arm_arch_timer.c 27.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/drivers/clocksource/arm_arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12 13

#define pr_fmt(fmt)	"arm_arch_timer: " fmt

14 15 16 17 18
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
19
#include <linux/cpu_pm.h>
20
#include <linux/clockchips.h>
21
#include <linux/clocksource.h>
22 23
#include <linux/interrupt.h>
#include <linux/of_irq.h>
24
#include <linux/of_address.h>
25
#include <linux/io.h>
26
#include <linux/slab.h>
27
#include <linux/sched_clock.h>
28
#include <linux/acpi.h>
29 30

#include <asm/arch_timer.h>
31
#include <asm/virt.h>
32 33 34

#include <clocksource/arm_arch_timer.h>

35 36 37
#define CNTTIDR		0x08
#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))

38 39 40 41 42 43 44 45
#define CNTACR(n)	(0x40 + ((n) * 4))
#define CNTACR_RPCT	BIT(0)
#define CNTACR_RVCT	BIT(1)
#define CNTACR_RFRQ	BIT(2)
#define CNTACR_RVOFF	BIT(3)
#define CNTACR_RWVT	BIT(4)
#define CNTACR_RWPT	BIT(5)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#define CNTVCT_LO	0x08
#define CNTVCT_HI	0x0c
#define CNTFRQ		0x10
#define CNTP_TVAL	0x28
#define CNTP_CTL	0x2c
#define CNTV_TVAL	0x38
#define CNTV_CTL	0x3c

#define ARCH_CP15_TIMER	BIT(0)
#define ARCH_MEM_TIMER	BIT(1)
static unsigned arch_timers_present __initdata;

static void __iomem *arch_counter_base;

struct arch_timer {
	void __iomem *base;
	struct clock_event_device evt;
};

#define to_arch_timer(e) container_of(e, struct arch_timer, evt)

67 68 69 70 71 72 73 74 75 76 77 78 79 80
static u32 arch_timer_rate;

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];

static struct clock_event_device __percpu *arch_timer_evt;

81
static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82
static bool arch_timer_c3stop;
83
static bool arch_timer_mem_use_virtual;
84
static bool arch_counter_suspend_stop;
85

86 87 88 89 90 91 92 93
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);

static int __init early_evtstrm_cfg(char *buf)
{
	return strtobool(buf, &evtstrm_enable);
}
early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);

94 95 96 97
/*
 * Architected system timer support.
 */

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_FSL_ERRATUM_A008585
DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);

static int fsl_a008585_enable = -1;

static int __init early_fsl_a008585_cfg(char *buf)
{
	int ret;
	bool val;

	ret = strtobool(buf, &val);
	if (ret)
		return ret;

	fsl_a008585_enable = val;
	return 0;
}
early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);

u32 __fsl_a008585_read_cntp_tval_el0(void)
{
	return __fsl_a008585_read_reg(cntp_tval_el0);
}

u32 __fsl_a008585_read_cntv_tval_el0(void)
{
	return __fsl_a008585_read_reg(cntv_tval_el0);
}

u64 __fsl_a008585_read_cntvct_el0(void)
{
	return __fsl_a008585_read_reg(cntvct_el0);
}
EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
#endif /* CONFIG_FSL_ERRATUM_A008585 */

135 136
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
137
			  struct clock_event_device *clk)
138
{
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			writel_relaxed(val, timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			writel_relaxed(val, timer->base + CNTV_TVAL);
			break;
		}
	} else {
		arch_timer_reg_write_cp15(access, reg, val);
	}
162 163 164 165
}

static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
166
			struct clock_event_device *clk)
167
{
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	u32 val;

	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTP_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTP_TVAL);
			break;
		}
	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
		struct arch_timer *timer = to_arch_timer(clk);
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			val = readl_relaxed(timer->base + CNTV_CTL);
			break;
		case ARCH_TIMER_REG_TVAL:
			val = readl_relaxed(timer->base + CNTV_TVAL);
			break;
		}
	} else {
		val = arch_timer_reg_read_cp15(access, reg);
	}

	return val;
195 196
}

197
static __always_inline irqreturn_t timer_handler(const int access,
198 199 200
					struct clock_event_device *evt)
{
	unsigned long ctrl;
201

202
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
203 204
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
205
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240
static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
}

static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
{
	struct clock_event_device *evt = dev_id;

	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
}

241 242
static __always_inline int timer_shutdown(const int access,
					  struct clock_event_device *clk)
243 244
{
	unsigned long ctrl;
245 246 247 248 249 250

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);

	return 0;
251 252
}

253
static int arch_timer_shutdown_virt(struct clock_event_device *clk)
254
{
255
	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
256 257
}

258
static int arch_timer_shutdown_phys(struct clock_event_device *clk)
259
{
260
	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
261 262
}

263
static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
264
{
265
	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
266 267
}

268
static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
269
{
270
	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
271 272
}

273
static __always_inline void set_next_event(const int access, unsigned long evt,
274
					   struct clock_event_device *clk)
275 276
{
	unsigned long ctrl;
277
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
278 279
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
280 281
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
282 283
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
#ifdef CONFIG_FSL_ERRATUM_A008585
static __always_inline void fsl_a008585_set_next_event(const int access,
		unsigned long evt, struct clock_event_device *clk)
{
	unsigned long ctrl;
	u64 cval = evt + arch_counter_get_cntvct();

	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		write_sysreg(cval, cntp_cval_el0);
	else if (access == ARCH_TIMER_VIRT_ACCESS)
		write_sysreg(cval, cntv_cval_el0);

	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}

static int fsl_a008585_set_next_event_virt(unsigned long evt,
					   struct clock_event_device *clk)
{
	fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
	return 0;
}

static int fsl_a008585_set_next_event_phys(unsigned long evt,
					   struct clock_event_device *clk)
{
	fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
	return 0;
}
#endif /* CONFIG_FSL_ERRATUM_A008585 */

318
static int arch_timer_set_next_event_virt(unsigned long evt,
319
					  struct clock_event_device *clk)
320
{
321
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
322 323 324 325
	return 0;
}

static int arch_timer_set_next_event_phys(unsigned long evt,
326
					  struct clock_event_device *clk)
327
{
328
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
329 330 331
	return 0;
}

332 333
static int arch_timer_set_next_event_virt_mem(unsigned long evt,
					      struct clock_event_device *clk)
334
{
335 336 337 338 339 340 341 342 343 344 345
	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
	return 0;
}

static int arch_timer_set_next_event_phys_mem(unsigned long evt,
					      struct clock_event_device *clk)
{
	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
	return 0;
}

346 347 348 349 350 351 352 353 354 355 356 357 358
static void fsl_a008585_set_sne(struct clock_event_device *clk)
{
#ifdef CONFIG_FSL_ERRATUM_A008585
	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
		return;

	if (arch_timer_uses_ppi == VIRT_PPI)
		clk->set_next_event = fsl_a008585_set_next_event_virt;
	else
		clk->set_next_event = fsl_a008585_set_next_event_phys;
#endif
}

359 360
static void __arch_timer_setup(unsigned type,
			       struct clock_event_device *clk)
361 362 363 364
{
	clk->features = CLOCK_EVT_FEAT_ONESHOT;

	if (type == ARCH_CP15_TIMER) {
365 366
		if (arch_timer_c3stop)
			clk->features |= CLOCK_EVT_FEAT_C3STOP;
367 368 369
		clk->name = "arch_sys_timer";
		clk->rating = 450;
		clk->cpumask = cpumask_of(smp_processor_id());
370 371 372
		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
		switch (arch_timer_uses_ppi) {
		case VIRT_PPI:
373
			clk->set_state_shutdown = arch_timer_shutdown_virt;
374
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
375
			clk->set_next_event = arch_timer_set_next_event_virt;
376 377 378 379
			break;
		case PHYS_SECURE_PPI:
		case PHYS_NONSECURE_PPI:
		case HYP_PPI:
380
			clk->set_state_shutdown = arch_timer_shutdown_phys;
381
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
382
			clk->set_next_event = arch_timer_set_next_event_phys;
383 384 385
			break;
		default:
			BUG();
386
		}
387 388

		fsl_a008585_set_sne(clk);
389
	} else {
390
		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
391 392 393 394
		clk->name = "arch_mem_timer";
		clk->rating = 400;
		clk->cpumask = cpu_all_mask;
		if (arch_timer_mem_use_virtual) {
395
			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
396
			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
397 398 399
			clk->set_next_event =
				arch_timer_set_next_event_virt_mem;
		} else {
400
			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
401
			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
402 403 404
			clk->set_next_event =
				arch_timer_set_next_event_phys_mem;
		}
405 406
	}

407
	clk->set_state_shutdown(clk);
408

409 410
	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
}
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static void arch_timer_evtstrm_enable(int divider)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
	/* Set the divider and enable virtual event stream */
	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
			| ARCH_TIMER_VIRT_EVT_EN;
	arch_timer_set_cntkctl(cntkctl);
	elf_hwcap |= HWCAP_EVTSTRM;
#ifdef CONFIG_COMPAT
	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
#endif
}

427 428 429 430 431 432 433 434 435 436 437 438 439
static void arch_timer_configure_evtstream(void)
{
	int evt_stream_div, pos;

	/* Find the closest power of two to the divisor */
	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
	pos = fls(evt_stream_div);
	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
		pos--;
	/* enable event stream */
	arch_timer_evtstrm_enable(min(pos, 15));
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static void arch_counter_set_user_access(void)
{
	u32 cntkctl = arch_timer_get_cntkctl();

	/* Disable user access to the timers and the physical counter */
	/* Also disable virtual event stream */
	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
			| ARCH_TIMER_USR_VT_ACCESS_EN
			| ARCH_TIMER_VIRT_EVT_EN
			| ARCH_TIMER_USR_PCT_ACCESS_EN);

	/* Enable user access to the virtual counter */
	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;

	arch_timer_set_cntkctl(cntkctl);
}

457 458 459 460 461 462
static bool arch_timer_has_nonsecure_ppi(void)
{
	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
		arch_timer_ppi[PHYS_NONSECURE_PPI]);
}

463 464 465 466 467 468 469 470 471 472 473 474 475
static u32 check_ppi_trigger(int irq)
{
	u32 flags = irq_get_trigger_type(irq);

	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
		pr_warn("WARNING: Please fix your firmware\n");
		flags = IRQF_TRIGGER_LOW;
	}

	return flags;
}

476
static int arch_timer_starting_cpu(unsigned int cpu)
477
{
478
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
479
	u32 flags;
480

481
	__arch_timer_setup(ARCH_CP15_TIMER, clk);
482

483 484
	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
485

486 487 488 489
	if (arch_timer_has_nonsecure_ppi()) {
		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
	}
490 491

	arch_counter_set_user_access();
492
	if (evtstrm_enable)
493
		arch_timer_configure_evtstream();
494 495 496 497

	return 0;
}

498 499
static void
arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
500
{
501 502 503
	/* Who has more than one independent system counter? */
	if (arch_timer_rate)
		return;
504

505 506 507 508 509 510
	/*
	 * Try to determine the frequency from the device tree or CNTFRQ,
	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
	 */
	if (!acpi_disabled ||
	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
511 512 513 514
		if (cntbase)
			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
		else
			arch_timer_rate = arch_timer_get_cntfrq();
515 516
	}

517 518 519 520 521 522 523 524 525 526 527
	/* Check the timer frequency. */
	if (arch_timer_rate == 0)
		pr_warn("Architected timer frequency not available\n");
}

static void arch_timer_banner(unsigned type)
{
	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
		     type & ARCH_CP15_TIMER ? "cp15" : "",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
		     type & ARCH_MEM_TIMER ? "mmio" : "",
528 529
		     (unsigned long)arch_timer_rate / 1000000,
		     (unsigned long)(arch_timer_rate / 10000) % 100,
530
		     type & ARCH_CP15_TIMER ?
531
		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
532 533 534 535 536
			"",
		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
		     type & ARCH_MEM_TIMER ?
			arch_timer_mem_use_virtual ? "virt" : "phys" :
			"");
537 538 539 540 541 542 543
}

u32 arch_timer_get_rate(void)
{
	return arch_timer_rate;
}

544
static u64 arch_counter_get_cntvct_mem(void)
545
{
546 547 548 549 550 551 552 553 554
	u32 vct_lo, vct_hi, tmp_hi;

	do {
		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
	} while (vct_hi != tmp_hi);

	return ((u64) vct_hi << 32) | vct_lo;
555 556
}

557 558 559 560 561 562 563 564
/*
 * Default to cp15 based access because arm64 uses this function for
 * sched_clock() before DT is probed and the cp15 method is guaranteed
 * to exist on arm64. arm doesn't use this before DT is probed so even
 * if we don't have the cp15 accessors we won't have a problem.
 */
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;

565
static u64 arch_counter_read(struct clocksource *cs)
566
{
567
	return arch_timer_read_counter();
568 569
}

570
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
571
{
572
	return arch_timer_read_counter();
573 574 575 576 577 578 579
}

static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
580
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
581 582 583 584 585 586 587
};

static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

588 589 590 591 592 593
static struct arch_timer_kvm_info arch_timer_kvm_info;

struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
{
	return &arch_timer_kvm_info;
}
594

595 596 597 598 599
static void __init arch_counter_register(unsigned type)
{
	u64 start_count;

	/* Register the CP15 based counter if we have one */
600
	if (type & ARCH_CP15_TIMER) {
601
		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
602 603 604
			arch_timer_read_counter = arch_counter_get_cntvct;
		else
			arch_timer_read_counter = arch_counter_get_cntpct;
605

606 607
		clocksource_counter.archdata.vdso_direct = true;

608 609 610 611 612 613
#ifdef CONFIG_FSL_ERRATUM_A008585
		/*
		 * Don't use the vdso fastpath if errata require using
		 * the out-of-line counter accessor.
		 */
		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
614
			clocksource_counter.archdata.vdso_direct = false;
615
#endif
616
	} else {
617
		arch_timer_read_counter = arch_counter_get_cntvct_mem;
618 619
	}

620 621
	if (!arch_counter_suspend_stop)
		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
622 623 624 625
	start_count = arch_timer_read_counter();
	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
626 627
	timecounter_init(&arch_timer_kvm_info.timecounter,
			 &cyclecounter, start_count);
628 629 630

	/* 56 bits minimum, so we assume worst case rollover */
	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
631 632
}

633
static void arch_timer_stop(struct clock_event_device *clk)
634 635 636 637
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());

638 639 640
	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
	if (arch_timer_has_nonsecure_ppi())
		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
641

642
	clk->set_state_shutdown(clk);
643 644
}

645
static int arch_timer_dying_cpu(unsigned int cpu)
646
{
647
	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
648

649 650
	arch_timer_stop(clk);
	return 0;
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
{
	if (action == CPU_PM_ENTER)
		saved_cntkctl = arch_timer_get_cntkctl();
	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
		arch_timer_set_cntkctl(saved_cntkctl);
	return NOTIFY_OK;
}

static struct notifier_block arch_timer_cpu_pm_notifier = {
	.notifier_call = arch_timer_cpu_pm_notify,
};

static int __init arch_timer_cpu_pm_init(void)
{
	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
}
673 674 675 676 677 678

static void __init arch_timer_cpu_pm_deinit(void)
{
	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
}

679 680 681 682 683
#else
static int __init arch_timer_cpu_pm_init(void)
{
	return 0;
}
684 685 686 687

static void __init arch_timer_cpu_pm_deinit(void)
{
}
688 689
#endif

690 691 692 693 694 695 696 697 698 699 700
static int __init arch_timer_register(void)
{
	int err;
	int ppi;

	arch_timer_evt = alloc_percpu(struct clock_event_device);
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}

701 702 703
	ppi = arch_timer_ppi[arch_timer_uses_ppi];
	switch (arch_timer_uses_ppi) {
	case VIRT_PPI:
704 705
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
706 707 708
		break;
	case PHYS_SECURE_PPI:
	case PHYS_NONSECURE_PPI:
709 710 711 712 713 714 715 716 717 718
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
719 720 721 722 723 724 725
		break;
	case HYP_PPI:
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		break;
	default:
		BUG();
726 727 728 729 730 731 732 733
	}

	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
		       ppi, err);
		goto out_free;
	}

734 735 736 737
	err = arch_timer_cpu_pm_init();
	if (err)
		goto out_unreg_notify;

738

739 740 741 742 743 744
	/* Register and immediately configure the timer on the boot CPU */
	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
				"AP_ARM_ARCH_TIMER_STARTING",
				arch_timer_starting_cpu, arch_timer_dying_cpu);
	if (err)
		goto out_unreg_cpupm;
745 746
	return 0;

747 748 749
out_unreg_cpupm:
	arch_timer_cpu_pm_deinit();

750
out_unreg_notify:
751 752 753
	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
	if (arch_timer_has_nonsecure_ppi())
		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
754 755 756 757 758 759 760 761
				arch_timer_evt);

out_free:
	free_percpu(arch_timer_evt);
out:
	return err;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
{
	int ret;
	irq_handler_t func;
	struct arch_timer *t;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return -ENOMEM;

	t->base = base;
	t->evt.irq = irq;
	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);

	if (arch_timer_mem_use_virtual)
		func = arch_timer_handler_virt_mem;
	else
		func = arch_timer_handler_phys_mem;

	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
	if (ret) {
		pr_err("arch_timer: Failed to request mem timer irq\n");
		kfree(t);
	}

	return ret;
}

static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer",    },
	{ .compatible   = "arm,armv8-timer",    },
	{},
};

static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
	{ .compatible   = "arm,armv7-timer-mem", },
	{},
};

801
static bool __init
802
arch_timer_needs_probing(int type, const struct of_device_id *matches)
803 804
{
	struct device_node *dn;
805
	bool needs_probing = false;
806 807

	dn = of_find_matching_node(NULL, matches);
808
	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
809
		needs_probing = true;
810 811
	of_node_put(dn);

812
	return needs_probing;
813 814
}

815
static int __init arch_timer_common_init(void)
816 817 818 819 820
{
	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;

	/* Wait until both nodes are probed if we have two timers */
	if ((arch_timers_present & mask) != mask) {
821
		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
822
			return 0;
823
		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
824
			return 0;
825 826 827 828
	}

	arch_timer_banner(arch_timers_present);
	arch_counter_register(arch_timers_present);
829
	return arch_timer_arch_init();
830 831
}

832
static int __init arch_timer_init(void)
833
{
834
	int ret;
835
	/*
836 837 838 839
	 * If HYP mode is available, we know that the physical timer
	 * has been configured to be accessible from PL1. Use it, so
	 * that a guest can use the virtual timer instead.
	 *
840 841
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
842 843 844 845 846
	 *
	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
	 * accesses to CNTP_*_EL1 registers are silently redirected to
	 * their CNTHP_*_EL2 counterparts, and use a different PPI
	 * number.
847
	 */
848
	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
849 850 851 852 853 854 855 856 857 858
		bool has_ppi;

		if (is_kernel_in_hyp_mode()) {
			arch_timer_uses_ppi = HYP_PPI;
			has_ppi = !!arch_timer_ppi[HYP_PPI];
		} else {
			arch_timer_uses_ppi = PHYS_SECURE_PPI;
			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
		}
859

860
		if (!has_ppi) {
861
			pr_warn("arch_timer: No interrupt available, giving up\n");
862
			return -EINVAL;
863 864 865
		}
	}

866 867 868 869 870 871 872
	ret = arch_timer_register();
	if (ret)
		return ret;

	ret = arch_timer_common_init();
	if (ret)
		return ret;
873 874

	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
875 876
	
	return 0;
877
}
878

879
static int __init arch_timer_of_init(struct device_node *np)
880 881 882 883 884
{
	int i;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
885
		return 0;
886 887 888 889 890 891 892 893 894 895
	}

	arch_timers_present |= ARCH_CP15_TIMER;
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

	arch_timer_detect_rate(NULL, np);

	arch_timer_c3stop = !of_property_read_bool(np, "always-on");

896 897 898 899 900 901 902 903 904
#ifdef CONFIG_FSL_ERRATUM_A008585
	if (fsl_a008585_enable < 0)
		fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
	if (fsl_a008585_enable) {
		static_branch_enable(&arch_timer_read_ool_enabled);
		pr_info("Enabling workaround for FSL erratum A-008585\n");
	}
#endif

905 906 907 908 909 910
	/*
	 * If we cannot rely on firmware initializing the timer registers then
	 * we should use the physical timers instead.
	 */
	if (IS_ENABLED(CONFIG_ARM) &&
	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
911
		arch_timer_uses_ppi = PHYS_SECURE_PPI;
912

