tsc.c 7.7 KB
Newer Older
A
Alok Kataria 已提交
1
#include <linux/kernel.h>
A
Alok Kataria 已提交
2 3 4 5
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
6
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
7
#include <linux/cpufreq.h>
A
Alok Kataria 已提交
8 9

#include <asm/hpet.h>
A
Alok Kataria 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
unsigned int tsc_khz;
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
int tsc_unstable;

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
int tsc_disabled = -1;

/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
	u64 this_offset;

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
	 *   can achive it. )
	 */
	if (unlikely(tsc_disabled)) {
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
	rdtscll(this_offset);

	/* return the value in ns */
	return cycles_2_ns(this_offset);
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
			"cannot disable TSC completely.\n");
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
static u64 __init tsc_read_refs(u64 *pm, u64 *hpet)
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
			*hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
		else
			*pm = acpi_pm_read_early();
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

/**
 * tsc_calibrate - calibrate the tsc on boot
 */
static unsigned int __init tsc_calibrate(void)
{
	unsigned long flags;
	u64 tsc1, tsc2, tr1, tr2, delta, pm1, pm2, hpet1, hpet2;
	int hpet = is_hpet_enabled();
	unsigned int tsc_khz_val = 0;

	local_irq_save(flags);

	tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);

	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	outb(0xb0, 0x43);
	outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
	outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
	tr1 = get_cycles();
	while ((inb(0x61) & 0x20) == 0);
	tr2 = get_cycles();

	tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);

	local_irq_restore(flags);

	/*
	 * Preset the result with the raw and inaccurate PIT
	 * calibration value
	 */
	delta = (tr2 - tr1);
	do_div(delta, 50);
	tsc_khz_val = delta;

	/* hpet or pmtimer available ? */
	if (!hpet && !pm1 && !pm2) {
		printk(KERN_INFO "TSC calibrated against PIT\n");
		goto out;
	}

	/* Check, whether the sampling was disturbed by an SMI */
	if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) {
		printk(KERN_WARNING "TSC calibration disturbed by SMI, "
				"using PIT calibration result\n");
		goto out;
	}

	tsc2 = (tsc2 - tsc1) * 1000000LL;

	if (hpet) {
		printk(KERN_INFO "TSC calibrated against HPET\n");
		if (hpet2 < hpet1)
			hpet2 += 0x100000000ULL;
		hpet2 -= hpet1;
		tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
		do_div(tsc1, 1000000);
	} else {
		printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
		if (pm2 < pm1)
			pm2 += (u64)ACPI_PM_OVRRUN;
		pm2 -= pm1;
		tsc1 = pm2 * 1000000000LL;
		do_div(tsc1, PMTMR_TICKS_PER_SEC);
	}

	do_div(tsc2, tsc1);
	tsc_khz_val = tsc2;

out:
	return tsc_khz_val;
}

unsigned long native_calculate_cpu_khz(void)
{
	return tsc_calibrate();
}

#ifdef CONFIG_X86_32
/* Only called from the Powernow K7 cpu freq driver */
int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
		cpu_khz = calculate_cpu_khz();
		tsc_khz = cpu_khz;
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

#endif /* CONFIG_X86_32 */
A
Alok Kataria 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

DEFINE_PER_CPU(unsigned long, cyc2ns);

void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
{
	unsigned long long tsc_now, ns_now;
	unsigned long flags, *scale;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	scale = &per_cpu(cyc2ns, cpu);

	rdtscll(tsc_now);
	ns_now = __cycles_2_ns(tsc_now);

	if (cpu_khz)
		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;

	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}

#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
	unsigned long *lpj, dummy;

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

	lpj = &dummy;
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
#ifdef CONFIG_SMP
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#else
	lpj = &boot_cpu_data.loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
			(val == CPUFREQ_RESUMECHANGE)) {
		*lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");
	}

	set_cyc2ns_scale(tsc_khz_ref, freq->cpu);

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */