tsc.c 34.7 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4
#include <linux/sched.h>
5
#include <linux/sched/clock.h>
A
Alok Kataria 已提交
6
#include <linux/init.h>
7
#include <linux/export.h>
A
Alok Kataria 已提交
8
#include <linux/timer.h>
A
Alok Kataria 已提交
9
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
10
#include <linux/cpufreq.h>
11 12 13
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
14
#include <linux/timex.h>
15
#include <linux/static_key.h>
A
Alok Kataria 已提交
16 17

#include <asm/hpet.h>
18 19 20 21
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
22
#include <asm/hypervisor.h>
23
#include <asm/nmi.h>
24
#include <asm/x86_init.h>
25
#include <asm/geode.h>
26
#include <asm/apic.h>
27
#include <asm/intel-family.h>
A
Alok Kataria 已提交
28

29
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
30
EXPORT_SYMBOL(cpu_khz);
31 32

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
33 34 35 36 37
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
38
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
39 40 41

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
42
   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
43
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
44

45
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46

47
int tsc_clocksource_reliable;
48

49 50 51 52 53
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;

54
struct cyc2ns {
55 56
	struct cyc2ns_data data[2];	/*  0 + 2*16 = 32 */
	seqcount_t	   seq;		/* 32 + 4    = 36 */
57

58
}; /* fits one cacheline */
59

60
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
61

62
void cyc2ns_read_begin(struct cyc2ns_data *data)
63
{
64
	int seq, idx;
65

66
	preempt_disable_notrace();
67

68 69 70
	do {
		seq = this_cpu_read(cyc2ns.seq.sequence);
		idx = seq & 1;
71

72 73 74
		data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
		data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
		data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
75

76
	} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 78
}

79
void cyc2ns_read_end(void)
80
{
81
	preempt_enable_notrace();
82 83 84 85
}

/*
 * Accelerators for sched_clock()
86 87 88 89 90 91 92 93 94 95 96 97
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
98 99 100
 *  into a shift. The larger SC is, the more accurate the conversion, but
 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 *  (64-bit result) can be used.
101
 *
102
 *  We can use khz divisor instead of mhz to keep a better precision.
103 104 105 106 107
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

108 109
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
110
	data->cyc2ns_mul = 0;
111
	data->cyc2ns_shift = 0;
112 113 114
	data->cyc2ns_offset = 0;
}

115
static void __init cyc2ns_init(int cpu)
116 117 118 119 120 121
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	cyc2ns_data_init(&c2n->data[0]);
	cyc2ns_data_init(&c2n->data[1]);

122
	seqcount_init(&c2n->seq);
123 124
}

125 126
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
127
	struct cyc2ns_data data;
128 129
	unsigned long long ns;

130
	cyc2ns_read_begin(&data);
131

132 133
	ns = data.cyc2ns_offset;
	ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
134

135
	cyc2ns_read_end();
136

137 138 139
	return ns;
}

140
static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
141
{
P
Peter Zijlstra 已提交
142
	unsigned long long ns_now;
143 144
	struct cyc2ns_data data;
	struct cyc2ns *c2n;
145
	unsigned long flags;
146 147 148 149

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

150
	if (!khz)
151 152
		goto done;

153 154
	ns_now = cycles_2_ns(tsc_now);

155 156 157 158 159
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
160
	clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
161 162
			       NSEC_PER_MSEC, 0);

163 164 165 166 167 168
	/*
	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
	 * not expected to be greater than 31 due to the original published
	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
	 */
169 170 171
	if (data.cyc2ns_shift == 32) {
		data.cyc2ns_shift = 31;
		data.cyc2ns_mul >>= 1;
172 173
	}

174 175 176 177
	data.cyc2ns_offset = ns_now -
		mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);

	c2n = per_cpu_ptr(&cyc2ns, cpu);
178

179 180 181 182
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[0] = data;
	raw_write_seqcount_latch(&c2n->seq);
	c2n->data[1] = data;
183

