book3s_hv.c 68.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35 36 37

#include <asm/reg.h>
#include <asm/cputable.h>
38
#include <asm/cache.h>
39 40 41 42 43 44 45 46 47
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
48
#include <asm/cputhreads.h>
49
#include <asm/page.h>
50
#include <asm/hvcall.h>
51
#include <asm/switch_to.h>
52
#include <asm/smp.h>
53 54 55
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
56
#include <linux/hugetlb.h>
57
#include <linux/module.h>
58

59 60
#include "book3s.h"

61 62 63 64
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

65 66 67
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

68 69 70
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

71 72
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

73 74 75 76 77 78 79
#if defined(CONFIG_PPC_64K_PAGES)
#define MPP_BUFFER_ORDER	0
#elif defined(CONFIG_PPC_4K_PAGES)
#define MPP_BUFFER_ORDER	3
#endif


80
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
81
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
82

83
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
{
	int me;
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

	me = get_cpu();

	/* CPU points to the first thread of the core */
	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
99
#ifdef CONFIG_PPC_ICP_NATIVE
100 101 102
		int real_cpu = cpu + vcpu->arch.ptid;
		if (paca[real_cpu].kvm_hstate.xics_phys)
			xics_wake_cpu(real_cpu);
103 104 105
		else
#endif
		if (cpu_online(cpu))
106 107 108 109 110
			smp_send_reschedule(cpu);
	}
	put_cpu();
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 * of the vcpu that has taken responsibility for running the vcore
 * (i.e. vc->runner).  The stolen times are measured in units of
 * timebase ticks.  (Note that the != TB_NIL checks below are
 * purely defensive; they should never fail.)
 */

145
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
146
{
147
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
148
	unsigned long flags;
149

150
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
151 152
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
	    vc->preempt_tb != TB_NIL) {
153
		vc->stolen_tb += mftb() - vc->preempt_tb;
154 155 156 157 158 159 160
		vc->preempt_tb = TB_NIL;
	}
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
161
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
162 163
}

164
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
165
{
166
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
167
	unsigned long flags;
168

169
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
170 171
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
172 173
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
174
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
175 176
}

177
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
178 179
{
	vcpu->arch.shregs.msr = msr;
180
	kvmppc_end_cede(vcpu);
181 182
}

183
void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
184 185 186 187
{
	vcpu->arch.pvr = pvr;
}

188 189 190 191 192 193 194 195 196 197 198
int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return -EINVAL;	/* 970 has no compat mode support */

		switch (arch_compat) {
		case PVR_ARCH_205:
199 200 201 202 203
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
204 205 206
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
207 208 209
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
210 211 212 213
			break;
		default:
			return -EINVAL;
		}
214 215 216 217 218 219 220

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
221 222 223 224 225 226 227 228 229 230
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
260
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
261 262 263
	       vcpu->arch.last_inst);
}

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
282
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
283
	vpa->yield_count = cpu_to_be32(1);
284 285
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

302 303 304 305
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
306 307
		__be16 hword;
		__be32 word;
308 309 310 311 312 313 314 315 316 317
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

318 319 320 321 322
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
323
	unsigned long len, nb;
324 325
	void *va;
	struct kvm_vcpu *tvcpu;
326 327 328
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
329 330 331 332 333

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

334 335 336 337 338
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
339
			return H_PARAMETER;
340 341

		/* convert logical addr to kernel addr and read length */
342 343
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
344
			return H_PARAMETER;
345
		if (subfunc == H_VPA_REG_VPA)
346
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
347
		else
348
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
349
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
366
			break;
367 368 369 370 371 372
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
373
			break;
374 375 376 377 378
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
379
			break;
380 381 382 383 384 385 386 387 388

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
389
			break;
390 391 392 393 394 395 396 397 398 399

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
400
			break;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
421
	}
422

423 424
	spin_unlock(&tvcpu->arch.vpa_update_lock);

425
	return err;
426 427
}

428
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
429
{
430
	struct kvm *kvm = vcpu->kvm;
431 432
	void *va;
	unsigned long nb;
433
	unsigned long gpa;
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
449
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
450 451 452 453 454
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
455
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
456 457 458 459 460 461 462 463 464
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
465
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
466
		va = NULL;
467 468
	}
	if (vpap->pinned_addr)
469 470 471
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
472
	vpap->pinned_addr = va;
473
	vpap->dirty = false;
474 475 476 477 478 479
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
480 481 482 483 484
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

