tsc.c 35.1 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4 5 6 7
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
8
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
9
#include <linux/cpufreq.h>
10 11 12
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
13
#include <linux/timex.h>
14
#include <linux/static_key.h>
A
Alok Kataria 已提交
15 16

#include <asm/hpet.h>
17 18 19 20
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
21
#include <asm/hypervisor.h>
22
#include <asm/nmi.h>
23
#include <asm/x86_init.h>
24
#include <asm/geode.h>
A
Alok Kataria 已提交
25

26
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
27
EXPORT_SYMBOL(cpu_khz);
28 29

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
30 31 32 33 34
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
35
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
36 37 38

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
39
   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
40
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
41

42
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
43

44
int tsc_clocksource_reliable;
45

46 47 48 49 50
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * Use a ring-buffer like data structure, where a writer advances the head by
 * writing a new data entry and a reader advances the tail when it observes a
 * new entry.
 *
 * Writers are made to wait on readers until there's space to write a new
 * entry.
 *
 * This means that we can always use an {offset, mul} pair to compute a ns
 * value that is 'roughly' in the right direction, even if we're writing a new
 * {offset, mul} pair during the clock read.
 *
 * The down-side is that we can no longer guarantee strict monotonicity anymore
 * (assuming the TSC was that to begin with), because while we compute the
 * intersection point of the two clock slopes and make sure the time is
 * continuous at the point of switching; we can no longer guarantee a reader is
 * strictly before or after the switch point.
 *
 * It does mean a reader no longer needs to disable IRQs in order to avoid
 * CPU-Freq updates messing with his times, and similarly an NMI reader will
 * no longer run the risk of hitting half-written state.
 */

struct cyc2ns {
	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
}; /* exactly fits one cacheline */

static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);

struct cyc2ns_data *cyc2ns_read_begin(void)
{
	struct cyc2ns_data *head;

	preempt_disable();

	head = this_cpu_read(cyc2ns.head);
	/*
	 * Ensure we observe the entry when we observe the pointer to it.
	 * matches the wmb from cyc2ns_write_end().
	 */
	smp_read_barrier_depends();
	head->__count++;
	barrier();

	return head;
}

void cyc2ns_read_end(struct cyc2ns_data *head)
{
	barrier();
	/*
	 * If we're the outer most nested read; update the tail pointer
	 * when we're done. This notifies possible pending writers
	 * that we've observed the head pointer and that the other
	 * entry is now free.
	 */
	if (!--head->__count) {
		/*
		 * x86-TSO does not reorder writes with older reads;
		 * therefore once this write becomes visible to another
		 * cpu, we must be finished reading the cyc2ns_data.
		 *
		 * matches with cyc2ns_write_begin().
		 */
		this_cpu_write(cyc2ns.tail, head);
	}
	preempt_enable();
}

/*
 * Begin writing a new @data entry for @cpu.
 *
 * Assumes some sort of write side lock; currently 'provided' by the assumption
 * that cpufreq will call its notifiers sequentially.
 */
static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
	struct cyc2ns_data *data = c2n->data;

	if (data == c2n->head)
		data++;

	/* XXX send an IPI to @cpu in order to guarantee a read? */

	/*
	 * When we observe the tail write from cyc2ns_read_end(),
	 * the cpu must be done with that entry and its safe
	 * to start writing to it.
	 */
	while (c2n->tail == data)
		cpu_relax();

	return data;
}

static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	/*
	 * Ensure the @data writes are visible before we publish the
	 * entry. Matches the data-depencency in cyc2ns_read_begin().
	 */
	smp_wmb();

	ACCESS_ONCE(c2n->head) = data;
}

/*
 * Accelerators for sched_clock()
164 165 166 167 168 169 170 171 172 173 174 175
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
176 177 178
 *  into a shift. The larger SC is, the more accurate the conversion, but
 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 *  (64-bit result) can be used.
179
 *
180
 *  We can use khz divisor instead of mhz to keep a better precision.
181 182 183 184 185
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

186 187
static void cyc2ns_data_init(struct cyc2ns_data *data)
{
188
	data->cyc2ns_mul = 0;
189
	data->cyc2ns_shift = 0;
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	data->cyc2ns_offset = 0;
	data->__count = 0;
}

static void cyc2ns_init(int cpu)
{
	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);

	cyc2ns_data_init(&c2n->data[0]);
	cyc2ns_data_init(&c2n->data[1]);

	c2n->head = c2n->data;
	c2n->tail = c2n->data;
}

205 206
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
207 208 209 210 211 212 213 214 215 216
	struct cyc2ns_data *data, *tail;
	unsigned long long ns;

