tsc.c 26.2 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

A
Alok Kataria 已提交
3
#include <linux/kernel.h>
A
Alok Kataria 已提交
4 5 6 7
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
8
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
9
#include <linux/cpufreq.h>
10 11 12
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
13
#include <linux/timex.h>
A
Alok Kataria 已提交
14 15

#include <asm/hpet.h>
16 17 18 19
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
20
#include <asm/hypervisor.h>
21
#include <asm/nmi.h>
22
#include <asm/x86_init.h>
A
Alok Kataria 已提交
23

24
unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
A
Alok Kataria 已提交
25
EXPORT_SYMBOL(cpu_khz);
26 27

unsigned int __read_mostly tsc_khz;
A
Alok Kataria 已提交
28 29 30 31 32
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
33
static int __read_mostly tsc_unstable;
A
Alok Kataria 已提交
34 35 36 37

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
38
static int __read_mostly tsc_disabled = -1;
A
Alok Kataria 已提交
39

40
int tsc_clocksource_reliable;
A
Alok Kataria 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
	u64 this_offset;

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
D
Daniel Mack 已提交
54
	 *   can achieve it. )
A
Alok Kataria 已提交
55 56 57 58 59 60 61 62 63 64
	 */
	if (unlikely(tsc_disabled)) {
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
	rdtscll(this_offset);

	/* return the value in ns */
I
Ingo Molnar 已提交
65
	return __cycles_2_ns(this_offset);
A
Alok Kataria 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

80 81 82 83 84 85
unsigned long long native_read_tsc(void)
{
	return __native_read_tsc();
}
EXPORT_SYMBOL(native_read_tsc);

A
Alok Kataria 已提交
86 87 88 89 90 91
int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

92 93 94 95 96 97
int check_tsc_disabled(void)
{
	return tsc_disabled;
}
EXPORT_SYMBOL_GPL(check_tsc_disabled);

A
Alok Kataria 已提交
98 99 100
#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
101
	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
A
Alok Kataria 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
118

V
Venkatesh Pallipadi 已提交
119 120
static int no_sched_irq_time;

121 122 123 124
static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
V
Venkatesh Pallipadi 已提交
125 126
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
127 128 129 130 131
	return 1;
}

__setup("tsc=", tsc_setup);

A
Alok Kataria 已提交
132 133 134 135 136 137
#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
138
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
139 140 141 142 143 144 145
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
146
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
147
		else
148
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
149 150 151 152 153 154 155
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

156 157
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
158
 */
159
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
160
{
161
	u64 tmp;
A
Alok Kataria 已提交
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191 192
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

193
#define CAL_MS		10
194
#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
195 196 197
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
198
#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
199 200
#define CAL2_PIT_LOOPS	5000

201

202 203 204 205 206 207 208
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
209
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
210 211 212 213 214 215 216 217 218 219 220 221 222 223
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
224 225
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
246
	 * If we were not able to read the PIT more than loopmin
247 248 249 250 251
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
252
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
253 254 255 256
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
257
	do_div(delta, ms);
258 259 260
	return delta;
}

L
Linus Torvalds 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
296 297 298 299 300 301 302
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

303
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
L
Linus Torvalds 已提交
304
{
305
	int count;
306
	u64 tsc = 0, prev_tsc = 0;
A
Alok Kataria 已提交
307

L
Linus Torvalds 已提交
308
	for (count = 0; count < 50000; count++) {
309
		if (!pit_verify_msb(val))
L
Linus Torvalds 已提交
310
			break;
311
		prev_tsc = tsc;
312
		tsc = get_cycles();
L
Linus Torvalds 已提交
313
	}
314
	*deltap = get_cycles() - prev_tsc;
315 316 317 318 319 320 321
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
L
Linus Torvalds 已提交
322 323 324
}

/*
325 326 327
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
328
 * more than 50ms on it.
L
Linus Torvalds 已提交
329
 */
330
#define MAX_QUICK_PIT_MS 50
331
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
332

L
Linus Torvalds 已提交
333 334
static unsigned long quick_pit_calibrate(void)
{
335 336 337 338
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

L
Linus Torvalds 已提交
339
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
340 341
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
342 343 344 345 346 347 348 349 350
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
351 352
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
353 354 355 356
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

357 358 359 360 361 362
	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
363
	pit_verify_msb(0);
364

