core.c 161.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
189

190
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
191
{
192
	return "pmu";
T
Thomas Gleixner 已提交
193 194
}

195 196 197 198 199
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
200 201 202 203 204 205
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
222 223
#ifdef CONFIG_CGROUP_PERF

224 225 226 227 228
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
296 297
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
298
	/*
299 300
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
301
	 */
302
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
303 304
		return;

305 306 307 308 309 310
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
311 312 313
}

static inline void
314 315
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
316 317 318 319
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

320 321 322 323 324 325
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
326 327 328 329
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
330
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
372 373
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
385
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
386 387 388 389 390 391 392
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
393 394
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
395 396 397 398 399 400 401 402
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

403 404
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
405
{
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
428 429
}

430 431
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
432
{
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
467 468 469 470
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
471 472 473 474

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

475 476 477
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
478 479 480 481 482 483 484 485 486
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
487
out:
S
Stephane Eranian 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

562 563
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
564 565 566
{
}

567 568
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
569 570 571 572 573 574 575 576 577 578 579
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
580 581
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
612
void perf_pmu_disable(struct pmu *pmu)
613
{
P
Peter Zijlstra 已提交
614 615 616
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
617 618
}

P
Peter Zijlstra 已提交
619
void perf_pmu_enable(struct pmu *pmu)
620
{
P
Peter Zijlstra 已提交
621 622 623
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
624 625
}

626 627 628 629 630 631 632
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
633
static void perf_pmu_rotate_start(struct pmu *pmu)
634
{
P
Peter Zijlstra 已提交
635
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
636
	struct list_head *head = &__get_cpu_var(rotation_list);
637

638
	WARN_ON(!irqs_disabled());
639

640 641
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
642 643
}

644
static void get_ctx(struct perf_event_context *ctx)
645
{
646
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
647 648
}

649
static void put_ctx(struct perf_event_context *ctx)
650
{
651 652 653
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
654 655
		if (ctx->task)
			put_task_struct(ctx->task);
656
		kfree_rcu(ctx, rcu_head);
657
	}
658 659
}

660
static void unclone_ctx(struct perf_event_context *ctx)
661 662 663 664 665 666 667
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

690
/*
691
 * If we inherit events we want to return the parent event id
692 693
 * to userspace.
 */
694
static u64 primary_event_id(struct perf_event *event)
695
{
696
	u64 id = event->id;
697

698 699
	if (event->parent)
		id = event->parent->id;
700 701 702 703

	return id;
}

704
/*
705
 * Get the perf_event_context for a task and lock it.
706 707 708
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
709
static struct perf_event_context *
P
Peter Zijlstra 已提交
710
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
711
{
712
	struct perf_event_context *ctx;
713 714

	rcu_read_lock();
P
Peter Zijlstra 已提交
715
retry:
P
Peter Zijlstra 已提交
716
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
717 718 719 720
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
721
		 * perf_event_task_sched_out, though the
722 723 724 725 726 727
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
728
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
729
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
730
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
731 732
			goto retry;
		}
733 734

		if (!atomic_inc_not_zero(&ctx->refcount)) {
735
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
736 737
			ctx = NULL;
		}
738 739 740 741 742 743 744 745 746 747
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
748 749
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
750
{
751
	struct perf_event_context *ctx;
752 753
	unsigned long flags;

P
Peter Zijlstra 已提交
754
	ctx = perf_lock_task_context(task, ctxn, &flags);
755 756
	if (ctx) {
		++ctx->pin_count;
757
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
758 759 760 761
	}
	return ctx;
}

762
static void perf_unpin_context(struct perf_event_context *ctx)
763 764 765
{
	unsigned long flags;

766
	raw_spin_lock_irqsave(&ctx->lock, flags);
767
	--ctx->pin_count;
768
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 770
}

771 772 773 774 775 776 777 778 779 780 781
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

782 783 784
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
785 786 787 788

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

789 790 791
	return ctx ? ctx->time : 0;
}

792 793
/*
 * Update the total_time_enabled and total_time_running fields for a event.
794
 * The caller of this function needs to hold the ctx->lock.
795 796 797 798 799 800 801 802 803
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
804 805 806 807 808 809 810 811 812 813 814
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
815
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
816 817
	else if (ctx->is_active)
		run_end = ctx->time;
818 819 820 821
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
822 823 824 825

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
826
		run_end = perf_event_time(event);
827 828

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
829

830 831
}

832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

844 845 846 847 848 849 850 851 852
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

853
/*
854
 * Add a event from the lists for its context.
855 856
 * Must be called with ctx->mutex and ctx->lock held.
 */
857
static void
858
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
859
{
860 861
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
862 863

	/*
864 865 866
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
867
	 */
868
	if (event->group_leader == event) {
869 870
		struct list_head *list;

871 872 873
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

874 875
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
876
	}
P
Peter Zijlstra 已提交
877

878
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
879 880
		ctx->nr_cgroups++;

881
	list_add_rcu(&event->event_entry, &ctx->event_list);
882
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
883
		perf_pmu_rotate_start(ctx->pmu);
884 885
	ctx->nr_events++;
	if (event->attr.inherit_stat)
886
		ctx->nr_stat++;
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

961
	event->id_header_size = size;
962 963
}

964 965
static void perf_group_attach(struct perf_event *event)
{
966
	struct perf_event *group_leader = event->group_leader, *pos;
967

P
Peter Zijlstra 已提交
968 969 970 971 972 973
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

974 975 976 977 978 979 980 981 982 983 984
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
985 986 987 988 989

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
990 991
}

992
/*
993
 * Remove a event from the lists for its context.
994
 * Must be called with ctx->mutex and ctx->lock held.
995
 */
996
static void
997
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
998
{
999
	struct perf_cpu_context *cpuctx;
1000 1001 1002 1003
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1004
		return;
1005 1006 1007

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1008
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1009
		ctx->nr_cgroups--;
1010 1011 1012 1013 1014 1015 1016 1017 1018
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1019

1020 1021
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1022
		ctx->nr_stat--;
1023

1024
	list_del_rcu(&event->event_entry);
1025

1026 1027
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1028

1029
	update_group_times(event);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1040 1041
}

1042
static void perf_group_detach(struct perf_event *event)
1043 1044
{
	struct perf_event *sibling, *tmp;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1061
		goto out;
1062 1063 1064 1065
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1066

1067
	/*
1068 1069
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1070
	 * to whatever list we are on.
1071
	 */
1072
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1073 1074
		if (list)
			list_move_tail(&sibling->group_entry, list);
1075
		sibling->group_leader = sibling;
1076 1077 1078

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1079
	}
1080 1081 1082 1083 1084 1085

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1086 1087
}

1088 1089 1090
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1091 1092
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1093 1094
}

1095 1096
static void
event_sched_out(struct perf_event *event,
1097
		  struct perf_cpu_context *cpuctx,
1098
		  struct perf_event_context *ctx)
1099
{
1100
	u64 tstamp = perf_event_time(event);
1101 1102 1103 1104 1105 1106 1107 1108 1109
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1110
		delta = tstamp - event->tstamp_stopped;
1111
		event->tstamp_running += delta;
1112
		event->tstamp_stopped = tstamp;
1113 1114
	}

1115
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1116
		return;
1117

1118 1119 1120 1121
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1122
	}
1123
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1124
	event->pmu->del(event, 0);
1125
	event->oncpu = -1;
1126

1127
	if (!is_software_event(event))
1128 1129
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1130
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1131 1132 1133
		cpuctx->exclusive = 0;
}

1134
static void
1135
group_sched_out(struct perf_event *group_event,
1136
		struct perf_cpu_context *cpuctx,
1137
		struct perf_event_context *ctx)
1138
{
1139
	struct perf_event *event;
1140
	int state = group_event->state;
1141

1142
	event_sched_out(group_event, cpuctx, ctx);
1143 1144 1145 1146

	/*
	 * Schedule out siblings (if any):
	 */
1147 1148
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1149

1150
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1151 1152 1153
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1154
/*
1155
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1156
 *
1157
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1158 1159
 * remove it from the context list.
 */
1160
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1161
{
1162 1163
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1164
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1165

1166
	raw_spin_lock(&ctx->lock);
1167 1168
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1169 1170 1171 1172
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1173
	raw_spin_unlock(&ctx->lock);
1174 1175

	return 0;
T
Thomas Gleixner 已提交
1176 1177 1178 1179
}


/*
1180
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1181
 *
1182
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1183
 * call when the task is on a CPU.
1184
 *
1185 1186
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1187 1188
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1189
 * When called from perf_event_exit_task, it's OK because the
1190
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1191
 */
1192
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1193
{
1194
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1195 1196
	struct task_struct *task = ctx->task;

1197 1198
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1199 1200
	if (!task) {
		/*
1201
		 * Per cpu events are removed via an smp call and
1202
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1203
		 */
1204
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1205 1206 1207 1208
		return;
	}

retry:
1209 1210
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1211

1212
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1213
	/*
1214 1215
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1216
	 */
1217
	if (ctx->is_active) {
1218
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1219 1220 1221 1222
		goto retry;
	}

	/*
1223 1224
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1225
	 */
1226
	list_del_event(event, ctx);
1227
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1228 1229
}

1230
/*
1231
 * Cross CPU call to disable a performance event
1232
 */
1233
static int __perf_event_disable(void *info)
1234
{
1235 1236
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1237
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1238 1239

	/*
1240 1241
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1242 1243 1244
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1245
	 */
1246
	if (ctx->task && cpuctx->task_ctx != ctx)
1247
		return -EINVAL;
1248

1249
	raw_spin_lock(&ctx->lock);
1250 1251

	/*
1252
	 * If the event is on, turn it off.
1253 1254
	 * If it is in error state, leave it in error state.
	 */
1255
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1256
		update_context_time(ctx);
S
Stephane Eranian 已提交
1257
		update_cgrp_time_from_event(event);
1258 1259 1260
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1261
		else
1262 1263
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1264 1265
	}

1266
	raw_spin_unlock(&ctx->lock);
1267 1268

	return 0;
1269 1270 1271
}

/*
1272
 * Disable a event.
1273
 *
1274 1275
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1276
 * remains valid.  This condition is satisifed when called through
1277 1278 1279 1280
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1281
 * is the current context on this CPU and preemption is disabled,
1282
 * hence we can't get into perf_event_task_sched_out for this context.
1283
 */
1284
void perf_event_disable(struct perf_event *event)
1285
{
1286
	struct perf_event_context *ctx = event->ctx;
1287 1288 1289 1290
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1291
		 * Disable the event on the cpu that it's on
1292
		 */
1293
		cpu_function_call(event->cpu, __perf_event_disable, event);
1294 1295 1296
		return;
	}

P
Peter Zijlstra 已提交
1297
retry:
1298 1299
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1300

1301
	raw_spin_lock_irq(&ctx->lock);
1302
	/*
1303
	 * If the event is still active, we need to retry the cross-call.
1304
	 */
1305
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1306
		raw_spin_unlock_irq(&ctx->lock);
1307 1308 1309 1310 1311
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1312 1313 1314 1315 1316 1317 1318
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1319 1320 1321
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1322
	}
1323
	raw_spin_unlock_irq(&ctx->lock);
1324 1325
}

S
Stephane Eranian 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1361 1362 1363 1364
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1365
static int
1366
event_sched_in(struct perf_event *event,
1367
		 struct perf_cpu_context *cpuctx,
1368
		 struct perf_event_context *ctx)
1369
{
1370 1371
	u64 tstamp = perf_event_time(event);

1372
	if (event->state <= PERF_EVENT_STATE_OFF)
1373 1374
		return 0;

1375
	event->state = PERF_EVENT_STATE_ACTIVE;
1376
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1388 1389 1390 1391 1392
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1393
	if (event->pmu->add(event, PERF_EF_START)) {
1394 1395
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1396 1397 1398
		return -EAGAIN;
	}

1399
	event->tstamp_running += tstamp - event->tstamp_stopped;
1400

S
Stephane Eranian 已提交
1401
	perf_set_shadow_time(event, ctx, tstamp);
1402

1403
	if (!is_software_event(event))
1404
		cpuctx->active_oncpu++;
1405 1406
	ctx->nr_active++;

1407
	if (event->attr.exclusive)
1408 1409
		cpuctx->exclusive = 1;

1410 1411 1412
	return 0;
}

1413
static int
1414
group_sched_in(struct perf_event *group_event,
1415
	       struct perf_cpu_context *cpuctx,
1416
	       struct perf_event_context *ctx)
1417
{
1418
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1419
	struct pmu *pmu = group_event->pmu;
1420 1421
	u64 now = ctx->time;
	bool simulate = false;
1422

1423
	if (group_event->state == PERF_EVENT_STATE_OFF)
1424 1425
		return 0;

P
Peter Zijlstra 已提交
1426
	pmu->start_txn(pmu);
1427

1428
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1429
		pmu->cancel_txn(pmu);
1430
		return -EAGAIN;
1431
	}
1432 1433 1434 1435

	/*
	 * Schedule in siblings as one group (if any):
	 */
1436
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1437
		if (event_sched_in(event, cpuctx, ctx)) {
1438
			partial_group = event;
1439 1440 1441 1442
			goto group_error;
		}
	}

1443
	if (!pmu->commit_txn(pmu))
1444
		return 0;
1445

1446 1447 1448 1449
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1460
	 */
1461 1462
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1463 1464 1465 1466 1467 1468 1469 1470
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1471
	}
1472
	event_sched_out(group_event, cpuctx, ctx);
1473

P
Peter Zijlstra 已提交
1474
	pmu->cancel_txn(pmu);
1475

1476 1477 1478
	return -EAGAIN;
}

1479
/*
1480
 * Work out whether we can put this event group on the CPU now.
1481
 */
1482
static int group_can_go_on(struct perf_event *event,
1483 1484 1485 1486
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1487
	 * Groups consisting entirely of software events can always go on.
1488
	 */
1489
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1490 1491 1492
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1493
	 * events can go on.
1494 1495 1496 1497 1498
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1499
	 * events on the CPU, it can't go on.
1500
	 */
1501
	if (event->attr.exclusive && cpuctx->active_oncpu)
1502 1503 1504 1505 1506 1507 1508 1509
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1510 1511
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1512
{
1513 1514
	u64 tstamp = perf_event_time(event);

1515
	list_add_event(event, ctx);
1516
	perf_group_attach(event);
1517 1518 1519
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1520 1521
}

1522 1523 1524 1525 1526 1527
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1541
/*
1542
 * Cross CPU call to install and enable a performance event
1543 1544
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1545
 */
1546
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1547
{
1548 1549
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1550
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1551 1552 1553
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1554
	perf_ctx_lock(cpuctx, task_ctx);
1555
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1556 1557

	/*
1558
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1559
	 */
1560
	if (task_ctx)
1561
		task_ctx_sched_out(task_ctx);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1576 1577
		task = task_ctx->task;
	}
1578

1579
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1580

1581
	update_context_time(ctx);
S
Stephane Eranian 已提交
1582 1583 1584 1585 1586 1587
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1588

1589
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1590

1591
	/*
1592
	 * Schedule everything back in
1593
	 */
1594
	perf_event_sched_in(cpuctx, task_ctx, task);
1595 1596 1597

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1598 1599

	return 0;
T
Thomas Gleixner 已提交
1600 1601 1602
}

/*
1603
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1604
 *
1605 1606
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1607
 *
1608
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1609 1610 1611 1612
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1613 1614
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1615 1616 1617 1618
			int cpu)
{
	struct task_struct *task = ctx->task;

1619 1620
	lockdep_assert_held(&ctx->mutex);

1621 1622
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1623 1624
	if (!task) {
		/*
1625
		 * Per cpu events are installed via an smp call and
1626
		 * the install is always successful.
T
Thomas Gleixner 已提交
1627
		 */
1628
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1629 1630 1631 1632
		return;
	}

retry:
1633 1634
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1635

1636
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1637
	/*
1638 1639
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1640
	 */
1641
	if (ctx->is_active) {
1642
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1643 1644 1645 1646
		goto retry;
	}

	/*
1647 1648
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1649
	 */
1650
	add_event_to_ctx(event, ctx);
1651
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1652 1653
}

1654
/*
1655
 * Put a event into inactive state and update time fields.
1656 1657 1658 1659 1660 1661
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1662 1663
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1664
{
1665
	struct perf_event *sub;
1666
	u64 tstamp = perf_event_time(event);
1667

1668
	event->state = PERF_EVENT_STATE_INACTIVE;
1669
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1670
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1671 1672
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1673
	}
1674 1675
}

1676
/*
1677
 * Cross CPU call to enable a performance event
1678
 */
1679
static int __perf_event_enable(void *info)
1680
{
1681 1682 1683
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1684
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1685
	int err;
1686

1687 1688
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1689

1690
	raw_spin_lock(&ctx->lock);
1691
	update_context_time(ctx);
1692

1693
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1694
		goto unlock;
S
Stephane Eranian 已提交
1695 1696 1697 1698

	/*
	 * set current task's cgroup time reference point
	 */
1699
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1700

1701
	__perf_event_mark_enabled(event, ctx);
1702

S
Stephane Eranian 已提交
1703 1704 1705
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1706
		goto unlock;
S
Stephane Eranian 已提交
1707
	}
1708

1709
	/*
1710
	 * If the event is in a group and isn't the group leader,
1711
	 * then don't put it on unless the group is on.
1712
	 */
1713
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1714
		goto unlock;
1715

1716
	if (!group_can_go_on(event, cpuctx, 1)) {
1717
		err = -EEXIST;
1718
	} else {
1719
		if (event == leader)
1720
			err = group_sched_in(event, cpuctx, ctx);
1721
		else
1722
			err = event_sched_in(event, cpuctx, ctx);
1723
	}
1724 1725 1726

	if (err) {
		/*
1727
		 * If this event can't go on and it's part of a
1728 1729
		 * group, then the whole group has to come off.
		 */
1730
		if (leader != event)
1731
			group_sched_out(leader, cpuctx, ctx);
1732
		if (leader->attr.pinned) {
1733
			update_group_times(leader);
1734
			leader->state = PERF_EVENT_STATE_ERROR;
1735
		}
1736 1737
	}

P
Peter Zijlstra 已提交
1738
unlock:
1739
	raw_spin_unlock(&ctx->lock);
1740 1741

	return 0;
1742 1743 1744
}

/*
1745
 * Enable a event.
1746
 *
1747 1748
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1749
 * remains valid.  This condition is satisfied when called through
1750 1751
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1752
 */
1753
void perf_event_enable(struct perf_event *event)
1754
{
1755
	struct perf_event_context *ctx = event->ctx;
1756 1757 1758 1759
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1760
		 * Enable the event on the cpu that it's on
1761
		 */
1762
		cpu_function_call(event->cpu, __perf_event_enable, event);
1763 1764 1765
		return;
	}

1766
	raw_spin_lock_irq(&ctx->lock);
1767
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1768 1769 1770
		goto out;

	/*
1771 1772
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1773 1774 1775 1776
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1777 1778
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1779

P
Peter Zijlstra 已提交
1780
retry:
1781 1782 1783 1784 1785
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1786
	raw_spin_unlock_irq(&ctx->lock);
1787 1788 1789

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1790

1791
	raw_spin_lock_irq(&ctx->lock);
1792 1793

	/*
1794
	 * If the context is active and the event is still off,
1795 1796
	 * we need to retry the cross-call.
	 */
1797 1798 1799 1800 1801 1802
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1803
		goto retry;
1804
	}
1805

P
Peter Zijlstra 已提交
1806
out:
1807
	raw_spin_unlock_irq(&ctx->lock);
1808 1809
}

1810
int perf_event_refresh(struct perf_event *event, int refresh)
1811
{
1812
	/*
1813
	 * not supported on inherited events
1814
	 */
1815
	if (event->attr.inherit || !is_sampling_event(event))
1816 1817
		return -EINVAL;

1818 1819
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1820 1821

	return 0;
1822
}
1823
EXPORT_SYMBOL_GPL(perf_event_refresh);
1824

1825 1826 1827
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1828
{
1829
	struct perf_event *event;
1830
	int is_active = ctx->is_active;
1831

1832
	ctx->is_active &= ~event_type;
1833
	if (likely(!ctx->nr_events))
1834 1835
		return;

1836
	update_context_time(ctx);
S
Stephane Eranian 已提交
1837
	update_cgrp_time_from_cpuctx(cpuctx);
1838
	if (!ctx->nr_active)
1839
		return;
1840

P
Peter Zijlstra 已提交
1841
	perf_pmu_disable(ctx->pmu);
1842
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1843 1844
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1845
	}
1846

1847
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1848
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1849
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1850
	}
P
Peter Zijlstra 已提交
1851
	perf_pmu_enable(ctx->pmu);
1852 1853
}

1854 1855 1856
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1857 1858 1859 1860
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1861
 * in them directly with an fd; we can only enable/disable all
1862
 * events via prctl, or enable/disable all events in a family
1863 1864
 * via ioctl, which will have the same effect on both contexts.
 */
1865 1866
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1867 1868
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1869
		&& ctx1->parent_gen == ctx2->parent_gen
1870
		&& !ctx1->pin_count && !ctx2->pin_count;
1871 1872
}

1873 1874
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1875 1876 1877
{
	u64 value;

1878
	if (!event->attr.inherit_stat)
1879 1880 1881
		return;

	/*
1882
	 * Update the event value, we cannot use perf_event_read()
1883 1884
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1885
	 * we know the event must be on the current CPU, therefore we
1886 1887
	 * don't need to use it.
	 */
1888 1889
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1890 1891
		event->pmu->read(event);
		/* fall-through */
1892

1893 1894
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1895 1896 1897 1898 1899 1900 1901
		break;

	default:
		break;
	}

	/*
1902
	 * In order to keep per-task stats reliable we need to flip the event
1903 1904
	 * values when we flip the contexts.
	 */
1905 1906 1907
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1908

1909 1910
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1911

1912
	/*
1913
	 * Since we swizzled the values, update the user visible data too.
1914
	 */
1915 1916
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1917 1918 1919 1920 1921
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1922 1923
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1924
{
1925
	struct perf_event *event, *next_event;
1926 1927 1928 1929

	if (!ctx->nr_stat)
		return;

1930 1931
	update_context_time(ctx);

1932 1933
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1934

1935 1936
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1937

1938 1939
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1940

1941
		__perf_event_sync_stat(event, next_event);
1942

1943 1944
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1945 1946 1947
	}
}

1948 1949
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1950
{
P
Peter Zijlstra 已提交
1951
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1952 1953
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1954
	struct perf_cpu_context *cpuctx;
1955
	int do_switch = 1;
T
Thomas Gleixner 已提交
1956

P
Peter Zijlstra 已提交
1957 1958
	if (likely(!ctx))
		return;
1959

P
Peter Zijlstra 已提交
1960 1961
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1962 1963
		return;

1964 1965
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1966
	next_ctx = next->perf_event_ctxp[ctxn];
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1978 1979
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1980
		if (context_equiv(ctx, next_ctx)) {
1981 1982
			/*
			 * XXX do we need a memory barrier of sorts
1983
			 * wrt to rcu_dereference() of perf_event_ctxp
1984
			 */
P
Peter Zijlstra 已提交
1985 1986
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1987 1988 1989
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1990

1991
			perf_event_sync_stat(ctx, next_ctx);
1992
		}
1993 1994
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1995
	}
1996
	rcu_read_unlock();
1997

1998
	if (do_switch) {
1999
		raw_spin_lock(&ctx->lock);
2000
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001
		cpuctx->task_ctx = NULL;
2002
		raw_spin_unlock(&ctx->lock);
2003
	}
T
Thomas Gleixner 已提交
2004 2005
}

P
Peter Zijlstra 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2020 2021
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2022 2023 2024 2025 2026
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2027 2028 2029 2030 2031 2032 2033

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2034
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2035 2036
}

2037
static void task_ctx_sched_out(struct perf_event_context *ctx)
2038
{
P
Peter Zijlstra 已提交
2039
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2040

2041 2042
	if (!cpuctx->task_ctx)
		return;
2043 2044 2045 2046

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2047
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2048 2049 2050
	cpuctx->task_ctx = NULL;
}

2051 2052 2053 2054 2055 2056 2057
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2058 2059
}

2060
static void
2061
ctx_pinned_sched_in(struct perf_event_context *ctx,
2062
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2063
{
2064
	struct perf_event *event;
T
Thomas Gleixner 已提交
2065

2066 2067
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2068
			continue;
2069
		if (!event_filter_match(event))
2070 2071
			continue;

S
Stephane Eranian 已提交
2072 2073 2074 2075
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2076
		if (group_can_go_on(event, cpuctx, 1))
2077
			group_sched_in(event, cpuctx, ctx);
2078 2079 2080 2081 2082

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2083 2084 2085
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2086
		}
2087
	}
2088 2089 2090 2091
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2092
		      struct perf_cpu_context *cpuctx)
2093 2094 2095
{
	struct perf_event *event;
	int can_add_hw = 1;
2096