	/*
	 * See cyc2ns_read_*() for details; replicated in order to avoid
	 * an extra few instructions that came with the abstraction.
	 * Notable, it allows us to only do the __count and tail update
	 * dance when its actually needed.
	 */

217
	preempt_disable_notrace();
218 219 220 221 222
	data = this_cpu_read(cyc2ns.head);
	tail = this_cpu_read(cyc2ns.tail);

	if (likely(data == tail)) {
		ns = data->cyc2ns_offset;
223
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
224 225 226 227 228 229
	} else {
		data->__count++;

		barrier();

		ns = data->cyc2ns_offset;
230
		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
231 232 233 234 235 236

		barrier();

		if (!--data->__count)
			this_cpu_write(cyc2ns.tail, data);
	}
237
	preempt_enable_notrace();
238

239 240 241
	return ns;
}

242
static void set_cyc2ns_scale(unsigned long khz, int cpu)
243
{
244 245 246
	unsigned long long tsc_now, ns_now;
	struct cyc2ns_data *data;
	unsigned long flags;
247 248 249 250

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

251
	if (!khz)
252 253 254
		goto done;

	data = cyc2ns_write_begin(cpu);
255

256
	tsc_now = rdtsc();
257 258
	ns_now = cycles_2_ns(tsc_now);

259 260 261 262 263
	/*
	 * Compute a new multiplier as per the above comment and ensure our
	 * time function is continuous; see the comment near struct
	 * cyc2ns_data.
	 */
264
	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
265 266
			       NSEC_PER_MSEC, 0);

267 268 269 270 271 272 273 274 275 276 277
	/*
	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
	 * not expected to be greater than 31 due to the original published
	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
	 */
	if (data->cyc2ns_shift == 32) {
		data->cyc2ns_shift = 31;
		data->cyc2ns_mul >>= 1;
	}

278
	data->cyc2ns_offset = ns_now -
279
		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
280 281

	cyc2ns_write_end(cpu, data);
282

283
done:
284 285 286
	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}
A
Alok Kataria 已提交
287 288 289 290 291
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
292 293 294 295 296 297
	if (static_branch_likely(&__use_tsc)) {
		u64 tsc_now = rdtsc();

		/* return the value in ns */
		return cycles_2_ns(tsc_now);
	}
A
Alok Kataria 已提交
298 299 300 301 302 303 304

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
305
	 *   can achieve it. )
A
Alok Kataria 已提交
306 307
	 */

308 309
	/* No locking but a rare wrong value is not a big deal: */
	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
A
Alok Kataria 已提交
310 311
}

312 313 314 315 316 317 318 319
/*
 * Generate a sched_clock if you already have a TSC value.
 */
u64 native_sched_clock_from_tsc(u64 tsc)
{
	return cycles_2_ns(tsc);
}

A
Alok Kataria 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
341
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
358

V
Venkatesh Pallipadi 已提交
359 360
static int no_sched_irq_time;

361 362 363 364
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
365 366
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
367 368 369 370 371
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
372 373 374 375 376 377
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
378
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
379 380 381 382 383 384 385
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
386
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
387
		else
388
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
389 390 391 392 393 394 395
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

396 397
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
398
 */
399
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
400
{
401
	u64 tmp;
A
Alok Kataria 已提交
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
419

420 421 422 423 424 425 426 427 428 429 430 431 432
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

433
#define CAL_MS		10
434
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
435 436 437
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
438
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
439 440
#define CAL2_PIT_LOOPS	5000

441

442 443 444 445 446 447 448
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
449
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
450 451 452 453 454 455 456 457 458 459 460 461 462 463
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
464 465
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
486
	 * If we were not able to read the PIT more than loopmin
487 488 489 490 491
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
492
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
493 494 495 496
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
497
	do_div(delta, ms);
498 499 500
	return delta;
}

L
Linus Torvalds 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
536 537 538 539 540 541 542
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

543
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
544
{
545
	int count;
546
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
547

L
Linus Torvalds 已提交
548
	for (count = 0; count < 50000; count++) {
549
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
550
			break;
551
		prev_tsc = tsc;
552
		tsc = get_cycles();
L
Linus Torvalds 已提交
553
	}
554
	*deltap = get_cycles() - prev_tsc;
555 556 557 558 559 560 561
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
562 563 564
}