365 366 367 368 369 370 371 372 373
	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

			/*
			 * Iterate until the error is less than 500 ppm
			 */
			delta -= tsc;
374 375 376 377 378 379 380 381 382 383 384 385 386
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
L
Linus Torvalds 已提交
387 388
		}
	}
389
	pr_err("Fast TSC calibration failed\n");
L
Linus Torvalds 已提交
390
	return 0;
391 392 393 394 395 396 397 398 399

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
400
	 * reliable (within the error).
401 402 403 404 405 406 407
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
408
	pr_info("Fast TSC calibration using PIT\n");
409
	return delta;
L
Linus Torvalds 已提交
410
}
411

A
Alok Kataria 已提交
412
/**
413
 * native_calibrate_tsc - calibrate the tsc on boot
A
Alok Kataria 已提交
414
 */
415
unsigned long native_calibrate_tsc(void)
A
Alok Kataria 已提交
416
{
417
	u64 tsc1, tsc2, delta, ref1, ref2;
418
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
419
	unsigned long flags, latch, ms, fast_calibrate;
420
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
421

L
Linus Torvalds 已提交
422 423
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
424
	local_irq_restore(flags);
L
Linus Torvalds 已提交
425 426
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
427

428 429 430 431 432 433 434 435 436 437 438 439
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
L
Lucas De Marchi 已提交
440
	 * SMI/SMM disturbance happened between the two reads. If the
441 442 443 444 445 446 447 448 449 450 451
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
452 453 454 455 456 457 458

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
459
		unsigned long tsc_pit_khz;
460 461 462

		/*
		 * Read the start value and the reference count of
463 464 465
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
466
		 */
467
		local_irq_save(flags);
468
		tsc1 = tsc_read_refs(&ref1, hpet);
469
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
470
		tsc2 = tsc_read_refs(&ref2, hpet);
471 472
		local_irq_restore(flags);

473 474
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
475 476

		/* hpet or pmtimer available ? */
477
		if (ref1 == ref2)
478 479 480 481 482 483 484
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
485
		if (hpet)
486
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
487
		else
488
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
489 490

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
491 492 493 494 495 496 497 498 499 500 501 502

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
503 504
			pr_info("PIT calibration matches %s. %d loops\n",
				hpet ? "HPET" : "PMTIMER", i + 1);
505
			return tsc_ref_min;
506 507
		}

508 509 510 511 512 513 514 515 516 517 518
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
519
	}
A
Alok Kataria 已提交
520 521

	/*
522
	 * Now check the results.
A
Alok Kataria 已提交
523
	 */
524 525
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
526
		pr_warn("Unable to calibrate against PIT\n");
527 528

		/* We don't have an alternative source, disable TSC */
529
		if (!hpet && !ref1 && !ref2) {
530
			pr_notice("No reference (HPET/PMTIMER) available\n");
531 532 533 534 535
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
536
			pr_warn("HPET/PMTIMER calibration failed\n");
537 538 539 540
			return 0;
		}

		/* Use the alternative source */
541 542
		pr_info("using %s reference calibration\n",
			hpet ? "HPET" : "PMTIMER");
543 544 545

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
546

547
	/* We don't have an alternative source, use the PIT calibration value */
548
	if (!hpet && !ref1 && !ref2) {
549
		pr_info("Using PIT calibration value\n");
550
		return tsc_pit_min;
A
Alok Kataria 已提交
551 552
	}

553 554
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
555
		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
556
		return tsc_pit_min;
A
Alok Kataria 已提交
557 558
	}

559 560 561
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
562
	 * running at double speed. At least we let the user know:
563
	 */
564 565 566
	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	pr_info("Using PIT calibration value\n");
567
	return tsc_pit_min;
A
Alok Kataria 已提交
568 569 570 571 572 573 574 575
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
576
		tsc_khz = x86_platform.calibrate_tsc();
577
		cpu_khz = tsc_khz;
A
Alok Kataria 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

A
Alok Kataria 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

DEFINE_PER_CPU(unsigned long, cyc2ns);
615
DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
A
Alok Kataria 已提交
616