485 486
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
487
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
488 489
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
490 491
	}
	if (vcpu->arch.dtl.update_pending) {
492
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
493 494 495 496
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
497
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
498 499 500
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;

	/*
	 * If we are the task running the vcore, then since we hold
	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
	 * can't be updated, so we don't need the tbacct_lock.
	 * If the vcore is inactive, it can't become active (since we
	 * hold the vcore lock), so the vcpu load/put functions won't
	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
	 */
	if (vc->vcore_state != VCORE_INACTIVE &&
	    vc->runner->arch.run_task != current) {
519
		spin_lock_irq(&vc->runner->arch.tbacct_lock);
520 521 522
		p = vc->stolen_tb;
		if (vc->preempt_tb != TB_NIL)
			p += now - vc->preempt_tb;
523
		spin_unlock_irq(&vc->runner->arch.tbacct_lock);
524 525 526 527 528 529
	} else {
		p = vc->stolen_tb;
	}
	return p;
}

530 531 532 533 534
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
535 536 537
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
538 539 540

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
541 542 543 544
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
545
	spin_lock_irq(&vcpu->arch.tbacct_lock);
546 547
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
548
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
549 550 551 552
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
553 554 555 556 557
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
558 559 560 561 562 563
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
564
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
565
	vcpu->arch.dtl.dirty = true;
566 567
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

610 611 612 613 614
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
615
	int idx, rc;
616

617 618 619 620
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

621
	switch (req) {
622
	case H_ENTER:
623
		idx = srcu_read_lock(&vcpu->kvm->srcu);
624 625 626 627
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
628
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
629
		break;
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
649 650 651 652 653 654 655 656 657
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		kvm_vcpu_yield_to(tvcpu);
658 659 660 661 662 663
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
664 665 666 667
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

668
		idx = srcu_read_lock(&vcpu->kvm->srcu);
669
		rc = kvmppc_rtas_hcall(vcpu);
670
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
671 672 673 674 675 676 677 678

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
679 680 681 682 683 684 685 686
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
687 688 689 690
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
691 692
	case H_IPOLL:
	case H_XIRR_X:
693 694 695 696
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
697 698 699 700 701 702 703 704
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

705 706 707 708 709 710 711
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
712
	case H_SET_MODE:
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

752 753
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
754 755 756 757 758 759 760 761 762 763 764 765 766 767
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
768
	case BOOK3S_INTERRUPT_H_DOORBELL:
769 770 771 772 773 774
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
775 776 777 778 779 780 781 782 783 784 785
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

805 806 807 808
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

809 810 811 812 813 814 815 816 817
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
818 819 820 821 822
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
823 824
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
825
		r = RESUME_PAGE_FAULT;
826 827
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
828 829 830
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
831 832 833
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
834 835 836 837
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
838 839
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
840 841 842 843 844 845
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
846 847 848 849 850 851 852 853
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
854 855 856 857 858 859 860
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
861
		run->hw.hardware_exit_reason = vcpu->arch.trap;
862 863 864 865 866 867 868
		r = RESUME_HOST;
		break;
	}

	return r;
}

869 870
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
871 872 873 874
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
875
	sregs->pvr = vcpu->arch.pvr;
876 877 878 879 880 881 882 883
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

884 885
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
886 887 888
{
	int i, j;

889 890 891
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
892 893 894 895 896 897 898 899 900 901 902 903 904 905

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

906 907
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
908 909 910 911 912
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm *kvm = vcpu->kvm;
		struct kvm_vcpu *vcpu;
		int i;

		mutex_lock(&kvm->lock);
		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
		mutex_unlock(&kvm->lock);
	}

934 935 936
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
937
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
938 939
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
940 941
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
942 943 944 945

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
946 947 948 949
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

950 951
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
952
{
953 954
	int r = 0;
	long int i;
955

956
	switch (id) {
957 958 959
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
960
	case KVM_REG_PPC_HIOR:
961 962 963 964 965
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
966 967 968
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
984
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
985 986 987 988 989 990
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
991
		break;
992 993 994 995
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
996 997 998 999 1000 1001
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1002 1003
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1004
		break;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1040
		break;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1058 1059 1060
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1061
	case KVM_REG_PPC_LPCR:
1062
	case KVM_REG_PPC_LPCR_64:
1063 1064
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1065 1066 1067
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1131 1132 1133
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1134
	default:
1135
		r = -EINVAL;
1136 1137 1138 1139 1140 1141
		break;
	}

	return r;
}

1142 1143
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1144
{
1145 1146
	int r = 0;
	long int i;
1147
	unsigned long addr, len;
1148