184
done:
185
	sched_clock_idle_wakeup_event();
186 187
	local_irq_restore(flags);
}
P
Peter Zijlstra 已提交
188

A
Alok Kataria 已提交
189 190 191 192 193
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
194 195 196 197 198 199
	if (static_branch_likely(&__use_tsc)) {
		u64 tsc_now = rdtsc();

		/* return the value in ns */
		return cycles_2_ns(tsc_now);
	}
A
Alok Kataria 已提交
200 201 202 203 204 205 206

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
207
	 *   can achieve it. )
A
Alok Kataria 已提交
208 209
	 */

210 211
	/* No locking but a rare wrong value is not a big deal: */
	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
A
Alok Kataria 已提交
212 213
}

214 215 216 217 218 219 220 221
/*
 * Generate a sched_clock if you already have a TSC value.
 */
u64 native_sched_clock_from_tsc(u64 tsc)
{
	return cycles_2_ns(tsc);
}

A
Alok Kataria 已提交
222 223 224 225 226 227 228
/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
229

230
bool using_native_sched_clock(void)
231 232 233
{
	return pv_time_ops.sched_clock == native_sched_clock;
}
A
Alok Kataria 已提交
234 235 236
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
237

238
bool using_native_sched_clock(void) { return true; }
A
Alok Kataria 已提交
239 240 241 242 243 244 245 246 247 248 249
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
250
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
267

V
Venkatesh Pallipadi 已提交
268 269
static int no_sched_irq_time;

270 271 272 273
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
274 275
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
276 277
	if (!strcmp(str, "unstable"))
		mark_tsc_unstable("boot parameter");
278 279 280 281 282
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
283 284 285 286 287 288
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
289
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
290 291 292 293 294 295 296
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
297
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
298
		else
299
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
300 301 302 303 304 305 306
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

307 308
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
309
 */
310
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
311
{
312
	u64 tmp;
A
Alok Kataria 已提交
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
330

331 332 333 334 335 336 337 338 339 340 341 342 343
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

344
#define CAL_MS		10
345
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
346 347 348
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
349
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
350 351
#define CAL2_PIT_LOOPS	5000

352

353 354 355 356 357 358 359
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
360
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
361 362 363 364 365 366 367 368 369 370 371 372 373 374
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
375 376
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
397
	 * If we were not able to read the PIT more than loopmin
398 399 400 401 402
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
403
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
404 405 406 407
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
408
	do_div(delta, ms);
409 410 411
	return delta;
}

L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
447 448 449 450 451 452 453
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

454
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
455
{
456
	int count;
457
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
458

L
Linus Torvalds 已提交
459
	for (count = 0; count < 50000; count++) {
460
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
461
			break;
462
		prev_tsc = tsc;
463
		tsc = get_cycles();
L
Linus Torvalds 已提交
464
	}
465
	*deltap = get_cycles() - prev_tsc;
466 467 468 469 470 471 472
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
473 474 475
}

/*
476 477 478
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
479
 * more than 50ms on it.
L
Linus Torvalds 已提交
480
 */
481
#define MAX_QUICK_PIT_MS 50
482
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
483

L
Linus Torvalds 已提交
484 485
static unsigned long quick_pit_calibrate(void)
{
486 487 488 489
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
490
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
491 492
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
502 503
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
504 505 506 507
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

508 509 510 511 512 513
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
514
	pit_verify_msb(0);
515

516 517 518 519 520
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

521 522 523 524 525 526 527 528 529 530
			delta -= tsc;

			/*
			 * Extrapolate the error and fail fast if the error will
			 * never be below 500 ppm.
			 */
			if (i == 1 &&
			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
				return 0;

531 532 533
			/*
			 * Iterate until the error is less than 500 ppm
			 */
534 535 536 537 538 539 540 541 542 543 544 545 546
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
547 548
		}
	}
549
	pr_info("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
550
	return 0;
551 552 553 554 555 556 557 558 559