2097 2098 2099
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2100
			continue;
2101 2102
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2103
		 * of events:
2104
		 */
2105
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2106 2107
			continue;

S
Stephane Eranian 已提交
2108 2109 2110 2111
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2112
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2113
			if (group_sched_in(event, cpuctx, ctx))
2114
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2115
		}
T
Thomas Gleixner 已提交
2116
	}
2117 2118 2119 2120 2121
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2122 2123
	     enum event_type_t event_type,
	     struct task_struct *task)
2124
{
S
Stephane Eranian 已提交
2125
	u64 now;
2126
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2127

2128
	ctx->is_active |= event_type;
2129
	if (likely(!ctx->nr_events))
2130
		return;
2131

S
Stephane Eranian 已提交
2132 2133
	now = perf_clock();
	ctx->timestamp = now;
2134
	perf_cgroup_set_timestamp(task, ctx);
2135 2136 2137 2138
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2139
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2140
		ctx_pinned_sched_in(ctx, cpuctx);
2141 2142

	/* Then walk through the lower prio flexible groups */
2143
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2144
		ctx_flexible_sched_in(ctx, cpuctx);
2145 2146
}

2147
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2148 2149
			     enum event_type_t event_type,
			     struct task_struct *task)
2150 2151 2152
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2153
	ctx_sched_in(ctx, cpuctx, event_type, task);
2154 2155
}

S
Stephane Eranian 已提交
2156 2157
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2158
{
P
Peter Zijlstra 已提交
2159
	struct perf_cpu_context *cpuctx;
2160

P
Peter Zijlstra 已提交
2161
	cpuctx = __get_cpu_context(ctx);
2162 2163 2164
	if (cpuctx->task_ctx == ctx)
		return;

2165
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2166
	perf_pmu_disable(ctx->pmu);
2167 2168 2169 2170 2171 2172 2173
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2174
	perf_event_sched_in(cpuctx, ctx, task);
2175 2176

	cpuctx->task_ctx = ctx;
2177

2178 2179 2180
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2181 2182 2183 2184
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2185
	perf_pmu_rotate_start(ctx->pmu);
2186 2187
}

P
Peter Zijlstra 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2199 2200
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2210
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2211
	}
S
Stephane Eranian 已提交
2212 2213 2214 2215 2216 2217
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2218
		perf_cgroup_sched_in(prev, task);
2219 2220
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2248
#define REDUCE_FLS(a, b)		\
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2288 2289 2290
	if (!divisor)
		return dividend;

2291 2292 2293 2294
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2295
{
2296
	struct hw_perf_event *hwc = &event->hw;
2297
	s64 period, sample_period;
2298 2299
	s64 delta;

2300
	period = perf_calculate_period(event, nsec, count);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2311

2312
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2313
		event->pmu->stop(event, PERF_EF_UPDATE);
2314
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2315
		event->pmu->start(event, PERF_EF_RELOAD);
2316
	}
2317 2318
}

2319
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2320
{
2321 2322
	struct perf_event *event;
	struct hw_perf_event *hwc;
2323 2324
	u64 interrupts, now;
	s64 delta;
2325

2326
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2327
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2328 2329
			continue;

2330
		if (!event_filter_match(event))
2331 2332
			continue;

2333
		hwc = &event->hw;
2334 2335 2336

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2337

2338
		/*
2339
		 * unthrottle events on the tick
2340
		 */
2341
		if (interrupts == MAX_INTERRUPTS) {
2342
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2343
			event->pmu->start(event, 0);
2344 2345
		}

2346
		if (!event->attr.freq || !event->attr.sample_freq)
2347 2348
			continue;

2349
		event->pmu->read(event);
2350
		now = local64_read(&event->count);
2351 2352
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2353

2354
		if (delta > 0)
2355
			perf_adjust_period(event, period, delta);
2356 2357 2358
	}
}

2359
/*
2360
 * Round-robin a context's events:
2361
 */
2362
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2363
{
2364 2365 2366 2367 2368 2369
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2370 2371
}

2372
/*
2373 2374 2375
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2376
 */
2377
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2378
{
2379
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2380
	struct perf_event_context *ctx = NULL;
2381
	int rotate = 0, remove = 1;
2382

2383
	if (cpuctx->ctx.nr_events) {
2384
		remove = 0;
2385 2386 2387
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2388

P
Peter Zijlstra 已提交
2389
	ctx = cpuctx->task_ctx;
2390
	if (ctx && ctx->nr_events) {
2391
		remove = 0;
2392 2393 2394
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2395

2396
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2397
	perf_pmu_disable(cpuctx->ctx.pmu);
2398
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2399
	if (ctx)
2400
		perf_ctx_adjust_freq(ctx, interval);
2401

2402
	if (!rotate)
2403
		goto done;
2404

2405
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2406
	if (ctx)
2407
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2408

2409
	rotate_ctx(&cpuctx->ctx);
2410 2411
	if (ctx)
		rotate_ctx(ctx);
2412

2413
	perf_event_sched_in(cpuctx, ctx, current);
2414 2415

done:
2416 2417 2418
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2419
	perf_pmu_enable(cpuctx->ctx.pmu);
2420
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2421 2422 2423 2424 2425 2426
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2427

2428 2429 2430 2431 2432 2433 2434
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2452
/*
2453
 * Enable all of a task's events that have been marked enable-on-exec.
2454 2455
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2456
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2457
{
2458
	struct perf_event *event;
2459 2460
	unsigned long flags;
	int enabled = 0;
2461
	int ret;
2462 2463

	local_irq_save(flags);
2464
	if (!ctx || !ctx->nr_events)
2465 2466
		goto out;

2467 2468 2469 2470 2471 2472 2473
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2474
	perf_cgroup_sched_out(current, NULL);
2475

2476
	raw_spin_lock(&ctx->lock);
2477
	task_ctx_sched_out(ctx);
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2489 2490 2491
	}

	/*
2492
	 * Unclone this context if we enabled any event.
2493
	 */
2494 2495
	if (enabled)
		unclone_ctx(ctx);
2496

2497
	raw_spin_unlock(&ctx->lock);
2498

2499 2500 2501
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2502
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2503
out:
2504 2505 2506
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2507
/*
2508
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2509
 */
2510
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2511
{
2512 2513
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2514
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2515

2516 2517 2518 2519
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2520 2521
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2522 2523 2524 2525
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2526
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2527
	if (ctx->is_active) {
2528
		update_context_time(ctx);
S
Stephane Eranian 已提交
2529 2530
		update_cgrp_time_from_event(event);
	}
2531
	update_event_times(event);
2532 2533
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2534
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2535 2536
}

P
Peter Zijlstra 已提交
2537 2538
static inline u64 perf_event_count(struct perf_event *event)
{
2539
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2540 2541
}

2542
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2543 2544
{
	/*
2545 2546
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2547
	 */
2548 2549 2550 2551
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2552 2553 2554
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2555
		raw_spin_lock_irqsave(&ctx->lock, flags);
2556 2557 2558 2559 2560
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2561
		if (ctx->is_active) {
2562
			update_context_time(ctx);
S
Stephane Eranian 已提交
2563 2564
			update_cgrp_time_from_event(event);
		}
2565
		update_event_times(event);
2566
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2567 2568
	}

P
Peter Zijlstra 已提交
2569
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2570 2571
}

2572
/*
2573
 * Callchain support
2574
 */
2575 2576 2577 2578 2579 2580

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2581
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2582 2583 2584 2585 2586 2587 2588
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2589 2590 2591
{
}

2592 2593
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2594
{
2595
}
T
Thomas Gleixner 已提交
2596

2597 2598 2599 2600
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2601

2602
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2603

2604 2605
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2606

2607 2608
	kfree(entries);
}
T
Thomas Gleixner 已提交
2609

2610 2611 2612
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2613

2614 2615 2616 2617
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2618

2619 2620 2621 2622 2623
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2624

2625
	/*
2626 2627 2628
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2629
	 */
2630
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2631

2632 2633 2634
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2635

2636
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2637

2638 2639 2640 2641 2642
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2643 2644
	}

2645
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2781
/*
2782
 * Initialize the perf_event context in a task_struct:
2783
 */
2784
static void __perf_event_init_context(struct perf_event_context *ctx)
2785
{
2786
	raw_spin_lock_init(&ctx->lock);
2787
	mutex_init(&ctx->mutex);
2788 2789
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2790 2791
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2807
	}
2808 2809 2810
	ctx->pmu = pmu;

	return ctx;
2811 2812
}

2813 2814 2815 2816 2817
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2818 2819

	rcu_read_lock();
2820
	if (!vpid)
T
Thomas Gleixner 已提交
2821 2822
		task = current;
	else
2823
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2824 2825 2826 2827 2828 2829 2830 2831
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2832 2833 2834 2835
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2836 2837 2838 2839 2840 2841 2842
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2843 2844 2845
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2846
static struct perf_event_context *
M
Matt Helsley 已提交
2847
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2848
{
2849
	struct perf_event_context *ctx;
2850
	struct perf_cpu_context *cpuctx;
2851
	unsigned long flags;
P
Peter Zijlstra 已提交
2852
	int ctxn, err;
T
Thomas Gleixner 已提交
2853

2854
	if (!task) {
2855
		/* Must be root to operate on a CPU event: */
2856
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2857 2858 2859
			return ERR_PTR(-EACCES);

		/*
2860
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2861 2862 2863
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2864
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2865 2866
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2867
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2868
		ctx = &cpuctx->ctx;
2869
		get_ctx(ctx);
2870
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2871 2872 2873 2874

		return ctx;
	}

P
Peter Zijlstra 已提交
2875 2876 2877 2878 2879
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2880
retry:
P
Peter Zijlstra 已提交
2881
	ctx = perf_lock_task_context(task, ctxn, &flags);
2882
	if (ctx) {
2883
		unclone_ctx(ctx);
2884
		++ctx->pin_count;
2885
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2886
	} else {
2887
		ctx = alloc_perf_context(pmu, task);
2888 2889 2890
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2891

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2902
		else {
2903
			get_ctx(ctx);
2904
			++ctx->pin_count;
2905
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2906
		}
2907 2908 2909
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2910
			put_ctx(ctx);
2911 2912 2913 2914

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2915 2916 2917
		}
	}

T
Thomas Gleixner 已提交
2918
	return ctx;
2919

P
Peter Zijlstra 已提交
2920
errout:
2921
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2922 2923
}

L
Li Zefan 已提交
2924 2925
static void perf_event_free_filter(struct perf_event *event);

2926
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2927
{
2928
	struct perf_event *event;
P
Peter Zijlstra 已提交
2929

2930 2931 2932
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2933
	perf_event_free_filter(event);
2934
	kfree(event);
P
Peter Zijlstra 已提交
2935 2936
}

2937
static void ring_buffer_put(struct ring_buffer *rb);
2938

2939
static void free_event(struct perf_event *event)
2940
{
2941
	irq_work_sync(&event->pending);
2942

2943
	if (!event->parent) {
2944
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2945
			jump_label_dec(&perf_sched_events);
2946
		if (event->attr.mmap || event->attr.mmap_data)
2947 2948 2949 2950 2951
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2952 2953
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2954 2955 2956 2957
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2958
	}
2959

2960 2961 2962
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2963 2964
	}

S
Stephane Eranian 已提交
2965 2966 2967
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2968 2969
	if (event->destroy)
		event->destroy(event);
2970

P
Peter Zijlstra 已提交
2971 2972 2973
	if (event->ctx)
		put_ctx(event->ctx);

2974
	call_rcu(&event->rcu_head, free_event_rcu);
2975 2976
}

2977
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2978
{
2979
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2980

2981
	WARN_ON_ONCE(ctx->parent_ctx);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2995
	raw_spin_lock_irq(&ctx->lock);
2996
	perf_group_detach(event);
2997
	raw_spin_unlock_irq(&ctx->lock);
2998
	perf_remove_from_context(event);
2999
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3000

3001
	free_event(event);
T
Thomas Gleixner 已提交
3002 3003 3004

	return 0;
}
3005
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3006

3007 3008 3009 3010
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
3011
{
3012
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3013
	struct task_struct *owner;
3014

3015
	file->private_data = NULL;
3016

P
Peter Zijlstra 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3050
	return perf_event_release_kernel(event);
3051 3052
}

3053
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3054
{
3055
	struct perf_event *child;
3056 3057
	u64 total = 0;

3058 3059 3060
	*enabled = 0;
	*running = 0;