1149
	switch (id) {
1150 1151
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1152
		if (set_reg_val(id, *val))
1153 1154
			r = -EINVAL;
		break;
1155 1156 1157
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1158 1159 1160
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1176
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1177 1178 1179 1180 1181 1182 1183
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1184 1185 1186 1187
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1188 1189 1190 1191 1192 1193
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1194 1195
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1196
		break;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1235
		break;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1256 1257
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1258 1259 1260 1261
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1262 1263 1264 1265 1266
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1267
	case KVM_REG_PPC_LPCR:
1268 1269 1270 1271
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1272
		break;
1273 1274 1275
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1338 1339 1340
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1341
	default:
1342
		r = -EINVAL;
1343 1344 1345 1346 1347 1348
		break;
	}

	return r;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	INIT_LIST_HEAD(&vcore->runnable_threads);
	spin_lock_init(&vcore->lock);
	init_waitqueue_head(&vcore->wq);
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
	vcore->first_vcpuid = core * threads_per_subcore;
	vcore->kvm = kvm;

1366 1367 1368 1369 1370 1371 1372
	vcore->mpp_buffer_is_valid = false;

	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcore->mpp_buffer = (void *)__get_free_pages(
			GFP_KERNEL|__GFP_ZERO,
			MPP_BUFFER_ORDER);

1373 1374 1375
	return vcore;
}

1376 1377
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1378 1379
{
	struct kvm_vcpu *vcpu;
1380 1381 1382
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1383

1384
	core = id / threads_per_subcore;
1385 1386 1387 1388
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1389
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1390 1391 1392 1393 1394 1395 1396 1397
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1409 1410 1411
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1412
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1413
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1414 1415
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1416
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1417 1418 1419

	kvmppc_mmu_book3s_hv_init(vcpu);

1420
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1421 1422 1423 1424 1425 1426

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
1427
		vcore = kvmppc_vcore_create(kvm, core);
1428
		kvm->arch.vcores[core] = vcore;
1429
		kvm->arch.online_vcores++;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1440
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1441

1442 1443 1444
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1445 1446 1447
	return vcpu;

free_vcpu:
1448
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1449 1450 1451 1452
out:
	return ERR_PTR(err);
}

1453 1454 1455 1456 1457 1458 1459
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1460
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1461
{
1462
	spin_lock(&vcpu->arch.vpa_update_lock);
1463 1464 1465
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1466
	spin_unlock(&vcpu->arch.vpa_update_lock);
1467
	kvm_vcpu_uninit(vcpu);
1468
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1469 1470
}

1471 1472 1473 1474 1475 1476
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1477
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1478
{
1479
	unsigned long dec_nsec, now;
1480

1481 1482 1483 1484
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1485
		kvmppc_core_prepare_to_enter(vcpu);
1486
		return;
1487
	}
1488 1489 1490 1491 1492
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1493 1494
}

1495
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1496
{
1497 1498 1499 1500 1501
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1502 1503
}

1504
extern void __kvmppc_vcore_entry(void);
1505

1506 1507
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1508
{
1509 1510
	u64 now;

1511 1512
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1513
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1514 1515 1516 1517 1518
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1519
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1520 1521 1522 1523
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1524 1525 1526
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
1527
	long timeout = 10000;
1528 1529 1530 1531 1532

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
1533
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1564 1565 1566 1567 1568 1569
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1570 1571 1572 1573
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1574 1575 1576 1577
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
1578
	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1579
	vcpu->cpu = vc->pcpu;
1580
	smp_wmb();
1581
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1582
	if (cpu != smp_processor_id()) {
1583
		xics_wake_cpu(cpu);
1584 1585
		if (vcpu->arch.ptid)
			++vc->n_woken;
1586
	}
1587 1588
#endif
}
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
1609 1610
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1611 1612 1613 1614
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1615
	int thr;
1616

1617 1618
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1619
		return 0;
1620 1621 1622

	thr = 0;
	while (++thr < threads_per_subcore)
1623 1624
		if (cpu_online(cpu + thr))
			return 0;
1625 1626

	/* Grab all hw threads so they can't go into the kernel */
1627
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1628 1629 1630 1631 1632 1633 1634 1635
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1636 1637 1638
	return 1;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
{
	phys_addr_t phy_addr, mpp_addr;

	phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;

