2 */
}

2571
static void adv76xx_unregister_clients(struct adv76xx_state *state)
2572
{
2573 2574 2575 2576 2577 2578
	unsigned int i;

	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
		if (state->i2c_clients[i])
			i2c_unregister_device(state->i2c_clients[i]);
	}
2579 2580
}

2581
static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2582 2583 2584 2585 2586 2587 2588 2589 2590
							u8 addr, u8 io_reg)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (addr)
		io_write(sd, io_reg, addr << 1);
	return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
}

2591
static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2592 2593
	/* reset ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2606 2607 2608

	/* set ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2609 2610 2611 2612 2613
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2614

2615
	{ ADV76XX_REG_SEQ_TERM, 0 },
2616 2617
};

2618
static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2619 2620
	/* set ADI recommended settings for HDMI: */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2632 2633 2634

	/* reset ADI recommended settings for digitizer */
	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2635 2636
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2637

2638
	{ ADV76XX_REG_SEQ_TERM, 0 },
2639 2640
};

2641
static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2642
	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },

	{ ADV76XX_REG_SEQ_TERM, 0 },
2656 2657
};

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
	{ ADV76XX_REG_SEQ_TERM, 0 },
};

2671
static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2672 2673 2674
	[ADV7604] = {
		.type = ADV7604,
		.has_afe = true,
2675
		.max_port = ADV7604_PAD_VGA_COMP,
2676 2677 2678 2679 2680 2681 2682
		.num_dv_ports = 4,
		.edid_enable_reg = 0x77,
		.edid_status_reg = 0x7d,
		.lcf_reg = 0xb3,
		.tdms_lock_mask = 0xe0,
		.cable_det_mask = 0x1e,
		.fmt_change_digital_mask = 0xc1,
2683
		.cp_csc = 0xfc,
2684 2685
		.formats = adv7604_formats,
		.nformats = ARRAY_SIZE(adv7604_formats),
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		.set_termination = adv7604_set_termination,
		.setup_irqs = adv7604_setup_irqs,
		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
		.read_cable_det = adv7604_read_cable_det,
		.recommended_settings = {
		    [0] = adv7604_recommended_settings_afe,
		    [1] = adv7604_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
		},
2698 2699
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2700
			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2701 2702 2703
			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2704
			BIT(ADV7604_PAGE_VDP),
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		.linewidth_mask = 0xfff,
		.field0_height_mask = 0xfff,
		.field1_height_mask = 0xfff,
		.hfrontporch_mask = 0x3ff,
		.hsync_mask = 0x3ff,
		.hbackporch_mask = 0x3ff,
		.field0_vfrontporch_mask = 0x1fff,
		.field0_vsync_mask = 0x1fff,
		.field0_vbackporch_mask = 0x1fff,
		.field1_vfrontporch_mask = 0x1fff,
		.field1_vsync_mask = 0x1fff,
		.field1_vbackporch_mask = 0x1fff,
2717 2718 2719 2720
	},
	[ADV7611] = {
		.type = ADV7611,
		.has_afe = false,
2721
		.max_port = ADV76XX_PAD_HDMI_PORT_A,
2722 2723 2724 2725 2726 2727 2728
		.num_dv_ports = 1,
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2729
		.cp_csc = 0xf4,
2730 2731
		.formats = adv7611_formats,
		.nformats = ARRAY_SIZE(adv7611_formats),
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7611_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
		.read_cable_det = adv7611_read_cable_det,
		.recommended_settings = {
		    [1] = adv7611_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
		},
2742 2743 2744 2745
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
2758
	},
2759 2760 2761
	[ADV7612] = {
		.type = ADV7612,
		.has_afe = false,
2762 2763
		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
		.num_dv_ports = 1,			/* normally 2 */
2764 2765 2766 2767 2768 2769
		.edid_enable_reg = 0x74,
		.edid_status_reg = 0x76,
		.lcf_reg = 0xa3,
		.tdms_lock_mask = 0x43,
		.cable_det_mask = 0x01,
		.fmt_change_digital_mask = 0x03,
2770
		.cp_csc = 0xf4,
2771 2772 2773 2774 2775
		.formats = adv7612_formats,
		.nformats = ARRAY_SIZE(adv7612_formats),
		.set_termination = adv7611_set_termination,
		.setup_irqs = adv7612_setup_irqs,
		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2776
		.read_cable_det = adv7612_read_cable_det,
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		.recommended_settings = {
		    [1] = adv7612_recommended_settings_hdmi,
		},
		.num_recommended_settings = {
		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
		},
		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
		.linewidth_mask = 0x1fff,
		.field0_height_mask = 0x1fff,
		.field1_height_mask = 0x1fff,
		.hfrontporch_mask = 0x1fff,
		.hsync_mask = 0x1fff,
		.hbackporch_mask = 0x1fff,
		.field0_vfrontporch_mask = 0x3fff,
		.field0_vsync_mask = 0x3fff,
		.field0_vbackporch_mask = 0x3fff,
		.field1_vfrontporch_mask = 0x3fff,
		.field1_vsync_mask = 0x3fff,
		.field1_vbackporch_mask = 0x3fff,
	},
2800 2801
};