3061
	mutex_lock(&event->child_mutex);
3062
	total += perf_event_read(event);
3063 3064 3065 3066 3067 3068
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3069
		total += perf_event_read(child);
3070 3071 3072
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3073
	mutex_unlock(&event->child_mutex);
3074 3075 3076

	return total;
}
3077
EXPORT_SYMBOL_GPL(perf_event_read_value);
3078

3079
static int perf_event_read_group(struct perf_event *event,
3080 3081
				   u64 read_format, char __user *buf)
{
3082
	struct perf_event *leader = event->group_leader, *sub;
3083 3084
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3085
	u64 values[5];
3086
	u64 count, enabled, running;
3087

3088
	mutex_lock(&ctx->mutex);
3089
	count = perf_event_read_value(leader, &enabled, &running);
3090 3091

	values[n++] = 1 + leader->nr_siblings;
3092 3093 3094 3095
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3096 3097 3098
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3099 3100 3101 3102

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3103
		goto unlock;
3104

3105
	ret = size;
3106

3107
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3108
		n = 0;
3109

3110
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3111 3112 3113 3114 3115
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3116
		if (copy_to_user(buf + ret, values, size)) {
3117 3118 3119
			ret = -EFAULT;
			goto unlock;
		}
3120 3121

		ret += size;
3122
	}
3123 3124
unlock:
	mutex_unlock(&ctx->mutex);
3125

3126
	return ret;
3127 3128
}

3129
static int perf_event_read_one(struct perf_event *event,
3130 3131
				 u64 read_format, char __user *buf)
{
3132
	u64 enabled, running;
3133 3134 3135
	u64 values[4];
	int n = 0;

3136 3137 3138 3139 3140
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3141
	if (read_format & PERF_FORMAT_ID)
3142
		values[n++] = primary_event_id(event);
3143 3144 3145 3146 3147 3148 3149

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3150
/*
3151
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3152 3153
 */
static ssize_t
3154
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3155
{
3156
	u64 read_format = event->attr.read_format;
3157
	int ret;
T
Thomas Gleixner 已提交
3158

3159
	/*
3160
	 * Return end-of-file for a read on a event that is in
3161 3162 3163
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3164
	if (event->state == PERF_EVENT_STATE_ERROR)
3165 3166
		return 0;

3167
	if (count < event->read_size)
3168 3169
		return -ENOSPC;

3170
	WARN_ON_ONCE(event->ctx->parent_ctx);
3171
	if (read_format & PERF_FORMAT_GROUP)
3172
		ret = perf_event_read_group(event, read_format, buf);
3173
	else
3174
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3175

3176
	return ret;
T
Thomas Gleixner 已提交
3177 3178 3179 3180 3181
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3182
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3183

3184
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3185 3186 3187 3188
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3189
	struct perf_event *event = file->private_data;
3190
	struct ring_buffer *rb;
3191
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3192 3193

	rcu_read_lock();
3194 3195 3196
	rb = rcu_dereference(event->rb);
	if (rb)
		events = atomic_xchg(&rb->poll, 0);
P
Peter Zijlstra 已提交
3197
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3198

3199
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3200 3201 3202 3203

	return events;
}

3204
static void perf_event_reset(struct perf_event *event)
3205
{
3206
	(void)perf_event_read(event);
3207
	local64_set(&event->count, 0);
3208
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3209 3210
}

3211
/*
3212 3213 3214 3215
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3216
 */
3217 3218
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3219
{
3220
	struct perf_event *child;
P
Peter Zijlstra 已提交
3221

3222 3223 3224 3225
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3226
		func(child);
3227
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3228 3229
}

3230 3231
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3232
{
3233 3234
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3235

3236 3237
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3238
	event = event->group_leader;
3239

3240 3241 3242 3243
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3244
	mutex_unlock(&ctx->mutex);
3245 3246
}

3247
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3248
{
3249
	struct perf_event_context *ctx = event->ctx;
3250 3251 3252
	int ret = 0;
	u64 value;

3253
	if (!is_sampling_event(event))
3254 3255
		return -EINVAL;

3256
	if (copy_from_user(&value, arg, sizeof(value)))
3257 3258 3259 3260 3261
		return -EFAULT;

	if (!value)
		return -EINVAL;

3262
	raw_spin_lock_irq(&ctx->lock);
3263 3264
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3265 3266 3267 3268
			ret = -EINVAL;
			goto unlock;
		}

3269
		event->attr.sample_freq = value;
3270
	} else {
3271 3272
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3273 3274
	}
unlock:
3275
	raw_spin_unlock_irq(&ctx->lock);
3276 3277 3278 3279

	return ret;
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3301
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3302

3303 3304
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3305 3306
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3307
	u32 flags = arg;
3308 3309

	switch (cmd) {
3310 3311
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3312
		break;
3313 3314
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3315
		break;
3316 3317
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3318
		break;
P
Peter Zijlstra 已提交
3319

3320 3321
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3322

3323 3324
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3325

3326
	case PERF_EVENT_IOC_SET_OUTPUT:
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3344

L
Li Zefan 已提交
3345 3346 3347
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3348
	default:
P
Peter Zijlstra 已提交
3349
		return -ENOTTY;
3350
	}
P
Peter Zijlstra 已提交
3351 3352

	if (flags & PERF_IOC_FLAG_GROUP)
3353
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3354
	else
3355
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3356 3357

	return 0;
3358 3359
}

3360
int perf_event_task_enable(void)
3361
{
3362
	struct perf_event *event;
3363

3364 3365 3366 3367
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3368 3369 3370 3371

	return 0;
}

3372
int perf_event_task_disable(void)
3373
{
3374
	struct perf_event *event;
3375

3376 3377 3378 3379
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3380 3381 3382 3383

	return 0;
}

3384 3385
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3386 3387
#endif

3388
static int perf_event_index(struct perf_event *event)
3389
{
P
Peter Zijlstra 已提交
3390 3391 3392
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3393
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3394 3395
		return 0;

3396
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3397 3398
}

3399
static void calc_timer_values(struct perf_event *event,
3400 3401
				u64 *enabled,
				u64 *running)
3402 3403 3404 3405 3406 3407 3408 3409 3410
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3411 3412 3413 3414 3415
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3416
void perf_event_update_userpage(struct perf_event *event)
3417
{
3418
	struct perf_event_mmap_page *userpg;
3419
	struct ring_buffer *rb;
3420
	u64 enabled, running;
3421 3422

	rcu_read_lock();
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3433 3434
	rb = rcu_dereference(event->rb);
	if (!rb)
3435 3436
		goto unlock;

3437
	userpg = rb->user_page;
3438

3439 3440 3441 3442 3443
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3444
	++userpg->lock;
3445
	barrier();
3446
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3447
	userpg->offset = perf_event_count(event);
3448
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3449
		userpg->offset -= local64_read(&event->hw.prev_count);
3450

3451
	userpg->time_enabled = enabled +
3452
			atomic64_read(&event->child_total_time_enabled);
3453

3454
	userpg->time_running = running +
3455
			atomic64_read(&event->child_total_time_running);
3456

3457
	barrier();
3458
	++userpg->lock;
3459
	preempt_enable();
3460
unlock:
3461
	rcu_read_unlock();
3462 3463
}

3464 3465 3466
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3467
	struct ring_buffer *rb;
3468 3469 3470 3471 3472 3473 3474 3475 3476
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3477 3478
	rb = rcu_dereference(event->rb);
	if (!rb)
3479 3480 3481 3482 3483
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3484
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3499
static void rb_free_rcu(struct rcu_head *rcu_head)
3500
{
3501
	struct ring_buffer *rb;
3502

3503 3504
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3505 3506
}

3507
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3508
{
3509
	struct ring_buffer *rb;
3510

3511
	rcu_read_lock();
3512 3513 3514 3515
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3516 3517 3518
	}
	rcu_read_unlock();

3519
	return rb;
3520 3521
}

3522
static void ring_buffer_put(struct ring_buffer *rb)
3523
{
3524
	if (!atomic_dec_and_test(&rb->refcount))
3525
		return;
3526

3527
	call_rcu(&rb->rcu_head, rb_free_rcu);
3528 3529 3530 3531
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3532
	struct perf_event *event = vma->vm_file->private_data;
3533

3534
	atomic_inc(&event->mmap_count);
3535 3536 3537 3538
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3539
	struct perf_event *event = vma->vm_file->private_data;
3540

3541
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3542
		unsigned long size = perf_data_size(event->rb);
3543
		struct user_struct *user = event->mmap_user;
3544
		struct ring_buffer *rb = event->rb;
3545

3546
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3547
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3548
		rcu_assign_pointer(event->rb, NULL);
3549
		mutex_unlock(&event->mmap_mutex);
3550

3551
		ring_buffer_put(rb);
3552
		free_uid(user);
3553
	}
3554 3555
}

3556
static const struct vm_operations_struct perf_mmap_vmops = {
3557 3558 3559 3560
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3561 3562 3563 3564
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3565
	struct perf_event *event = file->private_data;
3566
	unsigned long user_locked, user_lock_limit;
3567
	struct user_struct *user = current_user();
3568
	unsigned long locked, lock_limit;
3569
	struct ring_buffer *rb;
3570 3571
	unsigned long vma_size;
	unsigned long nr_pages;
3572
	long user_extra, extra;
3573
	int ret = 0, flags = 0;
3574

3575 3576 3577
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3578
	 * same rb.
3579 3580 3581 3582
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3583
	if (!(vma->vm_flags & VM_SHARED))
3584
		return -EINVAL;
3585 3586 3587 3588

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3589
	/*
3590
	 * If we have rb pages ensure they're a power-of-two number, so we
3591 3592 3593
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3594 3595
		return -EINVAL;

3596
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3597 3598
		return -EINVAL;

3599 3600
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3601

3602 3603
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3604 3605 3606
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3607
		else
3608 3609 3610 3611
			ret = -EINVAL;
		goto unlock;
	}

3612
	user_extra = nr_pages + 1;
3613
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3614 3615 3616 3617 3618 3619

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3620
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3621

3622 3623 3624
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3625

3626
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3627
	lock_limit >>= PAGE_SHIFT;
3628
	locked = vma->vm_mm->pinned_vm + extra;
3629

3630 3631
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3632 3633 3634
		ret = -EPERM;
		goto unlock;
	}
3635

3636
	WARN_ON(event->rb);
3637

3638
	if (vma->vm_flags & VM_WRITE)
3639
		flags |= RING_BUFFER_WRITABLE;
3640

3641 3642 3643 3644
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3645
	if (!rb) {
3646
		ret = -ENOMEM;
3647
		goto unlock;
3648
	}
3649
	rcu_assign_pointer(event->rb, rb);
3650

3651 3652 3653
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3654
	vma->vm_mm->pinned_vm += event->mmap_locked;
3655

3656
unlock:
3657 3658
	if (!ret)
		atomic_inc(&event->mmap_count);
3659
	mutex_unlock(&event->mmap_mutex);
3660 3661 3662

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3663 3664

	return ret;
3665 3666
}

P
Peter Zijlstra 已提交
3667 3668 3669
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3670
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3671 3672 3673
	int retval;

	mutex_lock(&inode->i_mutex);
3674
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3675 3676 3677 3678 3679 3680 3681 3682
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3683
static const struct file_operations perf_fops = {
3684
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3685 3686 3687
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3688 3689
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3690
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3691
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3692 3693
};

3694
/*
3695
 * Perf event wakeup
3696 3697 3698 3699 3700
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3701
void perf_event_wakeup(struct perf_event *event)
3702
{
3703
	wake_up_all(&event->waitq);
3704

3705 3706 3707
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3708
	}
3709 3710
}

3711
static void perf_pending_event(struct irq_work *entry)
3712
{
3713 3714
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3715

3716 3717 3718
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3719 3720
	}

3721 3722 3723
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3724 3725 3726
	}
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3748 3749 3750
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3778 3779 3780
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3807 3808 3809
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3810 3811 3812 3813 3814
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3815
static void perf_output_read_one(struct perf_output_handle *handle,
3816 3817
				 struct perf_event *event,
				 u64 enabled, u64 running)
3818
{
3819
	u64 read_format = event->attr.read_format;
3820 3821 3822
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3823
	values[n++] = perf_event_count(event);
3824
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3825
		values[n++] = enabled +
3826
			atomic64_read(&event->child_total_time_enabled);
3827 3828
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3829
		values[n++] = running +
3830
			atomic64_read(&event->child_total_time_running);
3831 3832
	}
	if (read_format & PERF_FORMAT_ID)
3833
		values[n++] = primary_event_id(event);
3834

3835
	__output_copy(handle, values, n * sizeof(u64));
3836 3837 3838
}

/*
3839
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3840 3841
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3842 3843
			    struct perf_event *event,
			    u64 enabled, u64 running)
3844
{
3845 3846
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3847 3848 3849 3850 3851 3852
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3853
		values[n++] = enabled;
3854 3855

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3856
		values[n++] = running;
3857

3858
	if (leader != event)
3859 3860
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3861
	values[n++] = perf_event_count(leader);
3862
	if (read_format & PERF_FORMAT_ID)
3863
		values[n++] = primary_event_id(leader);
3864

3865
	__output_copy(handle, values, n * sizeof(u64));
3866

3867
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3868 3869
		n = 0;

3870
		if (sub != event)
3871 3872
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3873
		values[n++] = perf_event_count(sub);
3874
		if (read_format & PERF_FORMAT_ID)
3875
			values[n++] = primary_event_id(sub);
3876

3877
		__output_copy(handle, values, n * sizeof(u64));
3878 3879 3880
	}
}

3881 3882 3883
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3884
static void perf_output_read(struct perf_output_handle *handle,
3885
			     struct perf_event *event)
3886
{
3887
	u64 enabled = 0, running = 0;
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3899 3900
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3901

3902
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3903
		perf_output_read_group(handle, event, enabled, running);
3904
	else
3905
		perf_output_read_one(handle, event, enabled, running);
3906 3907
}

3908 3909 3910
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3911
			struct perf_event *event)
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3942
		perf_output_read(handle, event);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3953
			__output_copy(handle, data->callchain, size);
3954 3955 3956 3957 3958 3959 3960 3961 3962
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3963 3964
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3990 3991 3992 3993
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3994
			 struct perf_event *event,
3995
			 struct pt_regs *regs)
3996
{
3997
	u64 sample_type = event->attr.sample_type;
3998

3999
	header->type = PERF_RECORD_SAMPLE;
4000
	header->size = sizeof(*header) + event->header_size;
4001 4002 4003

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4004

4005
	__perf_event_header__init_id(header, data, event);
4006

4007
	if (sample_type & PERF_SAMPLE_IP)
4008 4009
		data->ip = perf_instruction_pointer(regs);

4010
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4011
		int size = 1;
4012

4013 4014 4015 4016 4017 4018
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4019 4020
	}

4021
	if (sample_type & PERF_SAMPLE_RAW) {
4022 4023 4024 4025 4026 4027 4028 4029
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4030
		header->size += size;
4031
	}
4032
}
4033

4034
static void perf_event_output(struct perf_event *event,
4035 4036 4037 4038 4039
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4040

4041 4042 4043
	/* protect the callchain buffers */
	rcu_read_lock();

4044
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4045

4046
	if (perf_output_begin(&handle, event, header.size))
4047
		goto exit;
4048

4049
	perf_output_sample(&handle, &header, data, event);
4050

4051
	perf_output_end(&handle);
4052 4053 4054

exit:
	rcu_read_unlock();
4055 4056
}

4057
/*
4058
 * read event_id
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4069
perf_event_read_event(struct perf_event *event,
4070 4071 4072
			struct task_struct *task)
{
	struct perf_output_handle handle;
4073
	struct perf_sample_data sample;
4074
	struct perf_read_event read_event = {
4075
		.header = {
4076
			.type = PERF_RECORD_READ,
4077
			.misc = 0,
4078
			.size = sizeof(read_event) + event->read_size,
4079
		},
4080 4081
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4082
	};
4083
	int ret;
4084

4085
	perf_event_header__init_id(&read_event.header, &sample, event);
4086
	ret = perf_output_begin(&handle, event, read_event.header.size);
4087 4088 4089
	if (ret)
		return;

4090
	perf_output_put(&handle, read_event);
4091
	perf_output_read(&handle, event);
4092
	perf_event__output_id_sample(event, &handle, &sample);
4093

4094 4095 4096
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4097
/*
P
Peter Zijlstra 已提交
4098 4099
 * task tracking -- fork/exit
 *
4100
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4101 4102
 */

P
Peter Zijlstra 已提交
4103
struct perf_task_event {
4104
	struct task_struct		*task;
4105
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4106 4107 4108 4109 4110 4111

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4112 4113
		u32				tid;
		u32				ptid;
4114
		u64				time;
4115
	} event_id;
P
Peter Zijlstra 已提交
4116 4117
};

4118
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4119
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4120 4121
{
	struct perf_output_handle handle;
4122
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4123
	struct task_struct *task = task_event->task;
4124
	int ret, size = task_event->event_id.header.size;
4125

4126
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4127

4128
	ret = perf_output_begin(&handle, event,
4129
				task_event->event_id.header.size);
4130
	if (ret)
4131
		goto out;
P
Peter Zijlstra 已提交
4132

4133 4134
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4135

4136 4137
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4138

4139
	perf_output_put(&handle, task_event->event_id);
4140

4141 4142
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4143
	perf_output_end(&handle);
4144 4145
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4146 4147
}

4148
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4149
{
P
Peter Zijlstra 已提交
4150
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4151 4152
		return 0;

4153
	if (!event_filter_match(event))
4154 4155
		return 0;

4156 4157
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4158 4159 4160 4161 4162
		return 1;

	return 0;
}

4163
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4164
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4165
{
4166
	struct perf_event *event;
P
Peter Zijlstra 已提交
4167

4168 4169 4170
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4171 4172 4173
	}
}

4174
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4175 4176
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4177
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4178
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4179
	int ctxn;
P
Peter Zijlstra 已提交
4180

4181
	rcu_read_lock();
P
Peter Zijlstra 已提交
4182
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4183
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4184 4185
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4186
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4187 4188 4189 4190 4191

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4192
				goto next;
P
Peter Zijlstra 已提交
4193 4194 4195 4196
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4197 4198
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4199
	}
P
Peter Zijlstra 已提交
4200 4201 4202
	rcu_read_unlock();
}

4203 4204
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4205
			      int new)
P
Peter Zijlstra 已提交
4206
{
P
Peter Zijlstra 已提交
4207
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4208

4209 4210 4211
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4212 4213
		return;

P
Peter Zijlstra 已提交
4214
	task_event = (struct perf_task_event){
4215 4216
		.task	  = task,
		.task_ctx = task_ctx,
4217
		.event_id    = {
P
Peter Zijlstra 已提交
4218
			.header = {
4219
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4220
				.misc = 0,
4221
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4222
			},
4223 4224
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4225 4226
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4227
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4228 4229 4230
		},
	};

4231
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4232 4233
}

4234
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4235
{
4236
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4237 4238
}

4239 4240 4241 4242 4243
/*
 * comm tracking
 */

struct perf_comm_event {
4244 4245
	struct task_struct	*task;
	char			*comm;
4246 4247 4248 4249 4250 4251 4252
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4253
	} event_id;
4254 4255
};

4256
static void perf_event_comm_output(struct perf_event *event,
4257 4258 4259
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4260
	struct perf_sample_data sample;
4261
	int size = comm_event->event_id.header.size;
4262 4263 4264 4265
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4266
				comm_event->event_id.header.size);
4267 4268

	if (ret)
4269
		goto out;
4270

4271 4272
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4273

4274
	perf_output_put(&handle, comm_event->event_id);
4275
	__output_copy(&handle, comm_event->comm,
4276
				   comm_event->comm_size);
4277 4278 4279

	perf_event__output_id_sample(event, &handle, &sample);

4280
	perf_output_end(&handle);
4281 4282
out:
	comm_event->event_id.header.size = size;
4283 4284
}

4285
static int perf_event_comm_match(struct perf_event *event)
4286
{
P
Peter Zijlstra 已提交
4287
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4288 4289
		return 0;

4290
	if (!event_filter_match(event))
4291 4292
		return 0;

4293
	if (event->attr.comm)
4294 4295 4296 4297 4298
		return 1;

	return 0;
}

4299
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4300 4301
				  struct perf_comm_event *comm_event)
{
4302
	struct perf_event *event;
4303

4304 4305 4306
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4307 4308 4309
	}
}

4310
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4311 4312
{
	struct perf_cpu_context *cpuctx;
4313
	struct perf_event_context *ctx;
4314
	char comm[TASK_COMM_LEN];
4315
	unsigned int size;
P
Peter Zijlstra 已提交
4316
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4317
	int ctxn;
4318

4319
	memset(comm, 0, sizeof(comm));
4320
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4321
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4322 4323 4324 4325

	comm_event->comm = comm;
	comm_event->comm_size = size;

4326
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4327
	rcu_read_lock();
P
Peter Zijlstra 已提交
4328
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4329
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4330 4331
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4332
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4333 4334 4335

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4336
			goto next;
P
Peter Zijlstra 已提交
4337 4338 4339 4340

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4341 4342
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4343
	}
4344
	rcu_read_unlock();
4345 4346
}

4347
void perf_event_comm(struct task_struct *task)
4348
{
4349
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4350 4351
	struct perf_event_context *ctx;
	int ctxn;
4352

P
Peter Zijlstra 已提交
4353 4354 4355 4356
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4357

P
Peter Zijlstra 已提交
4358 4359
		perf_event_enable_on_exec(ctx);
	}
4360

4361
	if (!atomic_read(&nr_comm_events))
4362
		return;
4363

4364
	comm_event = (struct perf_comm_event){
4365
		.task	= task,
4366 4367
		/* .comm      */
		/* .comm_size */
4368
		.event_id  = {
4369
			.header = {
4370
				.type = PERF_RECORD_COMM,
4371 4372 4373 4374 4375
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4376 4377 4378
		},
	};

4379
	perf_event_comm_event(&comm_event);
4380 4381
}

4382 4383 4384 4385 4386
/*
 * mmap tracking
 */

struct perf_mmap_event {
4387 4388 4389 4390
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4391 4392 4393 4394 4395 4396 4397 4398 4399

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4400
	} event_id;
4401 4402
};

4403
static void perf_event_mmap_output(struct perf_event *event,
4404 4405 4406
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4407
	struct perf_sample_data sample;
4408
	int size = mmap_event->event_id.header.size;
4409
	int ret;
4410

4411 4412
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4413
				mmap_event->event_id.header.size);
4414
	if (ret)
4415
		goto out;
4416

4417 4418
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4419

4420
	perf_output_put(&handle, mmap_event->event_id);
4421
	__output_copy(&handle, mmap_event->file_name,
4422
				   mmap_event->file_size);
4423 4424 4425

	perf_event__output_id_sample(event, &handle, &sample);

4426
	perf_output_end(&handle);
4427 4428
out:
	mmap_event->event_id.header.size = size;
4429 4430
}

4431
static int perf_event_mmap_match(struct perf_event *event,
4432 4433
				   struct perf_mmap_event *mmap_event,
				   int executable)
4434
{
P
Peter Zijlstra 已提交
4435
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4436 4437
		return 0;

4438
	if (!event_filter_match(event))
4439 4440
		return 0;

4441 4442
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4443 4444 4445 4446 4447
		return 1;

	return 0;
}

4448
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4449 4450
				  struct perf_mmap_event *mmap_event,
				  int executable)
4451
{
4452
	struct perf_event *event;
4453

4454
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4455
		if (perf_event_mmap_match(event, mmap_event, executable))
4456
			perf_event_mmap_output(event, mmap_event);
4457 4458 4459
	}
}

4460
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4461 4462
{
	struct perf_cpu_context *cpuctx;
4463
	struct perf_event_context *ctx;
4464 4465
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4466 4467 4468
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4469
	const char *name;
P
Peter Zijlstra 已提交
4470
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4471
	int ctxn;
4472

4473 4474
	memset(tmp, 0, sizeof(tmp));

4475
	if (file) {
4476
		/*
4477
		 * d_path works from the end of the rb backwards, so we
4478 4479 4480 4481
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4482 4483 4484 4485
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4486
		name = d_path(&file->f_path, buf, PATH_MAX);
4487 4488 4489 4490 4491
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4492 4493 4494
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4495
			goto got_name;
4496
		}
4497 4498 4499 4500

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4501 4502 4503 4504 4505 4506 4507 4508
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4509 4510
		}

4511 4512 4513 4514 4515
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4516
	size = ALIGN(strlen(name)+1, sizeof(u64));
4517 4518 4519 4520

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4521
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4522

4523
	rcu_read_lock();
P
Peter Zijlstra 已提交
4524
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4525
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4526 4527
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4528 4529
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4530 4531 4532

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4533
			goto next;
P
Peter Zijlstra 已提交
4534 4535 4536 4537 4538 4539

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4540 4541
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4542
	}
4543 4544
	rcu_read_unlock();