617
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
A
Alok Kataria 已提交
618
{
619
	unsigned long long tsc_now, ns_now, *offset;
A
Alok Kataria 已提交
620 621 622 623 624 625
	unsigned long flags, *scale;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	scale = &per_cpu(cyc2ns, cpu);
626
	offset = &per_cpu(cyc2ns_offset, cpu);
A
Alok Kataria 已提交
627 628 629 630

	rdtscll(tsc_now);
	ns_now = __cycles_2_ns(tsc_now);

631
	if (cpu_khz) {
632 633
		*scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
				cpu_khz / 2) / cpu_khz;
634 635
		*offset = ns_now - mult_frac(tsc_now, *scale,
					     (1UL << CYC2NS_SCALE_FACTOR));
636
	}
A
Alok Kataria 已提交
637 638 639 640 641

	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}

642 643
static unsigned long long cyc2ns_suspend;

644
void tsc_save_sched_clock_state(void)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
	if (!sched_clock_stable)
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
660
void tsc_restore_sched_clock_state(void)
661 662 663 664 665 666 667 668 669 670
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

	if (!sched_clock_stable)
		return;

	local_irq_save(flags);

T
Tejun Heo 已提交
671
	__this_cpu_write(cyc2ns_offset, 0);
672 673 674 675 676 677 678 679
	offset = cyc2ns_suspend - sched_clock();

	for_each_possible_cpu(cpu)
		per_cpu(cyc2ns_offset, cpu) = offset;

	local_irq_restore(flags);
}

A
Alok Kataria 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
701
	unsigned long *lpj;
A
Alok Kataria 已提交
702 703 704 705

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

706
	lpj = &boot_cpu_data.loops_per_jiffy;
A
Alok Kataria 已提交
707
#ifdef CONFIG_SMP
708
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
A
Alok Kataria 已提交
709 710 711 712 713 714 715 716 717 718 719
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
			(val == CPUFREQ_RESUMECHANGE)) {
720
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
A
Alok Kataria 已提交
721 722 723 724 725 726

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");
	}

727
	set_cyc2ns_scale(tsc_khz, freq->cpu);
A
Alok Kataria 已提交
728 729 730 731 732 733 734 735 736 737

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
738 739 740 741
	if (!cpu_has_tsc)
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
742 743 744 745 746 747 748 749
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

/* clocksource code */

static struct clocksource clocksource_tsc;

/*
 * We compare the TSC to the cycle_last value in the clocksource
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
 */
767
static cycle_t read_tsc(struct clocksource *cs)
768 769 770 771 772 773 774
{
	cycle_t ret = (cycle_t)get_cycles();

	return ret >= clocksource_tsc.cycle_last ?
		ret : clocksource_tsc.cycle_last;
}

775
static void resume_tsc(struct clocksource *cs)
776
{
777 778
	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.cycle_last = 0;
779 780
}

781 782 783 784
static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
785
	.resume			= resume_tsc,
786 787 788 789
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
#ifdef CONFIG_X86_64
790
	.archdata               = { .vclock_mode = VCLOCK_TSC },
791 792 793 794 795 796 797
#endif
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
798
		sched_clock_stable = 0;
V
Venkatesh Pallipadi 已提交
799
		disable_sched_clock_irqtime();
800
		pr_info("Marking TSC unstable due to %s\n", reason);
801 802
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
803 804 805
			clocksource_mark_unstable(&clocksource_tsc);
		else {
			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
806
			clocksource_tsc.rating = 0;
807
		}
808 809 810 811 812
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

813 814
static void __init check_system_tsc_reliable(void)
{
815
#ifdef CONFIG_MGEODE_LX
816
	/* RTSC counts during suspend */
817 818 819 820
#define RTSC_SUSP 0x100
	unsigned long res_low, res_high;

	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
821
	/* Geode_LX - the OLPC CPU has a very reliable TSC */
822
	if (res_low & RTSC_SUSP)
823
		tsc_clocksource_reliable = 1;
824
#endif
825 826 827
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}
828 829 830 831 832

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
833
int unsynchronized_tsc(void)
834 835 836 837
{
	if (!cpu_has_tsc || tsc_unstable)
		return 1;

838
#ifdef CONFIG_SMP
839 840 841 842 843 844
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
845 846 847

	if (tsc_clocksource_reliable)
		return 0;
848 849 850 851 852 853 854
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
855
			return 1;
856 857
	}

