book3s_hv.c 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34 35 36 37 38 39 40 41 42 43 44 45

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
46
#include <asm/cputhreads.h>
47
#include <asm/page.h>
48
#include <asm/hvcall.h>
49
#include <asm/switch_to.h>
50
#include <asm/smp.h>
51 52 53
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
54
#include <linux/hugetlb.h>
55 56 57 58 59

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

60
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
61
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
62

63 64
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
65 66 67 68
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->stolen_tb += mftb() - vc->preempt_tb;
69 70 71 72
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
73 74 75 76
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
77 78 79 80 81
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
82
	kvmppc_end_cede(vcpu);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
119
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
120 121 122
	       vcpu->arch.last_inst);
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

177 178 179 180 181
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
182
	unsigned long len, nb;
183 184
	void *va;
	struct kvm_vcpu *tvcpu;
185 186 187
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
188 189 190 191 192

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

193 194 195 196 197
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
198
			return H_PARAMETER;
199 200

		/* convert logical addr to kernel addr and read length */
201 202
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
203
			return H_PARAMETER;
204 205
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
206
		else
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
			len = ((struct reg_vpa *)va)->length.word;
		kvmppc_unpin_guest_page(kvm, va);

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
225
			break;
226 227 228 229 230 231
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
232
			break;
233 234 235 236 237
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
238
			break;
239 240 241 242 243 244 245 246 247

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
248
			break;
249 250 251 252 253 254 255 256 257 258

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
259
			break;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
280
	}
281

282 283
	spin_unlock(&tvcpu->arch.vpa_update_lock);

284
	return err;
285 286
}

287
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
288
{
289
	struct kvm *kvm = vcpu->kvm;
290 291
	void *va;
	unsigned long nb;
292
	unsigned long gpa;
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
314
			kvmppc_unpin_guest_page(kvm, va);
315 316 317 318 319 320 321 322 323 324 325
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
		kvmppc_unpin_guest_page(kvm, va);
		va = NULL;
326 327 328 329 330 331 332 333 334 335 336 337
	}
	if (vpap->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
	vpap->pinned_addr = va;
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
338
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
339 340
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
341 342
	}
	if (vcpu->arch.dtl.update_pending) {
343
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
344 345 346 347
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
348
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
349 350 351
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
	unsigned long old_stolen;

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
	old_stolen = vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = vc->stolen_tb;
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
	dt->timebase = mftb();
	dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
}

381 382 383 384 385
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
386
	int idx;
387 388

	switch (req) {
389
	case H_ENTER:
390
		idx = srcu_read_lock(&vcpu->kvm->srcu);
391 392 393 394
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
395
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
396
		break;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

430 431 432 433
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;
434
	int srcu_idx;
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
487 488 489 490 491
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
492 493
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
494
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
495 496
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
497
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
498 499
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
500
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
501 502
		r = kvmppc_book3s_hv_page_fault(run, vcpu,
				kvmppc_get_pc(vcpu), 0);
503
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

563
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
564
{
565 566
	int r = 0;
	long int i;
567

568
	switch (id) {
569
	case KVM_REG_PPC_HIOR:
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
597
		break;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			val->vsxval[0] = vcpu->arch.vsr[2 * i];
			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
636
	default:
637
		r = -EINVAL;
638 639 640 641 642 643
		break;
	}

	return r;
}

644
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
645
{
646 647
	int r = 0;
	long int i;
648
	unsigned long addr, len;
649

650
	switch (id) {
651 652
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
653
		if (set_reg_val(id, *val))
654 655
			r = -EINVAL;
		break;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			vcpu->arch.vsr[2 * i] = val->vsxval[0];
			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (len < sizeof(struct dtl_entry))
			break;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
730
	default:
731
		r = -EINVAL;
732 733 734 735 736 737
		break;
	}

	return r;
}

738 739
int kvmppc_core_check_processor_compat(void)
{
740
	if (cpu_has_feature(CPU_FTR_HVMODE))
741 742 743 744 745 746 747
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
748 749 750
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
751

752 753 754 755 756
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
757
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
758 759 760 761 762 763 764 765 766 767 768 769 770 771
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
772
	spin_lock_init(&vcpu->arch.vpa_update_lock);
773 774 775

	kvmppc_mmu_book3s_hv_init(vcpu);

776
	/*
777
	 * We consider the vcpu stopped until we see the first run ioctl for it.
778
	 */
779
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
780 781 782 783 784 785 786 787 788 789

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
790
			init_waitqueue_head(&vcore->wq);
791
			vcore->preempt_tb = mftb();
792 793 794 795 796 797 798 799 800 801 802 803
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
804
	vcpu->arch.stolen_logged = vcore->stolen_tb;
805