4545 4546 4547
	kfree(buf);
}

4548
void perf_event_mmap(struct vm_area_struct *vma)
4549
{
4550 4551
	struct perf_mmap_event mmap_event;

4552
	if (!atomic_read(&nr_mmap_events))
4553 4554 4555
		return;

	mmap_event = (struct perf_mmap_event){
4556
		.vma	= vma,
4557 4558
		/* .file_name */
		/* .file_size */
4559
		.event_id  = {
4560
			.header = {
4561
				.type = PERF_RECORD_MMAP,
4562
				.misc = PERF_RECORD_MISC_USER,
4563 4564 4565 4566
				/* .size */
			},
			/* .pid */
			/* .tid */
4567 4568
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4569
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4570 4571 4572
		},
	};

4573
	perf_event_mmap_event(&mmap_event);
4574 4575
}

4576 4577 4578 4579
/*
 * IRQ throttle logging
 */

4580
static void perf_log_throttle(struct perf_event *event, int enable)
4581 4582
{
	struct perf_output_handle handle;
4583
	struct perf_sample_data sample;
4584 4585 4586 4587 4588
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4589
		u64				id;
4590
		u64				stream_id;
4591 4592
	} throttle_event = {
		.header = {
4593
			.type = PERF_RECORD_THROTTLE,
4594 4595 4596
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4597
		.time		= perf_clock(),
4598 4599
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4600 4601
	};

4602
	if (enable)
4603
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4604

4605 4606 4607
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4608
				throttle_event.header.size);
4609 4610 4611 4612
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4613
	perf_event__output_id_sample(event, &handle, &sample);
4614 4615 4616
	perf_output_end(&handle);
}

4617
/*
4618
 * Generic event overflow handling, sampling.
4619 4620
 */

4621
static int __perf_event_overflow(struct perf_event *event,
4622 4623
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4624
{
4625 4626
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4627 4628
	int ret = 0;

4629 4630 4631 4632 4633 4634 4635
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4636 4637 4638 4639
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4640 4641
			ret = 1;
		}
P
Peter Zijlstra 已提交
4642 4643
	} else
		hwc->interrupts++;
4644

4645
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4646
		u64 now = perf_clock();
4647
		s64 delta = now - hwc->freq_time_stamp;
4648

4649
		hwc->freq_time_stamp = now;
4650

4651 4652
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4653 4654
	}

4655 4656
	/*
	 * XXX event_limit might not quite work as expected on inherited
4657
	 * events
4658 4659
	 */

4660 4661
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4662
		ret = 1;
4663
		event->pending_kill = POLL_HUP;
4664 4665
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4666 4667
	}

4668
	if (event->overflow_handler)
4669
		event->overflow_handler(event, data, regs);
4670
	else
4671
		perf_event_output(event, data, regs);
4672

P
Peter Zijlstra 已提交
4673
	if (event->fasync && event->pending_kill) {
4674 4675
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4676 4677
	}

4678
	return ret;
4679 4680
}

4681
int perf_event_overflow(struct perf_event *event,
4682 4683
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4684
{
4685
	return __perf_event_overflow(event, 1, data, regs);
4686 4687
}

4688
/*
4689
 * Generic software event infrastructure
4690 4691
 */

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4703
/*
4704 4705
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4706 4707 4708 4709
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4710
static u64 perf_swevent_set_period(struct perf_event *event)
4711
{
4712
	struct hw_perf_event *hwc = &event->hw;
4713 4714 4715 4716 4717
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4718 4719

again:
4720
	old = val = local64_read(&hwc->period_left);
4721 4722
	if (val < 0)
		return 0;
4723

4724 4725 4726
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4727
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4728
		goto again;
4729

4730
	return nr;
4731 4732
}

4733
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4734
				    struct perf_sample_data *data,
4735
				    struct pt_regs *regs)
4736
{
4737
	struct hw_perf_event *hwc = &event->hw;
4738
	int throttle = 0;
4739

4740
	data->period = event->hw.last_period;
4741 4742
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4743

4744 4745
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4746

4747
	for (; overflow; overflow--) {
4748
		if (__perf_event_overflow(event, throttle,
4749
					    data, regs)) {
4750 4751 4752 4753 4754 4755
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4756
		throttle = 1;
4757
	}
4758 4759
}

P
Peter Zijlstra 已提交
4760
static void perf_swevent_event(struct perf_event *event, u64 nr,
4761
			       struct perf_sample_data *data,
4762
			       struct pt_regs *regs)
4763
{
4764
	struct hw_perf_event *hwc = &event->hw;
4765

4766
	local64_add(nr, &event->count);
4767

4768 4769 4770
	if (!regs)
		return;

4771
	if (!is_sampling_event(event))
4772
		return;
4773

4774
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4775
		return perf_swevent_overflow(event, 1, data, regs);
4776

4777
	if (local64_add_negative(nr, &hwc->period_left))
4778
		return;
4779

4780
	perf_swevent_overflow(event, 0, data, regs);
4781 4782
}

4783 4784 4785
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4786
	if (event->hw.state & PERF_HES_STOPPED)
4787
		return 1;
P
Peter Zijlstra 已提交
4788

4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4800
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4801
				enum perf_type_id type,
L
Li Zefan 已提交
4802 4803 4804
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4805
{
4806
	if (event->attr.type != type)
4807
		return 0;
4808

4809
	if (event->attr.config != event_id)
4810 4811
		return 0;

4812 4813
	if (perf_exclude_event(event, regs))
		return 0;
4814 4815 4816 4817

	return 1;
}

4818 4819 4820 4821 4822 4823 4824
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4825 4826
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4827
{
4828 4829 4830 4831
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4832

4833 4834
/* For the read side: events when they trigger */
static inline struct hlist_head *
4835
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4836 4837
{
	struct swevent_hlist *hlist;
4838

4839
	hlist = rcu_dereference(swhash->swevent_hlist);
4840 4841 4842
	if (!hlist)
		return NULL;

4843 4844 4845 4846 4847
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4848
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4859
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4860 4861 4862 4863 4864
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4865 4866 4867
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4868
				    u64 nr,
4869 4870
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4871
{
4872
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4873
	struct perf_event *event;
4874 4875
	struct hlist_node *node;
	struct hlist_head *head;
4876

4877
	rcu_read_lock();
4878
	head = find_swevent_head_rcu(swhash, type, event_id);
4879 4880 4881 4882
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4883
		if (perf_swevent_match(event, type, event_id, data, regs))
4884
			perf_swevent_event(event, nr, data, regs);
4885
	}
4886 4887
end:
	rcu_read_unlock();
4888 4889
}

4890
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4891
{
4892
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4893

4894
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4895
}
I
Ingo Molnar 已提交
4896
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4897

4898
inline void perf_swevent_put_recursion_context(int rctx)
4899
{
4900
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4901

4902
	put_recursion_context(swhash->recursion, rctx);
4903
}
4904

4905
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4906
{
4907
	struct perf_sample_data data;
4908 4909
	int rctx;

4910
	preempt_disable_notrace();
4911 4912 4913
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4914

4915
	perf_sample_data_init(&data, addr);
4916

4917
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4918 4919

	perf_swevent_put_recursion_context(rctx);
4920
	preempt_enable_notrace();
4921 4922
}

4923
static void perf_swevent_read(struct perf_event *event)
4924 4925 4926
{
}

P
Peter Zijlstra 已提交
4927
static int perf_swevent_add(struct perf_event *event, int flags)
4928
{
4929
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4930
	struct hw_perf_event *hwc = &event->hw;
4931 4932
	struct hlist_head *head;

4933
	if (is_sampling_event(event)) {
4934
		hwc->last_period = hwc->sample_period;
4935
		perf_swevent_set_period(event);
4936
	}
4937

P
Peter Zijlstra 已提交
4938 4939
	hwc->state = !(flags & PERF_EF_START);

4940
	head = find_swevent_head(swhash, event);
4941 4942 4943 4944 4945
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4946 4947 4948
	return 0;
}

P
Peter Zijlstra 已提交
4949
static void perf_swevent_del(struct perf_event *event, int flags)
4950
{
4951
	hlist_del_rcu(&event->hlist_entry);
4952 4953
}

P
Peter Zijlstra 已提交
4954
static void perf_swevent_start(struct perf_event *event, int flags)
4955
{
P
Peter Zijlstra 已提交
4956
	event->hw.state = 0;
4957
}
I
Ingo Molnar 已提交
4958

P
Peter Zijlstra 已提交
4959
static void perf_swevent_stop(struct perf_event *event, int flags)
4960
{
P
Peter Zijlstra 已提交
4961
	event->hw.state = PERF_HES_STOPPED;
4962 4963
}

4964 4965
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4966
swevent_hlist_deref(struct swevent_htable *swhash)
4967
{
4968 4969
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4970 4971
}

4972
static void swevent_hlist_release(struct swevent_htable *swhash)
4973
{
4974
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4975

4976
	if (!hlist)
4977 4978
		return;

4979
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4980
	kfree_rcu(hlist, rcu_head);
4981 4982 4983 4984
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4985
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4986

4987
	mutex_lock(&swhash->hlist_mutex);
4988

4989 4990
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4991

4992
	mutex_unlock(&swhash->hlist_mutex);
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5010
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5011 5012
	int err = 0;

5013
	mutex_lock(&swhash->hlist_mutex);
5014

5015
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5016 5017 5018 5019 5020 5021 5022
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5023
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5024
	}
5025
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5026
exit:
5027
	mutex_unlock(&swhash->hlist_mutex);
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5051
fail:
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5062
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5063

5064 5065 5066
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5067

5068 5069
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5070
	jump_label_dec(&perf_swevent_enabled[event_id]);
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5090
	if (event_id >= PERF_COUNT_SW_MAX)
5091 5092 5093 5094 5095 5096 5097 5098 5099
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5100
		jump_label_inc(&perf_swevent_enabled[event_id]);
5101 5102 5103 5104 5105 5106 5107
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5108
	.task_ctx_nr	= perf_sw_context,
5109

5110
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5111 5112 5113 5114
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5115 5116 5117
	.read		= perf_swevent_read,
};

5118 5119
#ifdef CONFIG_EVENT_TRACING

5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5134 5135
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5136 5137 5138 5139
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5140 5141 5142 5143 5144 5145 5146 5147 5148
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5149
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5150 5151
{
	struct perf_sample_data data;
5152 5153 5154
	struct perf_event *event;
	struct hlist_node *node;

5155 5156 5157 5158 5159 5160 5161 5162
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5163 5164
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5165
			perf_swevent_event(event, count, &data, regs);
5166
	}
5167 5168

	perf_swevent_put_recursion_context(rctx);
5169 5170 5171
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5172
static void tp_perf_event_destroy(struct perf_event *event)
5173
{
5174
	perf_trace_destroy(event);
5175 5176
}

5177
static int perf_tp_event_init(struct perf_event *event)
5178
{
5179 5180
	int err;

5181 5182 5183
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5184 5185
	err = perf_trace_init(event);
	if (err)
5186
		return err;
5187

5188
	event->destroy = tp_perf_event_destroy;
5189

5190 5191 5192 5193
	return 0;
}

static struct pmu perf_tracepoint = {
5194 5195
	.task_ctx_nr	= perf_sw_context,

5196
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5197 5198 5199 5200
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5201 5202 5203 5204 5205
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5206
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5207
}
L
Li Zefan 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5232
#else
L
Li Zefan 已提交
5233

5234
static inline void perf_tp_register(void)
5235 5236
{
}
L
Li Zefan 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5247
#endif /* CONFIG_EVENT_TRACING */
5248

5249
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5250
void perf_bp_event(struct perf_event *bp, void *data)
5251
{
5252 5253 5254
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5255
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5256

P
Peter Zijlstra 已提交
5257
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5258
		perf_swevent_event(bp, 1, &sample, regs);
5259 5260 5261
}
#endif

5262 5263 5264
/*
 * hrtimer based swevent callback
 */
5265

5266
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5267
{
5268 5269 5270 5271 5272
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5273

5274
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5275 5276 5277 5278

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5279
	event->pmu->read(event);
5280

5281 5282 5283 5284 5285 5286
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5287
			if (perf_event_overflow(event, &data, regs))
5288 5289
				ret = HRTIMER_NORESTART;
	}
5290

5291 5292
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5293

5294
	return ret;
5295 5296
}

5297
static void perf_swevent_start_hrtimer(struct perf_event *event)
5298
{
5299
	struct hw_perf_event *hwc = &event->hw;
5300 5301 5302 5303
	s64 period;

	if (!is_sampling_event(event))
		return;
5304

5305 5306 5307 5308
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5309

5310 5311 5312 5313 5314
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5315
				ns_to_ktime(period), 0,
5316
				HRTIMER_MODE_REL_PINNED, 0);
5317
}
5318 5319