/*
565 566 567
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
568
 * more than 50ms on it.
L
Linus Torvalds 已提交
569
 */
570
#define MAX_QUICK_PIT_MS 50
571
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
572

L
Linus Torvalds 已提交
573 574
static unsigned long quick_pit_calibrate(void)
{
575 576 577 578
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
579
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
580 581
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
582 583 584 585 586 587 588 589 590
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
591 592
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
593 594 595 596
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

597 598 599 600 601 602
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
603
	pit_verify_msb(0);
604

605 606 607 608 609
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

610 611 612 613 614 615 616 617 618 619
			delta -= tsc;

			/*
			 * Extrapolate the error and fail fast if the error will
			 * never be below 500 ppm.
			 */
			if (i == 1 &&
			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
				return 0;

620 621 622
			/*
			 * Iterate until the error is less than 500 ppm
			 */
623 624 625 626 627 628 629 630 631 632 633 634 635
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
636 637
		}
	}
638
	pr_info("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
639
	return 0;
640 641 642 643 644 645 646 647 648

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
649
	 * reliable (within the error).
650 651 652 653 654 655 656
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
657
	pr_info("Fast TSC calibration using PIT\n");
658
	return delta;
L
Linus Torvalds 已提交
659
}
660

A
Alok Kataria 已提交
661
/**
662 663
 * native_calibrate_tsc
 * Determine TSC frequency via CPUID, else return 0.
A
Alok Kataria 已提交
664
 */
665
unsigned long native_calibrate_tsc(void)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
{
	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
	unsigned int crystal_khz;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x15)
		return 0;

	eax_denominator = ebx_numerator = ecx_hz = edx = 0;

	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);

	if (ebx_numerator == 0 || eax_denominator == 0)
		return 0;

	crystal_khz = ecx_hz / 1000;

	if (crystal_khz == 0) {
		switch (boot_cpu_data.x86_model) {
		case 0x4E:	/* SKL */
		case 0x5E:	/* SKL */
690 691 692 693 694
			crystal_khz = 24000;	/* 24.0 MHz */
			break;
		case 0x5C:	/* BXT */
			crystal_khz = 19200;	/* 19.2 MHz */
			break;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
		}
	}

	return crystal_khz * ebx_numerator / eax_denominator;
}

static unsigned long cpu_khz_from_cpuid(void)
{
	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (boot_cpu_data.cpuid_level < 0x16)
		return 0;

	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;

	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);

	return eax_base_mhz * 1000;
}

/**
 * native_calibrate_cpu - calibrate the cpu on boot
 */
unsigned long native_calibrate_cpu(void)
A
Alok Kataria 已提交
722
{
723
	u64 tsc1, tsc2, delta, ref1, ref2;
724
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
725
	unsigned long flags, latch, ms, fast_calibrate;
726
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
727

728 729 730 731
	fast_calibrate = cpu_khz_from_cpuid();
	if (fast_calibrate)
		return fast_calibrate;

732
	fast_calibrate = cpu_khz_from_msr();
733
	if (fast_calibrate)
734 735
		return fast_calibrate;

L
Linus Torvalds 已提交
736 737
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
738
	local_irq_restore(flags);
L
Linus Torvalds 已提交
739 740
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
741

742 743 744 745 746 747 748 749 750 751 752 753
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
754
	 * SMI/SMM disturbance happened between the two reads. If the
755 756 757 758 759 760 761 762 763 764 765
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
766 767 768 769 770 771 772

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
773
		unsigned long tsc_pit_khz;
774 775 776

		/*
		 * Read the start value and the reference count of
777 778 779
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
780
		 */
781
		local_irq_save(flags);
782
		tsc1 = tsc_read_refs(&ref1, hpet);
783
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
784
		tsc2 = tsc_read_refs(&ref2, hpet);
785 786
		local_irq_restore(flags);

787 788
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
789 790

		/* hpet or pmtimer available ? */
791
		if (ref1 == ref2)
792 793 794 795 796 797 798
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
799
		if (hpet)
800
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
801
		else
802
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
803 804

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
805 806 807 808 809 810 811 812 813 814 815 816

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
817 818
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
819
			return tsc_ref_min;
820 821
		}

822 823 824 825 826 827 828 829 830 831 832
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
833
	}
A
Alok Kataria 已提交
834 835

	/*
836
	 * Now check the results.
A
Alok Kataria 已提交
837
	 */
838 839
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
840
		pr_warn("Unable to calibrate against PIT\n");
841 842

		/* We don't have an alternative source, disable TSC */
843
		if (!hpet && !ref1 && !ref2) {
844
			pr_notice("No reference (HPET/PMTIMER) available\n");
845 846 847 848 849
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
850
			pr_warn("HPET/PMTIMER calibration failed\n");
851 852 853 854
			return 0;
		}

		/* Use the alternative source */
855 856
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
857 858 859

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
860

861
	/* We don't have an alternative source, use the PIT calibration value */
862
	if (!hpet && !ref1 && !ref2) {
863
		pr_info("Using PIT calibration value\n");
864
		return tsc_pit_min;
A
Alok Kataria 已提交
865 866
	}

867 868
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
869
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
870
		return tsc_pit_min;
A
Alok Kataria 已提交
871 872
	}

873 874 875
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
876
	 * running at double speed. At least we let the user know:
877
	 */
878 879 880
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
881
	return tsc_pit_min;
A
Alok Kataria 已提交
882 883 884 885 886 887 888
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

889
	if (!boot_cpu_has(X86_FEATURE_TSC))
A
Alok Kataria 已提交
890
		return -ENODEV;
891

892
	cpu_khz = x86_platform.calibrate_cpu();
893
	tsc_khz = x86_platform.calibrate_tsc();
894 895
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
896 897
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
898 899 900 901
	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
						    cpu_khz_old, cpu_khz);

	return 0;
A
Alok Kataria 已提交
902 903 904 905 906 907 908
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
909

910 911
static unsigned long long cyc2ns_suspend;

912
void tsc_save_sched_clock_state(void)
913
{
914
	if (!sched_clock_stable())
915 916 917 918 919 920 921 922 923 924 925 926 927
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
928
void tsc_restore_sched_clock_state(void)
929 930 931 932 933
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

934
	if (!sched_clock_stable())
935 936 937 938
		return;

	local_irq_save(flags);

939
	/*
940
	 * We're coming out of suspend, there's no concurrency yet; don't
941 942 943 944 945 946 947
	 * bother being nice about the RCU stuff, just write to both
	 * data fields.
	 */

	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);

948 949
	offset = cyc2ns_suspend - sched_clock();

950 951 952 953
	for_each_possible_cpu(cpu) {
		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
	}
954 955 956 957

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
979
	unsigned long *lpj;
A
Alok Kataria 已提交
980

981
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
982
#ifdef CONFIG_SMP
983
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
984 985 986 987 988 989 990 991 992
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
993
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
994
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
995 996 997 998 999

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");

P
Peter Zijlstra 已提交
1000 1001
		set_cyc2ns_scale(tsc_khz, freq->cpu);
	}
A
Alok Kataria 已提交
1002 1003 1004 1005 1006 1007 1008 1009

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

1010
static int __init cpufreq_register_tsc_scaling(void)
A
Alok Kataria 已提交
1011
{
1012
	if (!boot_cpu_has(X86_FEATURE_TSC))
1013 1014 1015
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
1016 1017 1018 1019 1020
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

1021
core_initcall(cpufreq_register_tsc_scaling);
A
Alok Kataria 已提交
1022 1023

#endif /* CONFIG_CPU_FREQ */
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)


/*
 * If ART is present detect the numerator:denominator to convert to TSC
 */
static void detect_art(void)
{
	unsigned int unused[2];

	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
		return;

	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
	      &art_to_tsc_numerator, unused, unused+1);

	/* Don't enable ART in a VM, non-stop TSC required */
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
		return;

	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
		return;

	/* Make this sticky over multiple CPU init calls */
	setup_force_cpu_cap(X86_FEATURE_ART);
}


1056 1057 1058 1059 1060
/* clocksource code */

static struct clocksource clocksource_tsc;

/*
1061
 * We used to compare the TSC to the cycle_last value in the clocksource
1062 1063 1064 1065 1066 1067 1068 1069 1070
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
1071 1072 1073 1074
 *
 * This sanity check is now done in the core timekeeping code.
 * checking the result of read_tsc() - cycle_last for being negative.
 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1075
 */
1076
static cycle_t read_tsc(struct clocksource *cs)
1077
{
1078
	return (cycle_t)rdtsc_ordered();
1079 1080
}

1081 1082 1083
/*
 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
 */
1084 1085 1086 1087 1088 1089 1090
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
1091
	.archdata               = { .vclock_mode = VCLOCK_TSC },
1092 1093 1094 1095 1096 1097
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
1098
		clear_sched_clock_stable();
V
Venkatesh Pallipadi 已提交
1099
		disable_sched_clock_irqtime();
1100
		pr_info("Marking TSC unstable due to %s\n", reason);
1101 1102
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
1103 1104 1105
			clocksource_mark_unstable(&clocksource_tsc);
		else {
			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1106
			clocksource_tsc.rating = 0;
1107
		}
1108 1109 1110 1111 1112
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