913 914 915 916
	/* On some systems, the counter stops ticking when in suspend. */
	arch_counter_suspend_stop = of_property_read_bool(np,
							 "arm,no-tick-in-suspend");

917
	return arch_timer_init();
918
}
919 920
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
921

922
static int __init arch_timer_mem_init(struct device_node *np)
923 924 925
{
	struct device_node *frame, *best_frame = NULL;
	void __iomem *cntctlbase, *base;
926
	unsigned int irq, ret = -EINVAL;
927 928 929 930 931 932
	u32 cnttidr;

	arch_timers_present |= ARCH_MEM_TIMER;
	cntctlbase = of_iomap(np, 0);
	if (!cntctlbase) {
		pr_err("arch_timer: Can't find CNTCTLBase\n");
933
		return -ENXIO;
934 935 936 937 938 939 940 941 942 943
	}

	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);

	/*
	 * Try to find a virtual capable frame. Otherwise fall back to a
	 * physical capable frame.
	 */
	for_each_available_child_of_node(np, frame) {
		int n;
944
		u32 cntacr;
945 946 947 948

		if (of_property_read_u32(frame, "frame-number", &n)) {
			pr_err("arch_timer: Missing frame-number\n");
			of_node_put(frame);
949
			goto out;
950 951
		}

952 953 954 955 956 957 958 959
		/* Try enabling everything, and see what sticks */
		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
		cntacr = readl_relaxed(cntctlbase + CNTACR(n));

		if ((cnttidr & CNTTIDR_VIRT(n)) &&
		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
960 961 962 963 964
			of_node_put(best_frame);
			best_frame = frame;
			arch_timer_mem_use_virtual = true;
			break;
		}
965 966 967 968

		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
			continue;

969 970 971 972
		of_node_put(best_frame);
		best_frame = of_node_get(frame);
	}

973
	ret= -ENXIO;
974 975 976
	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
							 "arch_mem_timer");
	if (IS_ERR(base)) {
977
		pr_err("arch_timer: Can't map frame's registers\n");
978
		goto out;
979 980 981 982 983 984
	}

	if (arch_timer_mem_use_virtual)
		irq = irq_of_parse_and_map(best_frame, 1);
	else
		irq = irq_of_parse_and_map(best_frame, 0);
985

986
	ret = -EINVAL;
987 988
	if (!irq) {
		pr_err("arch_timer: Frame missing %s irq",
989
		       arch_timer_mem_use_virtual ? "virt" : "phys");
990
		goto out;
991 992 993
	}

	arch_timer_detect_rate(base, np);
994 995 996 997 998
	ret = arch_timer_mem_register(base, irq);
	if (ret)
		goto out;

	return arch_timer_common_init();
999 1000 1001
out:
	iounmap(cntctlbase);
	of_node_put(best_frame);
1002
	return ret;
1003
}
1004
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1005
		       arch_timer_mem_init);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

#ifdef CONFIG_ACPI
static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
{
	int trigger, polarity;

	if (!interrupt)
		return 0;

	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
			: ACPI_LEVEL_SENSITIVE;

	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
			: ACPI_ACTIVE_HIGH;

	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}

/* Initialize per-processor generic timer */
static int __init arch_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_gtdt *gtdt;

	if (arch_timers_present & ARCH_CP15_TIMER) {
		pr_warn("arch_timer: already initialized, skipping\n");
		return -EINVAL;
	}

	gtdt = container_of(table, struct acpi_table_gtdt, header);

	arch_timers_present |= ARCH_CP15_TIMER;

	arch_timer_ppi[PHYS_SECURE_PPI] =
		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
		gtdt->secure_el1_flags);

	arch_timer_ppi[PHYS_NONSECURE_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
		gtdt->non_secure_el1_flags);

	arch_timer_ppi[VIRT_PPI] =
		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
		gtdt->virtual_timer_flags);

	arch_timer_ppi[HYP_PPI] =
		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
		gtdt->non_secure_el2_flags);

	/* Get the frequency from CNTFRQ */
	arch_timer_detect_rate(NULL, NULL);

	/* Always-on capability */
	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);

	arch_timer_init();
	return 0;
}
1063
CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1064
#endif