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
560
	 * reliable (within the error).
561 562 563 564 565 566 567
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
568
	pr_info("Fast TSC calibration using PIT\n");
569
	return delta;
L
Linus Torvalds 已提交
570
}
571

A
Alok Kataria 已提交
572
/**
573 574
 * native_calibrate_tsc
 * Determine TSC frequency via CPUID, else return 0.
A
Alok Kataria 已提交
575
 */
576
unsigned long native_calibrate_tsc(void)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
{
	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
	unsigned int crystal_khz;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x15)
		return 0;

	eax_denominator = ebx_numerator = ecx_hz = edx = 0;

	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);

	if (ebx_numerator == 0 || eax_denominator == 0)
		return 0;

	crystal_khz = ecx_hz / 1000;

	if (crystal_khz == 0) {
		switch (boot_cpu_data.x86_model) {
599 600
		case INTEL_FAM6_SKYLAKE_MOBILE:
		case INTEL_FAM6_SKYLAKE_DESKTOP:
601 602
		case INTEL_FAM6_KABYLAKE_MOBILE:
		case INTEL_FAM6_KABYLAKE_DESKTOP:
603 604
			crystal_khz = 24000;	/* 24.0 MHz */
			break;
605
		case INTEL_FAM6_ATOM_DENVERTON:
606 607
			crystal_khz = 25000;	/* 25.0 MHz */
			break;
608
		case INTEL_FAM6_ATOM_GOLDMONT:
609 610
			crystal_khz = 19200;	/* 19.2 MHz */
			break;
611 612 613
		}
	}

614 615
	if (crystal_khz == 0)
		return 0;
616 617 618 619 620 621 622
	/*
	 * TSC frequency determined by CPUID is a "hardware reported"
	 * frequency and is the most accurate one so far we have. This
	 * is considered a known frequency.
	 */
	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);

623 624 625 626 627 628 629
	/*
	 * For Atom SoCs TSC is the only reliable clocksource.
	 * Mark TSC reliable so no watchdog on it.
	 */
	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return crystal_khz * ebx_numerator / eax_denominator;
}

static unsigned long cpu_khz_from_cpuid(void)
{
	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x16)
		return 0;

	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;

	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);

	return eax_base_mhz * 1000;
}

/**
 * native_calibrate_cpu - calibrate the cpu on boot
 */
unsigned long native_calibrate_cpu(void)
A
Alok Kataria 已提交
654
{
655
	u64 tsc1, tsc2, delta, ref1, ref2;
656
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
657
	unsigned long flags, latch, ms, fast_calibrate;
658
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
659

660 661 662 663
	fast_calibrate = cpu_khz_from_cpuid();
	if (fast_calibrate)
		return fast_calibrate;

664
	fast_calibrate = cpu_khz_from_msr();
665
	if (fast_calibrate)
666 667
		return fast_calibrate;

L
Linus Torvalds 已提交
668 669
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
670
	local_irq_restore(flags);
L
Linus Torvalds 已提交
671 672
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
673

674 675 676 677 678 679 680 681 682 683 684 685
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
686
	 * SMI/SMM disturbance happened between the two reads. If the
687 688 689 690 691 692 693 694 695 696 697
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
698 699 700 701 702 703 704

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
705
		unsigned long tsc_pit_khz;
706 707 708

		/*
		 * Read the start value and the reference count of
709 710 711
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
712
		 */
713
		local_irq_save(flags);
714
		tsc1 = tsc_read_refs(&ref1, hpet);
715
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
716
		tsc2 = tsc_read_refs(&ref2, hpet);
717 718
		local_irq_restore(flags);

719 720
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
721 722

		/* hpet or pmtimer available ? */
723
		if (ref1 == ref2)
724 725 726 727 728 729 730
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
731
		if (hpet)
732
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
733
		else
734
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
735 736