	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
	logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);

	vc->mpp_buffer_is_valid = true;
}

static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
{
	phys_addr_t phy_addr, mpp_addr;

	phy_addr = virt_to_phys(vc->mpp_buffer);
	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;

	/* We must abort any in-progress save operations to ensure
	 * the table is valid so that prefetch engine knows when to
	 * stop prefetching. */
	logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
}

1666 1667 1668 1669
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1670
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1671
{
1672
	struct kvm_vcpu *vcpu, *vnext;
1673 1674
	long ret;
	u64 now;
1675
	int i, need_vpa_update;
1676
	int srcu_idx;
1677
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1678 1679

	/* don't start if any threads have a signal pending */
1680 1681
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1682
		if (signal_pending(vcpu->arch.run_task))
1683 1684 1685 1686 1687
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1688 1689 1690 1691 1692 1693 1694 1695 1696
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1697
	vc->vcore_state = VCORE_STARTING;
1698 1699 1700 1701 1702 1703 1704 1705 1706
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1707 1708
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1709 1710
		spin_lock(&vc->lock);
	}
1711

1712
	/*
1713 1714 1715
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
1716
	 */
1717 1718
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1719 1720 1721 1722 1723
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1724

1725
	vc->pcpu = smp_processor_id();
1726
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1727
		kvmppc_start_thread(vcpu);
1728
		kvmppc_create_dtl_entry(vcpu, vc);
1729
	}
1730

1731 1732 1733 1734
	/* Set this explicitly in case thread 0 doesn't have a vcpu */
	get_paca()->kvm_hstate.kvm_vcore = vc;
	get_paca()->kvm_hstate.ptid = 0;

1735
	vc->vcore_state = VCORE_RUNNING;
1736
	preempt_disable();
1737
	spin_unlock(&vc->lock);
1738

1739
	kvm_guest_enter();
1740

1741
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1742

1743 1744 1745
	if (vc->mpp_buffer_is_valid)
		kvmppc_start_restoring_l2_cache(vc);

1746
	__kvmppc_vcore_entry();
1747

1748
	spin_lock(&vc->lock);
1749 1750 1751 1752

	if (vc->mpp_buffer)
		kvmppc_start_saving_l2_cache(vc);

1753 1754 1755 1756
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1757 1758
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1759
	for (i = 0; i < threads_per_subcore; ++i)
1760
		kvmppc_release_hwthread(vc->pcpu + i);
1761
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1762
	vc->vcore_state = VCORE_EXITING;
1763 1764
	spin_unlock(&vc->lock);

1765
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1766

1767 1768
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1769 1770 1771
	kvm_guest_exit();

	preempt_enable();
1772
	cond_resched();
1773

1774
	spin_lock(&vc->lock);
1775
	now = get_tb();
1776 1777 1778 1779 1780
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1781 1782 1783

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
1784 1785
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);
1786

1787 1788
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1789 1790

		if (vcpu->arch.ceded) {
1791
			if (!is_kvmppc_resume_guest(ret))
1792 1793 1794 1795
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1796
	}
1797 1798

 out:
1799
	vc->vcore_state = VCORE_INACTIVE;
1800 1801
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
1802
		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1803 1804 1805 1806 1807 1808
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1809 1810 1811 1812 1813
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1814 1815 1816
{
	DEFINE_WAIT(wait);

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1834
	schedule();
1835 1836 1837 1838
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1839

1840 1841 1842 1843 1844
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1845

1846 1847 1848
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1849
	kvmppc_update_vpas(vcpu);
1850 1851 1852 1853 1854 1855

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1856
	vcpu->arch.ceded = 0;
1857 1858
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1859
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1860
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1861
	vcpu->arch.busy_preempt = TB_NIL;
1862 1863 1864
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1865 1866 1867 1868 1869
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
1870
	if (!signal_pending(current)) {
1871 1872
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
1873
			kvmppc_create_dtl_entry(vcpu, vc);
1874
			kvmppc_start_thread(vcpu);
1875 1876
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
1877 1878
		}

1879
	}
1880

1881 1882
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
1883
		if (vc->vcore_state != VCORE_INACTIVE) {
1884 1885 1886 1887 1888 1889 1890
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1891
			kvmppc_core_prepare_to_enter(v);
1892 1893 1894 1895 1896 1897 1898 1899
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1900 1901 1902 1903
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		vc->runner = vcpu;
		n_ceded = 0;
1904
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1905 1906
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
1907 1908 1909
			else
				v->arch.ceded = 0;
		}
1910 1911 1912 1913
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);
1914
		vc->runner = NULL;
1915
	}
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
1937 1938 1939 1940
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1941 1942
}