1113 1114
static void __init check_system_tsc_reliable(void)
{
1115 1116 1117
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
	if (is_geode_lx()) {
		/* RTSC counts during suspend */
1118
#define RTSC_SUSP 0x100
1119
		unsigned long res_low, res_high;
1120

1121 1122 1123 1124 1125
		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
		/* Geode_LX - the OLPC CPU has a very reliable TSC */
		if (res_low & RTSC_SUSP)
			tsc_clocksource_reliable = 1;
	}
1126
#endif
1127 1128 1129
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
1130 1131 1132 1133 1134

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
1135
int unsynchronized_tsc(void)
1136
{
1137
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1138 1139
		return 1;

1140
#ifdef CONFIG_SMP
1141 1142 1143 1144 1145 1146
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
1147 1148 1149

	if (tsc_clocksource_reliable)
		return 0;
1150 1151 1152 1153 1154 1155 1156
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
1157
			return 1;
1158 1159
	}

1160
	return 0;
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Convert ART to TSC given numerator/denominator found in detect_art()
 */
struct system_counterval_t convert_art_to_tsc(cycle_t art)
{
	u64 tmp, res, rem;

	rem = do_div(art, art_to_tsc_denominator);

	res = art * art_to_tsc_numerator;
	tmp = rem * art_to_tsc_numerator;

	do_div(tmp, art_to_tsc_denominator);
	res += tmp + art_to_tsc_offset;

	return (struct system_counterval_t) {.cs = art_related_clocksource,
			.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
1194
 * If there are any calibration anomalies (too many SMIs, etc),
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
1229
	if (ref_start == ref_stop)
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
1248 1249 1250
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
1251 1252

out:
1253 1254
	if (boot_cpu_has(X86_FEATURE_ART))
		art_related_clocksource = &clocksource_tsc;
1255 1256 1257 1258 1259
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
1260
{
1261
	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1262 1263
		return 0;

1264 1265
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1266 1267 1268 1269 1270
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
1271

1272 1273 1274
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * Trust the results of the earlier calibration on systems
	 * exporting a reliable TSC.
	 */
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
		return 0;
	}

1284 1285
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
1286
}
1287 1288 1289 1290 1291
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
1292 1293 1294 1295 1296 1297

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

1298
	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1299
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1300
		return;
1301
	}
1302

1303
	cpu_khz = x86_platform.calibrate_cpu();
1304
	tsc_khz = x86_platform.calibrate_tsc();
1305 1306 1307 1308 1309 1310

	/*
	 * Trust non-zero tsc_khz as authorative,
	 * and use it to sanity check cpu_khz,
	 * which will be off if system timer is off.
	 */
1311 1312
	if (tsc_khz == 0)
		tsc_khz = cpu_khz;
1313 1314
	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
		cpu_khz = tsc_khz;
1315

1316
	if (!tsc_khz) {
1317
		mark_tsc_unstable("could not calculate TSC khz");
1318
		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1319 1320 1321
		return;
	}

1322 1323 1324
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
1325 1326 1327 1328 1329 1330 1331

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
1332 1333
	for_each_possible_cpu(cpu) {
		cyc2ns_init(cpu);
1334
		set_cyc2ns_scale(tsc_khz, cpu);
1335
	}
1336 1337 1338 1339 1340

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
1341

1342
	tsc_disabled = 0;
1343
	static_branch_enable(&__use_tsc);
1344

V
Venkatesh Pallipadi 已提交
1345 1346 1347
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1348 1349 1350 1351
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1352 1353 1354 1355 1356
	use_tsc_delay();

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

1357
	check_system_tsc_reliable();
1358 1359

	detect_art();
1360 1361
}

1362 1363 1364 1365 1366 1367 1368
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1369
unsigned long calibrate_delay_is_known(void)
1370
{
1371
	int sibling, cpu = smp_processor_id();
1372
	struct cpumask *mask = topology_core_cpumask(cpu);
1373 1374 1375 1376

	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

1377 1378 1379 1380
	if (!mask)
		return 0;

	sibling = cpumask_any_but(mask, cpu);
1381 1382
	if (sibling < nr_cpu_ids)
		return cpu_data(sibling).loops_per_jiffy;
1383 1384 1385
	return 0;
}
#endif