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
737 738 739 740 741 742 743 744 745 746 747 748

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
749 750
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
751
			return tsc_ref_min;
752 753
		}

754 755 756 757 758 759 760 761 762 763 764
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
765
	}
A
Alok Kataria 已提交
766 767

	/*
768
	 * Now check the results.
A
Alok Kataria 已提交
769
	 */
770 771
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
772
		pr_warn("Unable to calibrate against PIT\n");
773 774

		/* We don't have an alternative source, disable TSC */
775
		if (!hpet && !ref1 && !ref2) {
776
			pr_notice("No reference (HPET/PMTIMER) available\n");
777 778 779 780 781
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
782
			pr_warn("HPET/PMTIMER calibration failed\n");
783 784 785 786
			return 0;
		}

		/* Use the alternative source */
787 788
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
789 790 791

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
792

793
	/* We don't have an alternative source, use the PIT calibration value */
794
	if (!hpet && !ref1 && !ref2) {
795
		pr_info("Using PIT calibration value\n");
796
		return tsc_pit_min;
A
Alok Kataria 已提交
797 798
	}

799 800
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
801
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
802
		return tsc_pit_min;
A
Alok Kataria 已提交
803 804
	}

805 806 807
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
808
	 * running at double speed. At least we let the user know:
809
	 */
810 811 812
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
813
	return tsc_pit_min;
A
Alok Kataria 已提交
814 815
}

816
void recalibrate_cpu_khz(void)
A
Alok Kataria 已提交
817 818 819 820
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

821
	if (!boot_cpu_has(X86_FEATURE_TSC))
822
		return;
823

824
	cpu_khz = x86_platform.calibrate_cpu();
825
	tsc_khz = x86_platform.calibrate_tsc();
826 827
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
828 829
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
830 831
	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
						    cpu_khz_old, cpu_khz);
A
Alok Kataria 已提交
832 833 834 835 836
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
837

838 839
static unsigned long long cyc2ns_suspend;

840
void tsc_save_sched_clock_state(void)
841
{
842
	if (!sched_clock_stable())
843 844 845 846 847 848 849 850 851 852 853 854 855
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
856
void tsc_restore_sched_clock_state(void)
857 858 859 860 861
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

862
	if (!sched_clock_stable())
863 864 865 866
		return;

	local_irq_save(flags);

867
	/*
868
	 * We're coming out of suspend, there's no concurrency yet; don't
869 870 871 872 873 874 875
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

876 877
	offset = cyc2ns_suspend - sched_clock();

878 879 880 881
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
882 883 884 885

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
906
	unsigned long *lpj;
A
Alok Kataria 已提交
907

908
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
909
#ifdef CONFIG_SMP
910
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
911 912 913 914 915 916 917 918 919
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
920
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
921
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
922 923 924 925 926

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

927
		set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
P
Peter Zijlstra 已提交
928
	}
A
Alok Kataria 已提交
929 930 931 932 933 934 935 936

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

937
static int __init cpufreq_register_tsc_scaling(void)
A
Alok Kataria 已提交
938
{
939
	if (!boot_cpu_has(X86_FEATURE_TSC))
940 941 942
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
943 944 945 946 947
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

948
core_initcall(cpufreq_register_tsc_scaling);
A
Alok Kataria 已提交
949 950

#endif /* CONFIG_CPU_FREQ */
951

952 953 954 955 956 957 958
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)


/*
 * If ART is present detect the numerator:denominator to convert to TSC
 */
959
static void __init detect_art(void)
960 961 962 963 964 965
{
	unsigned int unused[2];

	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
		return;

966 967 968 969
	/*
	 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
	 * and the TSC counter resets must not occur asynchronously.
	 */
970 971
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
972 973
	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
	    tsc_async_resets)
974 975
		return;

976 977 978 979
	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
	      &art_to_tsc_numerator, unused, unused+1);

	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
980 981
		return;