1943
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1944 1945
{
	int r;
1946
	int srcu_idx;
1947

1948 1949 1950 1951 1952
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1953 1954
	kvmppc_core_prepare_to_enter(vcpu);

1955 1956 1957 1958 1959 1960
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1961 1962 1963 1964 1965
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1966
	if (!vcpu->kvm->arch.rma_setup_done) {
1967
		r = kvmppc_hv_setup_htab_rma(vcpu);
1968
		if (r)
1969
			goto out;
1970
	}
1971 1972 1973 1974 1975

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1976
	vcpu->arch.pgdir = current->mm->pgd;
1977
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1978

1979 1980 1981 1982 1983 1984
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1985
			kvmppc_core_prepare_to_enter(vcpu);
1986 1987 1988 1989 1990
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1991
		}
1992
	} while (is_kvmppc_resume_guest(r));
1993 1994

 out:
1995
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1996
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1997 1998 1999
	return r;
}

2000

2001
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
2002
   Assumes POWER7 or PPC970. */
2003 2004 2005 2006
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
2007 2008 2009
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page;
2030
	struct kvm_rma_info *ri = vma->vm_file->private_data;
2031

2032
	if (vmf->pgoff >= kvm_rma_pages)
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
2047
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2048 2049 2050 2051 2052 2053
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
2054
	struct kvm_rma_info *ri = filp->private_data;
2055 2056 2057 2058 2059

	kvm_release_rma(ri);
	return 0;
}

2060
static const struct file_operations kvm_rma_fops = {
2061 2062 2063 2064
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

2065 2066
static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
				      struct kvm_allocate_rma *ret)
2067 2068
{
	long fd;
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	struct kvm_rma_info *ri;
	/*
	 * Only do this on PPC970 in HV mode
	 */
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_201))
		return -EINVAL;

	if (!kvm_rma_pages)
		return -EINVAL;
2079 2080 2081 2082 2083

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

2084
	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
2085 2086 2087
	if (fd < 0)
		kvm_release_rma(ri);

2088
	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
2089 2090 2091
	return fd;
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
2102
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2103 2104 2105 2106 2107 2108 2109
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2110 2111 2112
	(*sps)++;
}

2113 2114
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2132 2133 2134
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2135 2136
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2137 2138 2139 2140 2141 2142 2143 2144
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2145
	if (log->slot >= KVM_USER_MEM_SLOTS)
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2156
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

2170
static void unpin_slot(struct kvm_memory_slot *memslot)
2171
{
2172 2173 2174
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

2190 2191
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2192 2193 2194 2195
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2196
	}
2197 2198 2199 2200 2201 2202 2203
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

2204 2205
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2206 2207 2208 2209 2210
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
2211

2212 2213
	return 0;
}
2214

2215 2216 2217
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
2218
{
2219
	unsigned long *phys;
2220

2221 2222 2223 2224 2225 2226 2227
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
2228
	}
2229 2230

	return 0;
2231 2232
}

2233 2234 2235
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
2236
{
2237 2238 2239
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

2240
	if (npages && old->npages) {
2241 2242 2243 2244 2245 2246 2247 2248 2249
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
2250 2251
}

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

2278 2279 2280 2281 2282
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

2283
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2284 2285 2286
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
2287
	struct kvm_rma_info *ri = NULL;
2288 2289 2290
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
2291 2292
	unsigned long lpcr = 0, senc;
	unsigned long lpcr_mask = 0;
2293 2294 2295 2296
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
2297
	unsigned long i, npages;
2298
	int srcu_idx;
2299 2300 2301 2302

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
2303

2304 2305 2306 2307 2308 2309 2310 2311 2312
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

2313
	/* Look up the memslot for guest physical address 0 */
2314
	srcu_idx = srcu_read_lock(&kvm->srcu);
2315
	memslot = gfn_to_memslot(kvm, 0);
2316

2317 2318 2319
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2320
		goto out_srcu;
2321 2322 2323 2324 2325 2326 2327 2328 2329

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
2330
	porder = __ilog2(psize);
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
2344
			goto out_srcu;
2345 2346
		}

2347 2348 2349 2350
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
2351
			goto out_srcu;
2352

2353
		/* Update VRMASD field in the LPCR */
2354
		senc = slb_pgsize_encoding(psize);
2355 2356
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2357 2358 2359
		lpcr_mask = LPCR_VRMASD;
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
2360 2361