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5320
{
5321 5322
	struct hw_perf_event *hwc = &event->hw;

5323
	if (is_sampling_event(event)) {
5324
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5325
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5326 5327 5328

		hrtimer_cancel(&hwc->hrtimer);
	}
5329 5330
}

P
Peter Zijlstra 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5355 5356 5357 5358 5359
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5360
{
5361 5362 5363
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5364
	now = local_clock();
5365 5366
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5367 5368
}

P
Peter Zijlstra 已提交
5369
static void cpu_clock_event_start(struct perf_event *event, int flags)
5370
{
P
Peter Zijlstra 已提交
5371
	local64_set(&event->hw.prev_count, local_clock());
5372 5373 5374
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5375
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5376
{
5377 5378 5379
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5380

P
Peter Zijlstra 已提交
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5394 5395 5396 5397
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5398

5399 5400 5401 5402 5403 5404 5405 5406
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5407 5408
	perf_swevent_init_hrtimer(event);

5409
	return 0;
5410 5411
}

5412
static struct pmu perf_cpu_clock = {
5413 5414
	.task_ctx_nr	= perf_sw_context,

5415
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5416 5417 5418 5419
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5420 5421 5422 5423 5424 5425 5426 5427
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5428
{
5429 5430
	u64 prev;
	s64 delta;
5431

5432 5433 5434 5435
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5436

P
Peter Zijlstra 已提交
5437
static void task_clock_event_start(struct perf_event *event, int flags)
5438
{
P
Peter Zijlstra 已提交
5439
	local64_set(&event->hw.prev_count, event->ctx->time);
5440 5441 5442
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5443
static void task_clock_event_stop(struct perf_event *event, int flags)
5444 5445 5446
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5447 5448 5449 5450 5451 5452
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5453

P
Peter Zijlstra 已提交
5454 5455 5456 5457 5458 5459
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5460 5461 5462 5463
}

static void task_clock_event_read(struct perf_event *event)
{
5464 5465 5466
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5467 5468 5469 5470 5471

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5472
{
5473 5474 5475 5476 5477 5478
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5479 5480
	perf_swevent_init_hrtimer(event);

5481
	return 0;
L
Li Zefan 已提交
5482 5483
}

5484
static struct pmu perf_task_clock = {
5485 5486
	.task_ctx_nr	= perf_sw_context,

5487
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5488 5489 5490 5491
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5492 5493
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5494

P
Peter Zijlstra 已提交
5495
static void perf_pmu_nop_void(struct pmu *pmu)
5496 5497
{
}
L
Li Zefan 已提交
5498

P
Peter Zijlstra 已提交
5499
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5500
{
P
Peter Zijlstra 已提交
5501
	return 0;
L
Li Zefan 已提交
5502 5503
}

P
Peter Zijlstra 已提交
5504
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5505
{
P
Peter Zijlstra 已提交
5506
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5507 5508
}

P
Peter Zijlstra 已提交
5509 5510 5511 5512 5513
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5514

P
Peter Zijlstra 已提交
5515
static void perf_pmu_cancel_txn(struct pmu *pmu)
5516
{
P
Peter Zijlstra 已提交
5517
	perf_pmu_enable(pmu);
5518 5519
}

P
Peter Zijlstra 已提交
5520 5521 5522 5523 5524
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5525
{
P
Peter Zijlstra 已提交
5526
	struct pmu *pmu;
5527

P
Peter Zijlstra 已提交
5528 5529
	if (ctxn < 0)
		return NULL;
5530

P
Peter Zijlstra 已提交
5531 5532 5533 5534
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5535

P
Peter Zijlstra 已提交
5536
	return NULL;
5537 5538
}

5539
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5540
{
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5556

P
Peter Zijlstra 已提交
5557
	mutex_lock(&pmus_lock);
5558
	/*
P
Peter Zijlstra 已提交
5559
	 * Like a real lame refcount.
5560
	 */
5561 5562 5563
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5564
			goto out;
5565
		}
P
Peter Zijlstra 已提交
5566
	}
5567

5568
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5569 5570
out:
	mutex_unlock(&pmus_lock);
5571
}
P
Peter Zijlstra 已提交
5572
static struct idr pmu_idr;
5573

P
Peter Zijlstra 已提交
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5626
static struct lock_class_key cpuctx_mutex;
5627
static struct lock_class_key cpuctx_lock;
5628

P
Peter Zijlstra 已提交
5629
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5630
{
P
Peter Zijlstra 已提交
5631
	int cpu, ret;
5632

5633
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5634 5635 5636 5637
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5638

P
Peter Zijlstra 已提交
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5657 5658 5659 5660 5661 5662
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5663
skip_type:
P
Peter Zijlstra 已提交
5664 5665 5666
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5667

P
Peter Zijlstra 已提交
5668 5669
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5670
		goto free_dev;
5671

P
Peter Zijlstra 已提交
5672 5673 5674 5675
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5676
		__perf_event_init_context(&cpuctx->ctx);
5677
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5678
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5679
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5680
		cpuctx->ctx.pmu = pmu;
5681 5682
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5683
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5684
	}
5685

P
Peter Zijlstra 已提交
5686
got_cpu_context:
P
Peter Zijlstra 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5701
		}
5702
	}
5703

P
Peter Zijlstra 已提交
5704 5705 5706 5707 5708
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5709
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5710 5711
	ret = 0;
unlock:
5712 5713
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5714
	return ret;
P
Peter Zijlstra 已提交
5715

P
Peter Zijlstra 已提交
5716 5717 5718 5719
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5720 5721 5722 5723
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5724 5725 5726
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5727 5728
}

5729
void perf_pmu_unregister(struct pmu *pmu)
5730
{
5731 5732 5733
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5734

5735
	/*
P
Peter Zijlstra 已提交
5736 5737
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5738
	 */
5739
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5740
	synchronize_rcu();
5741

P
Peter Zijlstra 已提交
5742
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5743 5744
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5745 5746
	device_del(pmu->dev);
	put_device(pmu->dev);
5747
	free_pmu_context(pmu);
5748
}
5749

5750 5751 5752 5753
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5754
	int ret;
5755 5756

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5757 5758 5759 5760

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5761
	if (pmu) {
5762
		event->pmu = pmu;
5763 5764 5765
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5766
		goto unlock;
5767
	}
P
Peter Zijlstra 已提交
5768

5769
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5770
		event->pmu = pmu;
5771
		ret = pmu->event_init(event);
5772
		if (!ret)
P
Peter Zijlstra 已提交
5773
			goto unlock;
5774

5775 5776
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5777
			goto unlock;
5778
		}
5779
	}
P
Peter Zijlstra 已提交
5780 5781
	pmu = ERR_PTR(-ENOENT);
unlock:
5782
	srcu_read_unlock(&pmus_srcu, idx);
5783

5784
	return pmu;
5785 5786
}

T
Thomas Gleixner 已提交
5787
/*
5788
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5789
 */
5790
static struct perf_event *
5791
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5792 5793 5794
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5795 5796
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5797
{
P
Peter Zijlstra 已提交
5798
	struct pmu *pmu;
5799 5800
	struct perf_event *event;
	struct hw_perf_event *hwc;
5801
	long err;
T
Thomas Gleixner 已提交
5802

5803 5804 5805 5806 5807
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5808
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5809
	if (!event)
5810
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5811

5812
	/*
5813
	 * Single events are their own group leaders, with an
5814 5815 5816
	 * empty sibling list:
	 */
	if (!group_leader)
5817
		group_leader = event;
5818

5819 5820
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5821

5822 5823 5824 5825
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5826
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5827

5828
	mutex_init(&event->mmap_mutex);
5829

5830 5831 5832 5833 5834
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5835

5836
	event->parent		= parent_event;
5837

5838 5839
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5840

5841
	event->state		= PERF_EVENT_STATE_INACTIVE;
5842

5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5854
	if (!overflow_handler && parent_event) {
5855
		overflow_handler = parent_event->overflow_handler;
5856 5857
		context = parent_event->overflow_handler_context;
	}
5858

5859
	event->overflow_handler	= overflow_handler;
5860
	event->overflow_handler_context = context;
5861

5862
	if (attr->disabled)
5863
		event->state = PERF_EVENT_STATE_OFF;
5864

5865
	pmu = NULL;
5866

5867
	hwc = &event->hw;
5868
	hwc->sample_period = attr->sample_period;
5869
	if (attr->freq && attr->sample_freq)
5870
		hwc->sample_period = 1;
5871
	hwc->last_period = hwc->sample_period;
5872

5873
	local64_set(&hwc->period_left, hwc->sample_period);
5874

5875
	/*
5876
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5877
	 */
5878
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5879 5880
		goto done;

5881
	pmu = perf_init_event(event);
5882

5883 5884
done:
	err = 0;
5885
	if (!pmu)
5886
		err = -EINVAL;
5887 5888
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5889

5890
	if (err) {
5891 5892 5893
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5894
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5895
	}
5896

5897
	if (!event->parent) {
5898
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5899
			jump_label_inc(&perf_sched_events);
5900
		if (event->attr.mmap || event->attr.mmap_data)
5901 5902 5903 5904 5905
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5906 5907 5908 5909 5910 5911 5912
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5913
	}
5914

5915
	return event;
T
Thomas Gleixner 已提交
5916 5917
}

5918 5919
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5920 5921
{
	u32 size;
5922
	int ret;
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5947 5948 5949
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5950 5951
	 */
	if (size > sizeof(*attr)) {
5952 5953 5954
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5955

5956 5957
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5958

5959
		for (; addr < end; addr++) {
5960 5961 5962 5963 5964 5965
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5966
		size = sizeof(*attr);
5967 5968 5969 5970 5971 5972
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5973
	if (attr->__reserved_1)
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5991 5992
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5993
{
5994
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5995 5996
	int ret = -EINVAL;

5997
	if (!output_event)
5998 5999
		goto set;

6000 6001
	/* don't allow circular references */
	if (event == output_event)
6002 6003
		goto out;

6004 6005 6006 6007 6008 6009 6010
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6011
	 * If its not a per-cpu rb, it must be the same task.
6012 6013 6014 6015
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6016
set:
6017
	mutex_lock(&event->mmap_mutex);
6018 6019 6020
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6021

6022
	if (output_event) {
6023 6024 6025
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6026
			goto unlock;
6027 6028
	}

6029 6030
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6031
	ret = 0;
6032 6033 6034
unlock:
	mutex_unlock(&event->mmap_mutex);

6035 6036
	if (old_rb)
		ring_buffer_put(old_rb);
6037 6038 6039 6040
out:
	return ret;
}

T
Thomas Gleixner 已提交
6041
/**
6042
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6043
 *
6044
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6045
 * @pid:		target pid
I
Ingo Molnar 已提交
6046
 * @cpu:		target cpu
6047
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6048
 */
6049 6050
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6051
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6052
{
6053 6054
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6055 6056 6057
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6058
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6059
	struct task_struct *task = NULL;
6060
	struct pmu *pmu;
6061
	int event_fd;
6062
	int move_group = 0;
6063
	int fput_needed = 0;
6064
	int err;
T
Thomas Gleixner 已提交
6065

6066
	/* for future expandability... */
S
Stephane Eranian 已提交
6067
	if (flags & ~PERF_FLAG_ALL)
6068 6069
		return -EINVAL;

6070 6071 6072
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6073

6074 6075 6076 6077 6078
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6079
	if (attr.freq) {
6080
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6081 6082 6083
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6093 6094 6095 6096
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6097 6098 6099 6100
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6101
			goto err_fd;
6102 6103 6104 6105 6106 6107 6108 6109
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6110
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6111 6112 6113 6114 6115 6116 6117
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6118 6119
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6120 6121
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6122
		goto err_task;
6123 6124
	}

S
Stephane Eranian 已提交
6125 6126 6127 6128
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6129 6130 6131 6132 6133 6134 6135
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6136 6137
	}

6138 6139 6140 6141 6142
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6166 6167 6168 6169

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6170
	ctx = find_get_context(pmu, task, cpu);
6171 6172
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6173
		goto err_alloc;
6174 6175
	}

6176 6177 6178 6179 6180
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6181
	/*
6182
	 * Look up the group leader (we will attach this event to it):
6183
	 */
6184
	if (group_leader) {
6185
		err = -EINVAL;
6186 6187