982 983
	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);

984 985 986 987 988
	/* Make this sticky over multiple CPU init calls */
	setup_force_cpu_cap(X86_FEATURE_ART);
}


989 990 991 992
/* clocksource code */

static struct clocksource clocksource_tsc;

993 994 995 996 997
static void tsc_resume(struct clocksource *cs)
{
	tsc_verify_tsc_adjust(true);
}

998
/*
999
 * We used to compare the TSC to the cycle_last value in the clocksource
1000 1001 1002 1003 1004 1005 1006 1007 1008
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
1009 1010 1011 1012
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1013
 */
1014
static u64 read_tsc(struct clocksource *cs)
1015
{
1016
	return (u64)rdtsc_ordered();
1017 1018
}

1019 1020 1021 1022
static void tsc_cs_mark_unstable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;
1023

1024
	tsc_unstable = 1;
1025 1026
	if (using_native_sched_clock())
		clear_sched_clock_stable();
1027 1028 1029 1030
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to clocksource watchdog\n");
}

1031 1032 1033 1034 1035 1036 1037 1038 1039
static void tsc_cs_tick_stable(struct clocksource *cs)
{
	if (tsc_unstable)
		return;

	if (using_native_sched_clock())
		sched_clock_tick_stable();
}

1040 1041 1042
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
1043 1044 1045 1046 1047 1048 1049
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
1050
	.archdata               = { .vclock_mode = VCLOCK_TSC },
1051
	.resume			= tsc_resume,
1052
	.mark_unstable		= tsc_cs_mark_unstable,
1053
	.tick_stable		= tsc_cs_tick_stable,
1054 1055 1056 1057
};

void mark_tsc_unstable(char *reason)
{
1058 1059 1060 1061 1062
	if (tsc_unstable)
		return;

	tsc_unstable = 1;
	if (using_native_sched_clock())
1063
		clear_sched_clock_stable();
1064 1065 1066 1067 1068 1069 1070 1071
	disable_sched_clock_irqtime();
	pr_info("Marking TSC unstable due to %s\n", reason);
	/* Change only the rating, when not registered */
	if (clocksource_tsc.mult) {
		clocksource_mark_unstable(&clocksource_tsc);
	} else {
		clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
		clocksource_tsc.rating = 0;
1072 1073 1074 1075 1076
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1077 1078
static void __init check_system_tsc_reliable(void)
{
1079 1080 1081
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
	if (is_geode_lx()) {
		/* RTSC counts during suspend */
1082
#define RTSC_SUSP 0x100
1083
		unsigned long res_low, res_high;
1084

1085 1086 1087 1088 1089
		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
		/* Geode_LX - the OLPC CPU has a very reliable TSC */
		if (res_low & RTSC_SUSP)
			tsc_clocksource_reliable = 1;
	}
1090
#endif
1091 1092 1093
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1094 1095 1096 1097 1098

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1099
int unsynchronized_tsc(void)
1100
{
1101
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1102 1103
		return 1;

1104
#ifdef CONFIG_SMP
1105 1106 1107 1108 1109 1110
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1111 1112 1113

	if (tsc_clocksource_reliable)
		return 0;
1114 1115 1116 1117 1118 1119 1120
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1121
			return 1;
1122 1123
	}

1124
	return 0;
1125 1126
}

1127 1128 1129
/*
 * Convert ART to TSC given numerator/denominator found in detect_art()
 */
1130
struct system_counterval_t convert_art_to_tsc(u64 art)
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
{
	u64 tmp, res, rem;

	rem = do_div(art, art_to_tsc_denominator);

	res = art * art_to_tsc_numerator;
	tmp = rem * art_to_tsc_numerator;

	do_div(tmp, art_to_tsc_denominator);
	res += tmp + art_to_tsc_offset;

	return (struct system_counterval_t) {.cs = art_related_clocksource,
			.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1158
 * If there are any calibration anomalies (too many SMIs, etc),
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;
1169
	int cpu;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1194
	if (ref_start == ref_stop)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1213 1214 1215
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1216