806 807 808
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

809 810 811
	return vcpu;

free_vcpu:
812
	kmem_cache_free(kvm_vcpu_cache, vcpu);
813 814 815 816 817 818
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
819 820 821 822 823 824 825 826
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.dtl.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
	if (vcpu->arch.slb_shadow.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
	if (vcpu->arch.vpa.pinned_addr)
		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
	spin_unlock(&vcpu->arch.vpa_update_lock);
827
	kvm_vcpu_uninit(vcpu);
828
	kmem_cache_free(kvm_vcpu_cache, vcpu);
829 830
}

831
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
832
{
833
	unsigned long dec_nsec, now;
834

835 836 837 838
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
839
		kvmppc_core_prepare_to_enter(vcpu);
840
		return;
841
	}
842 843 844 845 846
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
847 848
}

849
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
850
{
851 852 853 854 855
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
856 857
}

858
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
859
extern void xics_wake_cpu(int cpu);
860

861 862
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
863
{
864 865 866 867
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
868
	++vc->n_busy;
869 870 871
	list_del(&vcpu->arch.run_list);
}

872 873 874 875 876 877 878 879 880
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
881
	tpaca->kvm_hstate.kvm_vcpu = NULL;
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

912 913 914 915 916 917
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

918 919 920 921
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
922 923 924 925
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
926 927
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
928
	smp_wmb();
929
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
930 931 932
	if (vcpu->arch.ptid) {
		xics_wake_cpu(cpu);
		++vc->n_woken;
933
	}
934 935
#endif
}
936

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
956 957
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
958 959 960 961 962 963 964 965 966 967 968
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
969 970 971 972 973 974 975 976 977 978 979

	/* Grab all hw threads so they can't go into the kernel */
	for (thr = 1; thr < threads_per_core; ++thr) {
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
980 981 982 983 984 985 986 987 988
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
989
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
990 991
	long ret;
	u64 now;
992
	int ptid, i, need_vpa_update;
993
	int srcu_idx;
994 995

	/* don't start if any threads have a signal pending */
996 997
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
998 999
		if (signal_pending(vcpu->arch.run_task))
			return 0;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		need_vpa_update |= vcpu->arch.vpa.update_pending |
			vcpu->arch.slb_shadow.update_pending |
			vcpu->arch.dtl.update_pending;
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
	vc->vcore_state = VCORE_RUNNING;
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			kvmppc_update_vpas(vcpu);
		spin_lock(&vc->lock);
	}
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
	if (!vcpu0)
		return 0;		/* nothing to run */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 */
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1056
	vc->stolen_tb += mftb() - vc->preempt_tb;
1057
	vc->pcpu = smp_processor_id();
1058
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1059
		kvmppc_start_thread(vcpu);
1060
		kvmppc_create_dtl_entry(vcpu, vc);
1061
	}
1062

1063
	preempt_disable();
1064
	spin_unlock(&vc->lock);
1065

1066
	kvm_guest_enter();
1067 1068 1069

	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);

1070
	__kvmppc_vcore_entry(NULL, vcpu0);
1071 1072
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1073

1074
	spin_lock(&vc->lock);
1075 1076 1077 1078
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1079 1080 1081
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1082
	vc->vcore_state = VCORE_EXITING;
1083 1084
	spin_unlock(&vc->lock);

1085 1086
	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);

1087 1088
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1089 1090 1091 1092 1093 1094
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

	now = get_tb();
1095 1096 1097 1098 1099
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1100 1101 1102 1103 1104 1105

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

1106 1107
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1108 1109 1110 1111 1112 1113 1114

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1115
	}
1116

1117
	spin_lock(&vc->lock);
1118
 out:
1119
	vc->vcore_state = VCORE_INACTIVE;
1120
	vc->preempt_tb = mftb();
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}

	return 1;
}

1132 1133 1134 1135 1136
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1137 1138 1139
{
	DEFINE_WAIT(wait);

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);
	struct kvm_vcpu *v;
	int all_idle = 1;

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
		if (!v->arch.ceded || v->arch.pending_exceptions) {
			all_idle = 0;
			break;
		}
1164
	}
1165 1166 1167 1168 1169 1170
	if (all_idle)
		schedule();
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1171

1172 1173 1174 1175 1176 1177
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1188
	vcpu->arch.ceded = 0;
1189 1190
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1191 1192
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1193 1194 1195
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
			kvmppc_start_thread(vcpu);
1206 1207
		}

1208 1209
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
1210

1211 1212 1213 1214 1215 1216 1217 1218
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
1219
		vc->runner = vcpu;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1230
			kvmppc_core_prepare_to_enter(v);
1231 1232 1233 1234 1235 1236 1237 1238
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1239
		vc->runner = NULL;
1240
	}
1241

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	if (signal_pending(current)) {
		if (vc->vcore_state == VCORE_RUNNING ||
		    vc->vcore_state == VCORE_EXITING) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
1255 1256 1257 1258
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1259 1260
}

1261 1262 1263 1264
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;