		/*
I
Ingo Molnar 已提交
6188 6189 6190 6191
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6192
			goto err_context;
I
Ingo Molnar 已提交
6193 6194 6195
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6196
		 */
6197 6198 6199 6200 6201 6202 6203 6204
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6205 6206 6207
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6208
		if (attr.exclusive || attr.pinned)
6209
			goto err_context;
6210 6211 6212 6213 6214
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6215
			goto err_context;
6216
	}
T
Thomas Gleixner 已提交
6217

6218 6219 6220
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6221
		goto err_context;
6222
	}
6223

6224 6225 6226 6227
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6228
		perf_remove_from_context(group_leader);
6229 6230
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6231
			perf_remove_from_context(sibling);
6232 6233 6234 6235
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6236
	}
6237

6238
	event->filp = event_file;
6239
	WARN_ON_ONCE(ctx->parent_ctx);
6240
	mutex_lock(&ctx->mutex);
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6252
	perf_install_in_context(ctx, event, cpu);
6253
	++ctx->generation;
6254
	perf_unpin_context(ctx);
6255
	mutex_unlock(&ctx->mutex);
6256

6257
	event->owner = current;
P
Peter Zijlstra 已提交
6258

6259 6260 6261
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6262

6263 6264 6265 6266
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6267
	perf_event__id_header_size(event);
6268

6269 6270 6271 6272 6273 6274
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6275 6276 6277
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6278

6279
err_context:
6280
	perf_unpin_context(ctx);
6281
	put_ctx(ctx);
6282
err_alloc:
6283
	free_event(event);
P
Peter Zijlstra 已提交
6284 6285 6286
err_task:
	if (task)
		put_task_struct(task);
6287
err_group_fd:
6288
	fput_light(group_file, fput_needed);
6289 6290
err_fd:
	put_unused_fd(event_fd);
6291
	return err;
T
Thomas Gleixner 已提交
6292 6293
}

6294 6295 6296 6297 6298
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6299
 * @task: task to profile (NULL for percpu)
6300 6301 6302
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6303
				 struct task_struct *task,
6304 6305
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6306 6307
{
	struct perf_event_context *ctx;
6308
	struct perf_event *event;
6309
	int err;
6310

6311 6312 6313
	/*
	 * Get the target context (task or percpu):
	 */
6314

6315 6316
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6317 6318 6319 6320
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6321

M
Matt Helsley 已提交
6322
	ctx = find_get_context(event->pmu, task, cpu);
6323 6324
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6325
		goto err_free;
6326
	}
6327 6328 6329 6330 6331 6332

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6333
	perf_unpin_context(ctx);
6334 6335 6336 6337
	mutex_unlock(&ctx->mutex);

	return event;

6338 6339 6340
err_free:
	free_event(event);
err:
6341
	return ERR_PTR(err);
6342
}
6343
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6344

6345
static void sync_child_event(struct perf_event *child_event,
6346
			       struct task_struct *child)
6347
{
6348
	struct perf_event *parent_event = child_event->parent;
6349
	u64 child_val;
6350

6351 6352
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6353

P
Peter Zijlstra 已提交
6354
	child_val = perf_event_count(child_event);
6355 6356 6357 6358

	/*
	 * Add back the child's count to the parent's count:
	 */
6359
	atomic64_add(child_val, &parent_event->child_count);
6360 6361 6362 6363
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6364 6365

	/*
6366
	 * Remove this event from the parent's list
6367
	 */
6368 6369 6370 6371
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6372 6373

	/*
6374
	 * Release the parent event, if this was the last
6375 6376
	 * reference to it.
	 */
6377
	fput(parent_event->filp);
6378 6379
}

6380
static void
6381 6382
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6383
			 struct task_struct *child)
6384
{
6385 6386 6387 6388 6389
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6390

6391
	perf_remove_from_context(child_event);
6392

6393
	/*
6394
	 * It can happen that the parent exits first, and has events
6395
	 * that are still around due to the child reference. These
6396
	 * events need to be zapped.
6397
	 */
6398
	if (child_event->parent) {
6399 6400
		sync_child_event(child_event, child);
		free_event(child_event);
6401
	}
6402 6403
}

P
Peter Zijlstra 已提交
6404
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6405
{
6406 6407
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6408
	unsigned long flags;
6409

P
Peter Zijlstra 已提交
6410
	if (likely(!child->perf_event_ctxp[ctxn])) {
6411
		perf_event_task(child, NULL, 0);
6412
		return;
P
Peter Zijlstra 已提交
6413
	}
6414

6415
	local_irq_save(flags);
6416 6417 6418 6419 6420 6421
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6422
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6423 6424 6425

	/*
	 * Take the context lock here so that if find_get_context is
6426
	 * reading child->perf_event_ctxp, we wait until it has
6427 6428
	 * incremented the context's refcount before we do put_ctx below.
	 */
6429
	raw_spin_lock(&child_ctx->lock);
6430
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6431
	child->perf_event_ctxp[ctxn] = NULL;
6432 6433 6434
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6435
	 * the events from it.
6436 6437
	 */
	unclone_ctx(child_ctx);
6438
	update_context_time(child_ctx);
6439
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6440 6441

	/*
6442 6443 6444
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6445
	 */
6446
	perf_event_task(child, child_ctx, 0);
6447

6448 6449 6450
	/*
	 * We can recurse on the same lock type through:
	 *
6451 6452 6453
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6454 6455 6456 6457 6458
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6459
	mutex_lock(&child_ctx->mutex);
6460

6461
again:
6462 6463 6464 6465 6466
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6467
				 group_entry)
6468
		__perf_event_exit_task(child_event, child_ctx, child);
6469 6470

	/*
6471
	 * If the last event was a group event, it will have appended all
6472 6473 6474
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6475 6476
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6477
		goto again;
6478 6479 6480 6481

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6482 6483
}

P
Peter Zijlstra 已提交
6484 6485 6486 6487 6488
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6489
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6490 6491
	int ctxn;

P
Peter Zijlstra 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6507 6508 6509 6510
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6525
	perf_group_detach(event);
6526 6527 6528 6529
	list_del_event(event, ctx);
	free_event(event);
}

6530 6531
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6532
 * perf_event_init_task below, used by fork() in case of fail.
6533
 */
6534
void perf_event_free_task(struct task_struct *task)
6535
{
P
Peter Zijlstra 已提交
6536
	struct perf_event_context *ctx;
6537
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6538
	int ctxn;
6539

P
Peter Zijlstra 已提交
6540 6541 6542 6543
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6544

P
Peter Zijlstra 已提交
6545
		mutex_lock(&ctx->mutex);
6546
again:
P
Peter Zijlstra 已提交
6547 6548 6549
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6550

P
Peter Zijlstra 已提交
6551 6552 6553
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6554

P
Peter Zijlstra 已提交
6555 6556 6557
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6558

P
Peter Zijlstra 已提交
6559
		mutex_unlock(&ctx->mutex);
6560

P
Peter Zijlstra 已提交
6561 6562
		put_ctx(ctx);
	}
6563 6564
}

6565 6566 6567 6568 6569 6570 6571 6572
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6585
	unsigned long flags;
P
Peter Zijlstra 已提交
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6598
					   child,
P
Peter Zijlstra 已提交
6599
					   group_leader, parent_event,
6600
				           NULL, NULL);
P
Peter Zijlstra 已提交
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6627 6628
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6629

6630 6631 6632 6633
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6634
	perf_event__id_header_size(child_event);
6635

P
Peter Zijlstra 已提交
6636 6637 6638
	/*
	 * Link it up in the child's context:
	 */
6639
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6640
	add_event_to_ctx(child_event, child_ctx);
6641
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6683 6684 6685 6686 6687
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6688
		   struct task_struct *child, int ctxn,
6689 6690 6691
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6692
	struct perf_event_context *child_ctx;
6693 6694 6695 6696

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6697 6698
	}

6699
	child_ctx = child->perf_event_ctxp[ctxn];
6700 6701 6702 6703 6704 6705 6706
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6707

6708
		child_ctx = alloc_perf_context(event->pmu, child);
6709 6710
		if (!child_ctx)
			return -ENOMEM;
6711

P
Peter Zijlstra 已提交
6712
		child->perf_event_ctxp[ctxn] = child_ctx;
6713 6714 6715 6716 6717 6718 6719 6720 6721
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6722 6723
}

6724
/*
6725
 * Initialize the perf_event context in task_struct
6726
 */
P
Peter Zijlstra 已提交
6727
int perf_event_init_context(struct task_struct *child, int ctxn)
6728
{
6729
	struct perf_event_context *child_ctx, *parent_ctx;
6730 6731
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6732
	struct task_struct *parent = current;
6733
	int inherited_all = 1;
6734
	unsigned long flags;
6735
	int ret = 0;
6736

P
Peter Zijlstra 已提交
6737
	if (likely(!parent->perf_event_ctxp[ctxn]))
6738 6739
		return 0;

6740
	/*
6741 6742
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6743
	 */
P
Peter Zijlstra 已提交
6744
	parent_ctx = perf_pin_task_context(parent, ctxn);
6745

6746 6747 6748 6749 6750 6751 6752
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6753 6754 6755 6756
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6757
	mutex_lock(&parent_ctx->mutex);
6758 6759 6760 6761 6762

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6763
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6764 6765
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6766 6767 6768
		if (ret)
			break;
	}
6769

6770 6771 6772 6773 6774 6775 6776 6777 6778
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6779
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6780 6781
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6782
		if (ret)
6783
			break;
6784 6785
	}

6786 6787 6788
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6789
	child_ctx = child->perf_event_ctxp[ctxn];
6790

6791
	if (child_ctx && inherited_all) {
6792 6793 6794
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6795 6796 6797
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6798
		 */
P
Peter Zijlstra 已提交
6799
		cloned_ctx = parent_ctx->parent_ctx;
6800 6801
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6802
			child_ctx->parent_gen = parent_ctx->parent_gen;
6803 6804 6805 6806 6807
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6808 6809
	}

P
Peter Zijlstra 已提交
6810
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6811
	mutex_unlock(&parent_ctx->mutex);
6812

6813
	perf_unpin_context(parent_ctx);
6814
	put_ctx(parent_ctx);
6815

6816
	return ret;
6817 6818
}

P
Peter Zijlstra 已提交
6819 6820 6821 6822 6823 6824 6825
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6826 6827 6828 6829
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6839 6840
static void __init perf_event_init_all_cpus(void)
{
6841
	struct swevent_htable *swhash;
6842 6843 6844
	int cpu;

	for_each_possible_cpu(cpu) {
6845 6846
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6847
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6848 6849 6850
	}
}

6851
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6852
{
P
Peter Zijlstra 已提交
6853
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6854

6855
	mutex_lock(&swhash->hlist_mutex);
6856
	if (swhash->hlist_refcount > 0) {
6857 6858
		struct swevent_hlist *hlist;

6859 6860 6861
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6862
	}
6863
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6864 6865
}

P
Peter Zijlstra 已提交
6866
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6867
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6868
{
6869 6870 6871 6872 6873 6874 6875
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6876
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6877
{
P
Peter Zijlstra 已提交
6878
	struct perf_event_context *ctx = __info;
6879
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6880

P
Peter Zijlstra 已提交
6881
	perf_pmu_rotate_stop(ctx->pmu);
6882

6883
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6884
		__perf_remove_from_context(event);
6885
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6886
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6887
}
P
Peter Zijlstra 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6897
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6898 6899 6900 6901 6902 6903 6904 6905

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6906
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6907
{
6908
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6909

6910 6911 6912
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6913

P
Peter Zijlstra 已提交
6914
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6915 6916
}
#else
6917
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6918 6919
#endif

P
Peter Zijlstra 已提交
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6940 6941 6942 6943 6944
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6945
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6946 6947

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6948
	case CPU_DOWN_FAILED:
6949
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6950 6951
		break;

P
Peter Zijlstra 已提交
6952
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6953
	case CPU_DOWN_PREPARE:
6954
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6964
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6965
{
6966 6967
	int ret;

P
Peter Zijlstra 已提交
6968 6969
	idr_init(&pmu_idr);

6970
	perf_event_init_all_cpus();
6971
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6972 6973 6974
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6975 6976
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6977
	register_reboot_notifier(&perf_reboot_notifier);
6978 6979 6980

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6981
}
P
Peter Zijlstra 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7010 7011 7012 7013 7014 7015 7016

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7017
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7047 7048
static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7049
{
7050 7051 7052 7053
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7067
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7068 7069 7070
}

struct cgroup_subsys perf_subsys = {
7071 7072 7073 7074 7075
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7076
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7077 7078
};
#endif /* CONFIG_CGROUP_PERF */