2802
static const struct i2c_device_id adv76xx_i2c_id[] = {
2803 2804
	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2805
	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
2806 2807
	{ }
};
2808
MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2809

2810
static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2811
	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2812
	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
2813 2814
	{ }
};
2815
MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2816

2817
static int adv76xx_parse_dt(struct adv76xx_state *state)
2818
{
2819 2820 2821 2822
	struct v4l2_of_endpoint bus_cfg;
	struct device_node *endpoint;
	struct device_node *np;
	unsigned int flags;
2823
	int ret;
2824
	u32 v;
2825

2826
	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2827 2828 2829 2830 2831 2832

	/* Parse the endpoint. */
	endpoint = of_graph_get_next_endpoint(np, NULL);
	if (!endpoint)
		return -EINVAL;

2833 2834 2835 2836 2837
	ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
	if (ret) {
		of_node_put(endpoint);
		return ret;
	}
2838 2839 2840 2841 2842 2843

	if (!of_property_read_u32(endpoint, "default-input", &v))
		state->pdata.default_input = v;
	else
		state->pdata.default_input = -1;

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	of_node_put(endpoint);

	flags = bus_cfg.bus.parallel.flags;

	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
		state->pdata.inv_hs_pol = 1;

	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
		state->pdata.inv_vs_pol = 1;

	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
		state->pdata.inv_llc_pol = 1;

	if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
		state->pdata.insert_av_codes = 1;
		state->pdata.op_656_range = 1;
	}

2862
	/* Disable the interrupt for now as no DT-based board uses it. */
2863
	state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2864 2865 2866

	/* Use the default I2C addresses. */
	state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2867 2868
	state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
	state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2869 2870
	state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
	state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2871 2872 2873 2874 2875 2876
	state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
	state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
	state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
	state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
	state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
	state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;

	/* Hardcode the remaining platform data fields. */
	state->pdata.disable_pwrdnb = 0;
	state->pdata.disable_cable_det_rst = 0;
	state->pdata.blank_data = 1;
	state->pdata.alt_data_sat = 1;
	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;

	return 0;
}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
static const struct regmap_config adv76xx_regmap_cnf[] = {
	{
		.name			= "io",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "avlink",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cec",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "infoframe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "esdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "epp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "afe",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "rep",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "edid",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},

	{
		.name			= "hdmi",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "test",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "cp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
	{
		.name			= "vdp",
		.reg_bits		= 8,
		.val_bits		= 8,

		.max_register		= 0xff,
		.cache_type		= REGCACHE_NONE,
	},
};

static int configure_regmap(struct adv76xx_state *state, int region)
{
	int err;

	if (!state->i2c_clients[region])
		return -ENODEV;

	state->regmap[region] =
		devm_regmap_init_i2c(state->i2c_clients[region],
				     &adv76xx_regmap_cnf[region]);

	if (IS_ERR(state->regmap[region])) {
		err = PTR_ERR(state->regmap[region]);
		v4l_err(state->i2c_clients[region],
			"Error initializing regmap %d with error %d\n",
			region, err);
		return -EINVAL;
	}

	return 0;
}

static int configure_regmaps(struct adv76xx_state *state)
{
	int i, err;