		/* Create HPTEs in the hash page table for the VRMA */
2362
		kvmppc_map_vrma(vcpu, memslot, porder);
2363 2364 2365

	} else {
		/* Set up to use an RMO region */
2366
		rma_size = kvm_rma_pages;
2367 2368 2369
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
2370
		rmls = lpcr_rmls(rma_size);
2371
		err = -EINVAL;
2372
		if ((long)rmls < 0) {
2373
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2374
			goto out_srcu;
2375 2376 2377
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
2378 2379 2380 2381

		/* Update LPCR and RMOR */
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
2382 2383 2384
			lpcr_mask = (1ul << HID4_RMLS0_SH) |
				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2385 2386 2387 2388 2389 2390
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
2391 2392
			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
			lpcr = rmls << LPCR_RMLS_SH;
2393
			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2394
		}
2395
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2396 2397
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

2398
		/* Initialize phys addrs of pages in RMO */
2399
		npages = kvm_rma_pages;
2400
		porder = __ilog2(npages);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
2411 2412
	}

2413 2414
	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);

2415 2416 2417 2418
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
2419 2420
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
2421 2422 2423
 out:
	mutex_unlock(&kvm->lock);
	return err;
2424

2425 2426
 up_out:
	up_read(&current->mm->mmap_sem);
2427
	goto out_srcu;
2428 2429
}

2430
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2431
{
2432
	unsigned long lpcr, lpid;
2433

2434 2435 2436
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
2437
	if ((long)lpid < 0)
2438 2439
		return -ENOMEM;
	kvm->arch.lpid = lpid;
2440

2441 2442 2443 2444 2445 2446 2447
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

2448 2449 2450 2451
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

2452 2453
	kvm->arch.rma = NULL;

2454
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2469 2470 2471
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2472 2473 2474
		/* On POWER8 turn on online bit to enable PURR/SPURR */
		if (cpu_has_feature(CPU_FTR_ARCH_207S))
			lpcr |= LPCR_ONL;
2475 2476
	}
	kvm->arch.lpcr = lpcr;
2477

2478
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2479
	spin_lock_init(&kvm->arch.slot_phys_lock);
2480 2481

	/*
2482 2483
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
2484
	 */
2485
	kvm_hv_vm_activated();
2486

2487
	return 0;
2488 2489
}

2490 2491 2492 2493
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

2494 2495 2496 2497 2498 2499
	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
			struct kvmppc_vcore *vc = kvm->arch.vcores[i];
			free_pages((unsigned long)vc->mpp_buffer,
				   MPP_BUFFER_ORDER);
		}
2500
		kfree(kvm->arch.vcores[i]);
2501
	}
2502 2503 2504
	kvm->arch.online_vcores = 0;
}

2505
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2506
{
2507
	kvm_hv_vm_deactivated();
2508

2509
	kvmppc_free_vcores(kvm);
2510 2511 2512 2513 2514
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

2515 2516 2517
	kvmppc_free_hpt(kvm);
}

2518 2519 2520
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
2521
{
2522
	return EMULATE_FAIL;
2523 2524
}

2525 2526
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
2527 2528 2529 2530
{
	return EMULATE_FAIL;
}

2531 2532
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
2533 2534 2535 2536
{
	return EMULATE_FAIL;
}

2537
static int kvmppc_core_check_processor_compat_hv(void)
2538
{
2539 2540 2541
	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return -EIO;
	return 0;
2542 2543
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_ALLOCATE_RMA: {
		struct kvm_allocate_rma rma;
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
			r = -EFAULT;
		break;
	}

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
2630
	unsigned int hcall;
2631

2632 2633 2634 2635 2636
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
2637 2638
}

2639
static struct kvmppc_ops kvm_ops_hv = {
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2671
	.hcall_implemented = kvmppc_hcall_impl_hv,
2672 2673 2674
};

static int kvmppc_book3s_init_hv(void)
2675 2676
{
	int r;
2677 2678 2679 2680 2681
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
2682
		return -ENODEV;
2683

2684 2685
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
2686

2687 2688
	init_default_hcalls();

2689
	r = kvmppc_mmu_hv_init();
2690 2691 2692
	return r;
}

2693
static void kvmppc_book3s_exit_hv(void)
2694
{
2695
	kvmppc_hv_ops = NULL;
2696 2697
}

2698 2699
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
2700
MODULE_LICENSE("GPL");
2701 2702
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");