1265 1266 1267 1268 1269
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1270 1271
	kvmppc_core_prepare_to_enter(vcpu);

1272 1273 1274 1275 1276 1277
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1278 1279 1280 1281 1282
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1283
	if (!vcpu->kvm->arch.rma_setup_done) {
1284
		r = kvmppc_hv_setup_htab_rma(vcpu);
1285
		if (r)
1286
			goto out;
1287
	}
1288 1289 1290 1291 1292

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1293
	vcpu->arch.pgdir = current->mm->pgd;
1294

1295 1296 1297 1298 1299 1300
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1301
			kvmppc_core_prepare_to_enter(vcpu);
1302 1303
		}
	} while (r == RESUME_GUEST);
1304 1305 1306

 out:
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1307 1308 1309
	return r;
}

1310

1311
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1312
   Assumes POWER7 or PPC970. */
1313 1314 1315 1316
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1317 1318 1319
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1339
	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1364
	struct kvmppc_linear_info *ri = filp->private_data;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
1377
	struct kvmppc_linear_info *ri;
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
	(*sps)->enc[0].pte_enc = def->penc;
	(*sps)++;
}

int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1447
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

1473
static void unpin_slot(struct kvm_memory_slot *memslot)
1474
{
1475 1476 1477
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
			      struct kvm_memory_slot *dont)
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1499
	}
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
			       unsigned long npages)
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1514

1515 1516
	return 0;
}
1517

1518 1519 1520
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				      struct kvm_memory_slot *memslot,
				      struct kvm_userspace_memory_region *mem)
1521
{
1522
	unsigned long *phys;
1523

1524 1525 1526 1527 1528 1529 1530
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1531
	}
1532 1533

	return 0;
1534 1535 1536
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
1537 1538
				      struct kvm_userspace_memory_region *mem,
				      struct kvm_memory_slot old)
1539
{
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

	if (npages && old.npages) {
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1553 1554
}

1555
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1556 1557 1558
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1559
	struct kvmppc_linear_info *ri = NULL;
1560 1561 1562
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1563
	unsigned long lpcr, senc;
1564 1565 1566 1567
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1568
	unsigned long i, npages;
1569
	int srcu_idx;
1570 1571 1572 1573

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

1584
	/* Look up the memslot for guest physical address 0 */
1585
	srcu_idx = srcu_read_lock(&kvm->srcu);
1586
	memslot = gfn_to_memslot(kvm, 0);
1587

1588 1589 1590
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1591
		goto out_srcu;
1592 1593 1594 1595 1596 1597 1598 1599 1600

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1601
	porder = __ilog2(psize);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
1615
			goto out_srcu;
1616 1617
		}

1618 1619 1620 1621
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
1622
			goto out_srcu;
1623

1624
		/* Update VRMASD field in the LPCR */
1625
		senc = slb_pgsize_encoding(psize);
1626 1627
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1628 1629
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1630 1631 1632
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1633
		kvmppc_map_vrma(vcpu, memslot, porder);
1634 1635 1636 1637 1638 1639 1640

	} else {
		/* Set up to use an RMO region */
		rma_size = ri->npages;
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1641
		rmls = lpcr_rmls(rma_size);
1642
		err = -EINVAL;
1643
		if (rmls < 0) {
1644
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1645
			goto out_srcu;
1646 1647 1648
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1667
		kvm->arch.lpcr = lpcr;
1668
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1669 1670
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1671
		/* Initialize phys addrs of pages in RMO */
1672 1673
		npages = ri->npages;
		porder = __ilog2(npages);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
1684 1685
	}

1686 1687 1688 1689
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
1690 1691
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1692 1693 1694
 out:
	mutex_unlock(&kvm->lock);
	return err;
1695

1696 1697 1698
 up_out:
	up_read(&current->mm->mmap_sem);
	goto out;
1699 1700 1701 1702
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
1703
	unsigned long lpcr, lpid;
1704

1705 1706 1707 1708 1709 1710
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
	if (lpid < 0)
		return -ENOMEM;
	kvm->arch.lpid = lpid;
1711

1712
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1713 1714 1715

	kvm->arch.rma = NULL;

1716
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1731 1732 1733
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1734 1735
	}
	kvm->arch.lpcr = lpcr;
1736

1737
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1738
	spin_lock_init(&kvm->arch.slot_phys_lock);
1739 1740 1741 1742 1743 1744 1745

	/*
	 * Don't allow secondary CPU threads to come online
	 * while any KVM VMs exist.
	 */
	inhibit_secondary_onlining();

1746
	return 0;
1747 1748 1749 1750
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1751 1752
	uninhibit_secondary_onlining();

1753 1754 1755 1756 1757
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1758
	kvmppc_free_hpt(kvm);
1759
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

1774
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1775 1776 1777 1778
{
	return EMULATE_FAIL;
}

1779
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);