	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
		err = configure_regmap(state, i);
		if (err && (err != -ENODEV))
			return err;
	}
	return 0;
}

3032
static int adv76xx_probe(struct i2c_client *client,
3033 3034
			 const struct i2c_device_id *id)
{
3035 3036
	static const struct v4l2_dv_timings cea640x480 =
		V4L2_DV_BT_CEA_640X480P59_94;
3037
	struct adv76xx_state *state;
3038 3039
	struct v4l2_ctrl_handler *hdl;
	struct v4l2_subdev *sd;
3040
	unsigned int i;
3041
	unsigned int val, val2;
3042 3043 3044 3045 3046
	int err;

	/* Check if the adapter supports the needed features */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -EIO;
3047
	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3048 3049
			client->addr << 1);

3050
	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3051
	if (!state) {
3052
		v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3053 3054 3055
		return -ENOMEM;
	}

3056
	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3057

3058 3059
	/* initialize variables */
	state->restart_stdi_once = true;
3060
	state->selected_input = ~0;
3061

3062 3063 3064
	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
		const struct of_device_id *oid;

3065
		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3066 3067
		state->info = oid->data;

3068
		err = adv76xx_parse_dt(state);
3069 3070 3071 3072 3073
		if (err < 0) {
			v4l_err(client, "DT parsing error\n");
			return err;
		}
	} else if (client->dev.platform_data) {
3074
		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3075

3076
		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3077 3078
		state->pdata = *pdata;
	} else {
3079
		v4l_err(client, "No platform data!\n");
3080
		return -ENODEV;
3081
	}
3082 3083 3084 3085

	/* Request GPIOs. */
	for (i = 0; i < state->info->num_dv_ports; ++i) {
		state->hpd_gpio[i] =
3086 3087
			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
						      GPIOD_OUT_LOW);
3088
		if (IS_ERR(state->hpd_gpio[i]))
3089
			return PTR_ERR(state->hpd_gpio[i]);
3090

3091 3092
		if (state->hpd_gpio[i])
			v4l_info(client, "Handling HPD %u GPIO\n", i);
3093 3094
	}

3095
	state->timings = cea640x480;
3096
	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3097 3098

	sd = &state->sd;
3099
	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3100 3101 3102
	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
		id->name, i2c_adapter_id(client->adapter),
		client->addr);
3103
	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3104

3105 3106 3107 3108 3109 3110 3111 3112
	/* Configure IO Regmap region */
	err = configure_regmap(state, ADV76XX_PAGE_IO);

	if (err) {
		v4l2_err(sd, "Error configuring IO regmap region\n");
		return -ENODEV;
	}

3113 3114 3115 3116 3117
	/*
	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
	 * identifies the revision, while on ADV7611 it identifies the model as
	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
	 */
3118 3119
	switch (state->info->type) {
	case ADV7604:
3120 3121 3122 3123 3124
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3125
		if (val != 0x68) {
3126
			v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3127 3128 3129
					client->addr << 1);
			return -ENODEV;
		}
3130 3131 3132
		break;
	case ADV7611:
	case ADV7612:
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
				0xea,
				&val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
		val2 = val << 8;
		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
			    0xeb,
			    &val);
		if (err) {
			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
			return -ENODEV;
		}
3148
		val |= val2;
3149 3150 3151
		if ((state->info->type == ADV7611 && val != 0x2051) ||
			(state->info->type == ADV7612 && val != 0x2041)) {
			v4l2_err(sd, "not an adv761x on address 0x%x\n",
3152 3153 3154
					client->addr << 1);
			return -ENODEV;
		}
3155
		break;
3156 3157 3158 3159
	}

	/* control handlers */
	hdl = &state->hdl;
3160
	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3161

3162
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3163
			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3164
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3165
			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3166
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3167
			V4L2_CID_SATURATION, 0, 255, 1, 128);
3168
	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3169 3170 3171 3172
			V4L2_CID_HUE, 0, 128, 1, 0);

	/* private controls */
	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3173 3174
			V4L2_CID_DV_RX_POWER_PRESENT, 0,
			(1 << state->info->num_dv_ports) - 1, 0, 0);
3175
	state->rgb_quantization_range_ctrl =
3176
		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3177 3178 3179 3180
			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
			0, V4L2_DV_RGB_RANGE_AUTO);

	/* custom controls */
3181
	if (adv76xx_has_afe(state))
3182 3183
		state->analog_sampling_phase_ctrl =
			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3184
	state->free_run_color_manual_ctrl =
3185
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3186
	state->free_run_color_ctrl =
3187
		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3188 3189 3190 3191 3192 3193

	sd->ctrl_handler = hdl;
	if (hdl->error) {
		err = hdl->error;
		goto err_hdl;
	}
3194 3195
	state->detect_tx_5v_ctrl->is_private = true;
	state->rgb_quantization_range_ctrl->is_private = true;
3196
	if (adv76xx_has_afe(state))
3197
		state->analog_sampling_phase_ctrl->is_private = true;
3198 3199 3200
	state->free_run_color_manual_ctrl->is_private = true;
	state->free_run_color_ctrl->is_private = true;

3201
	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3202 3203 3204 3205
		err = -ENODEV;
		goto err_hdl;
	}

3206
	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3207 3208
		if (!(BIT(i) & state->info->page_mask))
			continue;
3209

3210
		state->i2c_clients[i] =
3211
			adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3212 3213
					     0xf2 + i);
		if (state->i2c_clients[i] == NULL) {
3214
			err = -ENOMEM;
3215
			v4l2_err(sd, "failed to create i2c client %u\n", i);
3216 3217 3218
			goto err_i2c;
		}
	}
3219

3220 3221 3222 3223 3224 3225 3226 3227 3228
	/* work queues */
	state->work_queues = create_singlethread_workqueue(client->name);
	if (!state->work_queues) {
		v4l2_err(sd, "Could not create work queue\n");
		err = -ENOMEM;
		goto err_i2c;
	}

	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3229
			adv76xx_delayed_work_enable_hotplug);
3230

3231 3232 3233 3234 3235 3236
	state->source_pad = state->info->num_dv_ports
			  + (state->info->has_afe ? 2 : 0);
	for (i = 0; i < state->source_pad; ++i)
		state->pads[i].flags = MEDIA_PAD_FL_SINK;
	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;

3237
	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3238
				state->pads);
3239 3240 3241
	if (err)
		goto err_work_queues;

3242 3243 3244 3245 3246
	/* Configure regmaps */
	err = configure_regmaps(state);
	if (err)
		goto err_entity;

3247
	err = adv76xx_core_init(sd);
3248 3249 3250 3251
	if (err)
		goto err_entity;
	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
			client->addr << 1, client->adapter->name);
3252 3253 3254 3255 3256

	err = v4l2_async_register_subdev(sd);
	if (err)
		goto err_entity;

3257 3258 3259 3260 3261 3262 3263 3264
	return 0;

err_entity:
	media_entity_cleanup(&sd->entity);
err_work_queues:
	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
err_i2c:
3265
	adv76xx_unregister_clients(state);
3266 3267 3268 3269 3270 3271 3272
err_hdl:
	v4l2_ctrl_handler_free(hdl);
	return err;
}

/* ----------------------------------------------------------------------- */

3273
static int adv76xx_remove(struct i2c_client *client)
3274 3275
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3276
	struct adv76xx_state *state = to_state(sd);
3277 3278 3279

	cancel_delayed_work(&state->delayed_work_enable_hotplug);
	destroy_workqueue(state->work_queues);
3280
	v4l2_async_unregister_subdev(sd);
3281
	media_entity_cleanup(&sd->entity);
3282
	adv76xx_unregister_clients(to_state(sd));
3283 3284 3285 3286 3287 3288
	v4l2_ctrl_handler_free(sd->ctrl_handler);
	return 0;
}

/* ----------------------------------------------------------------------- */

3289
static struct i2c_driver adv76xx_driver = {
3290 3291
	.driver = {
		.name = "adv7604",
3292
		.of_match_table = of_match_ptr(adv76xx_of_id),
3293
	},
3294 3295 3296
	.probe = adv76xx_probe,
	.remove = adv76xx_remove,
	.id_table = adv76xx_i2c_id,
3297 3298
};

3299
module_i2c_driver(adv76xx_driver);