1217 1218 1219
	/* Inform the TSC deadline clockevent devices about the recalibration */
	lapic_update_tsc_freq();

1220 1221
	/* Update the sched_clock() rate to match the clocksource one */
	for_each_possible_cpu(cpu)
1222
		set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1223

1224
out:
1225 1226
	if (boot_cpu_has(X86_FEATURE_ART))
		art_related_clocksource = &clocksource_tsc;
1227 1228 1229 1230 1231
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
1232
{
1233
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1234 1235
		return 0;

1236 1237
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1238 1239 1240 1241 1242
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
1243

1244 1245 1246
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1247
	/*
1248 1249
	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
	 * the refined calibration and directly register it as a clocksource.
1250
	 */
1251
	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1252 1253
		if (boot_cpu_has(X86_FEATURE_ART))
			art_related_clocksource = &clocksource_tsc;
1254 1255 1256 1257
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
		return 0;
	}

1258 1259
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1260
}
1261 1262 1263 1264 1265
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
void __init tsc_early_delay_calibrate(void)
{
	unsigned long lpj;

	if (!boot_cpu_has(X86_FEATURE_TSC))
		return;

	cpu_khz = x86_platform.calibrate_cpu();
	tsc_khz = x86_platform.calibrate_tsc();

	tsc_khz = tsc_khz ? : cpu_khz;
	if (!tsc_khz)
		return;

	lpj = tsc_khz * 1000;
	do_div(lpj, HZ);
	loops_per_jiffy = lpj;
}

1286 1287
void __init tsc_init(void)
{
P
Peter Zijlstra 已提交
1288
	u64 lpj, cyc;
1289 1290
	int cpu;

1291
	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1292
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1293
		return;
1294
	}
1295

1296
	cpu_khz = x86_platform.calibrate_cpu();
1297
	tsc_khz = x86_platform.calibrate_tsc();
1298 1299 1300 1301 1302 1303

	/*
	 * Trust non-zero tsc_khz as authorative,
	 * and use it to sanity check cpu_khz,
	 * which will be off if system timer is off.
	 */
1304 1305
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
1306 1307
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
1308

1309
	if (!tsc_khz) {
1310
		mark_tsc_unstable("could not calculate TSC khz");
1311
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1312 1313 1314
		return;
	}

1315 1316 1317
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
1318

1319 1320 1321
	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
	tsc_store_and_check_tsc_adjust(true);

1322 1323 1324 1325 1326 1327
	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
P
Peter Zijlstra 已提交
1328
	cyc = rdtsc();
1329 1330
	for_each_possible_cpu(cpu) {
		cyc2ns_init(cpu);
1331
		set_cyc2ns_scale(tsc_khz, cpu, cyc);
1332
	}
1333 1334 1335 1336 1337

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
1338

1339
	tsc_disabled = 0;
1340
	static_branch_enable(&__use_tsc);
1341

V
Venkatesh Pallipadi 已提交
1342 1343 1344
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1345 1346 1347 1348
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1349 1350
	use_tsc_delay();

1351 1352
	check_system_tsc_reliable();

1353 1354 1355
	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

1356
	detect_art();
1357 1358
}

1359 1360 1361 1362 1363 1364 1365
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1366
unsigned long calibrate_delay_is_known(void)
1367
{
1368
	int sibling, cpu = smp_processor_id();
1369 1370
	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
	const struct cpumask *mask = topology_core_cpumask(cpu);
1371

1372
	if (tsc_disabled || !constant_tsc || !mask)
1373 1374 1375
		return 0;

	sibling = cpumask_any_but(mask, cpu);
1376 1377
	if (sibling < nr_cpu_ids)
		return cpu_data(sibling).loops_per_jiffy;
1378 1379 1380
	return 0;
}
#endif