858
	return 0;
859 860
}

861 862 863 864 865 866 867 868 869 870 871 872

static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
 * tsc_refine_calibration_work - Further refine tsc freq calibration
 * @work - ignored.
 *
 * This functions uses delayed work over a period of a
 * second to further refine the TSC freq value. Since this is
 * timer based, instead of loop based, we don't block the boot
 * process while this longer calibration is done.
 *
L
Lucas De Marchi 已提交
873
 * If there are any calibration anomalies (too many SMIs, etc),
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
 * or the refined calibration is off by 1% of the fast early
 * calibration, we throw out the new calibration and use the
 * early calibration.
 */
static void tsc_refine_calibration_work(struct work_struct *work)
{
	static u64 tsc_start = -1, ref_start;
	static int hpet;
	u64 tsc_stop, ref_stop, delta;
	unsigned long freq;

	/* Don't bother refining TSC on unstable systems */
	if (check_tsc_unstable())
		goto out;

	/*
	 * Since the work is started early in boot, we may be
	 * delayed the first time we expire. So set the workqueue
	 * again once we know timers are working.
	 */
	if (tsc_start == -1) {
		/*
		 * Only set hpet once, to avoid mixing hardware
		 * if the hpet becomes enabled later.
		 */
		hpet = is_hpet_enabled();
		schedule_delayed_work(&tsc_irqwork, HZ);
		tsc_start = tsc_read_refs(&ref_start, hpet);
		return;
	}

	tsc_stop = tsc_read_refs(&ref_stop, hpet);

	/* hpet or pmtimer available ? */
908
	if (ref_start == ref_stop)
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
		goto out;

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
		goto out;

	delta = tsc_stop - tsc_start;
	delta *= 1000000LL;
	if (hpet)
		freq = calc_hpet_ref(delta, ref_start, ref_stop);
	else
		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);

	/* Make sure we're within 1% */
	if (abs(tsc_khz - freq) > tsc_khz/100)
		goto out;

	tsc_khz = freq;
927 928 929
	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
		(unsigned long)tsc_khz / 1000,
		(unsigned long)tsc_khz % 1000);
930 931 932 933 934 935 936

out:
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}


static int __init init_tsc_clocksource(void)
937
{
938
	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
939 940
		return 0;

941 942
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
943 944 945 946 947
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
948

949 950 951
	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;

952 953 954 955 956 957 958 959 960
	/*
	 * Trust the results of the earlier calibration on systems
	 * exporting a reliable TSC.
	 */
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
		clocksource_register_khz(&clocksource_tsc, tsc_khz);
		return 0;
	}

961 962
	schedule_delayed_work(&tsc_irqwork, 0);
	return 0;
963
}
964 965 966 967 968
/*
 * We use device_initcall here, to ensure we run after the hpet
 * is fully initialized, which may occur at fs_initcall time.
 */
device_initcall(init_tsc_clocksource);
969 970 971 972 973 974

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

975 976
	x86_init.timers.tsc_pre_init();

977 978 979
	if (!cpu_has_tsc)
		return;

980
	tsc_khz = x86_platform.calibrate_tsc();
981
	cpu_khz = tsc_khz;
982

983
	if (!tsc_khz) {
984 985 986 987
		mark_tsc_unstable("could not calculate TSC khz");
		return;
	}

988 989 990
	pr_info("Detected %lu.%03lu MHz processor\n",
		(unsigned long)cpu_khz / 1000,
		(unsigned long)cpu_khz % 1000);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
	for_each_possible_cpu(cpu)
		set_cyc2ns_scale(cpu_khz, cpu);

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
	tsc_disabled = 0;

V
Venkatesh Pallipadi 已提交
1007 1008 1009
	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

1010 1011 1012 1013
	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

1014 1015 1016 1017 1018
	use_tsc_delay();

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

1019
	check_system_tsc_reliable();
1020 1021
}

1022 1023 1024 1025 1026 1027 1028
#ifdef CONFIG_SMP
/*
 * If we have a constant TSC and are using the TSC for the delay loop,
 * we can skip clock calibration if another cpu in the same socket has already
 * been calibrated. This assumes that CONSTANT_TSC applies to all
 * cpus in the socket - this should be a safe assumption.
 */
1029
unsigned long calibrate_delay_is_known(void)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	int i, cpu = smp_processor_id();

	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

	for_each_online_cpu(i)
		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
			return cpu_data(i).loops_per_jiffy;
	return 0;
}
#endif