book3s_hv.c 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33 34 35 36 37 38 39 40 41 42 43 44

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
45
#include <asm/cputhreads.h>
46
#include <asm/page.h>
47
#include <asm/hvcall.h>
48 49 50 51 52
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>

53 54 55 56 57 58 59 60 61 62
/*
 * For now, limit memory to 64GB and require it to be large pages.
 * This value is chosen because it makes the ram_pginfo array be
 * 64kB in size, which is about as large as we want to be trying
 * to allocate with kmalloc.
 */
#define MAX_MEM_ORDER		36

#define LARGE_PAGE_ORDER	24	/* 16MB pages */

63 64 65 66
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

67 68
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);

69 70 71
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	local_paca->kvm_hstate.kvm_vcpu = vcpu;
72
	local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
73 74 75 76 77 78 79 80 81
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
82
	kvmppc_end_cede(vcpu);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
119
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
120 121 122
	       vcpu->arch.last_inst);
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
	vpa->shared_proc = 1;
	vpa->yield_count = 1;
}

static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
	unsigned long pg_index, ra, len;
	unsigned long pg_offset;
	void *va;
	struct kvm_vcpu *tvcpu;

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

	flags >>= 63 - 18;
	flags &= 7;
	if (flags == 0 || flags == 4)
		return H_PARAMETER;
	if (flags < 4) {
		if (vpa & 0x7f)
			return H_PARAMETER;
		/* registering new area; convert logical addr to real */
		pg_index = vpa >> kvm->arch.ram_porder;
		pg_offset = vpa & (kvm->arch.ram_psize - 1);
		if (pg_index >= kvm->arch.ram_npages)
			return H_PARAMETER;
		if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
			return H_PARAMETER;
		ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
		ra |= pg_offset;
		va = __va(ra);
		if (flags <= 1)
			len = *(unsigned short *)(va + 4);
		else
			len = *(unsigned int *)(va + 4);
		if (pg_offset + len > kvm->arch.ram_psize)
			return H_PARAMETER;
		switch (flags) {
		case 1:		/* register VPA */
			if (len < 640)
				return H_PARAMETER;
			tvcpu->arch.vpa = va;
			init_vpa(vcpu, va);
			break;
		case 2:		/* register DTL */
			if (len < 48)
				return H_PARAMETER;
			if (!tvcpu->arch.vpa)
				return H_RESOURCE;
			len -= len % 48;
			tvcpu->arch.dtl = va;
			tvcpu->arch.dtl_end = va + len;
			break;
		case 3:		/* register SLB shadow buffer */
			if (len < 8)
				return H_PARAMETER;
			if (!tvcpu->arch.vpa)
				return H_RESOURCE;
			tvcpu->arch.slb_shadow = va;
			len = (len - 16) / 16;
			tvcpu->arch.slb_shadow = va;
			break;
		}
	} else {
		switch (flags) {
		case 5:		/* unregister VPA */
			if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
				return H_RESOURCE;
			tvcpu->arch.vpa = NULL;
			break;
		case 6:		/* unregister DTL */
			tvcpu->arch.dtl = NULL;
			break;
		case 7:		/* unregister SLB shadow buffer */
			tvcpu->arch.slb_shadow = NULL;
			break;
		}
	}
	return H_SUCCESS;
}

int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;

	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
	 * We get these next two if the guest does a bad real-mode access,
	 * as we have enabled VRMA (virtualized real mode area) mode in the
	 * LPCR.  We just generate an appropriate DSI/ISI to the guest.
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
		vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
					0x08000000);
		r = RESUME_GUEST;
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i;

	sregs->pvr = vcpu->arch.pvr;

	memset(sregs, 0, sizeof(struct kvm_sregs));
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

int kvmppc_core_check_processor_compat(void)
{
397
	if (cpu_has_feature(CPU_FTR_HVMODE))
398 399 400 401 402 403 404
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
405 406 407
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
408

409 410 411 412 413
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.last_cpu = -1;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);

	kvmppc_mmu_book3s_hv_init(vcpu);

432
	/*
433
	 * We consider the vcpu stopped until we see the first run ioctl for it.
434
	 */
435
	vcpu->arch.state = KVMPPC_VCPU_STOPPED;
436 437 438 439 440 441 442 443 444 445

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
446
			init_waitqueue_head(&vcore->wq);
447 448 449 450 451 452 453 454 455 456 457 458 459
		}
		kvm->arch.vcores[core] = vcore;
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;

460 461 462
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

463 464 465 466 467 468 469 470 471 472 473 474 475 476
	return vcpu;

free_vcpu:
	kfree(vcpu);
out:
	return ERR_PTR(err);
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_vcpu_uninit(vcpu);
	kfree(vcpu);
}

477
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
478
{
479
	unsigned long dec_nsec, now;
480

481 482 483 484 485 486
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
		kvmppc_core_deliver_interrupts(vcpu);
		return;
487
	}
488 489 490 491 492
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
493 494
}

495
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
496
{
497 498 499 500 501
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
502 503
}

504
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
505
extern void xics_wake_cpu(int cpu);
506

507 508
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
509
{
510
	struct kvm_vcpu *v;
511

512 513 514 515
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	--vc->n_runnable;
516
	++vc->n_busy;
517 518 519 520 521 522 523 524 525 526 527 528 529
	/* decrement the physical thread id of each following vcpu */
	v = vcpu;
	list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
		--v->arch.ptid;
	list_del(&vcpu->arch.run_list);
}

static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

530 531 532 533
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
534 535 536 537
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
538 539
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
540
	smp_wmb();
541
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
542 543 544 545 546
	if (vcpu->arch.ptid) {
		tpaca->cpu_start = 0x80;
		wmb();
		xics_wake_cpu(cpu);
		++vc->n_woken;
547
	}
548 549
#endif
}
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
 * this core are off-line.
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
591
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
592 593
	long ret;
	u64 now;
594
	int ptid;
595 596 597 598 599

	/* don't start if any threads have a signal pending */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (signal_pending(vcpu->arch.run_task))
			return 0;
600 601 602 603 604 605 606

	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 * XXX we should also block attempts to bring any
	 * secondary threads online.
	 */
607 608 609 610
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
611 612
	}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
	if (!vcpu0)
		return 0;		/* nothing to run */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

632 633 634
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
635
	vc->vcore_state = VCORE_RUNNING;
636 637
	vc->in_guest = 0;
	vc->pcpu = smp_processor_id();
638
	vc->napping_threads = 0;
639 640 641
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		kvmppc_start_thread(vcpu);

642
	preempt_disable();
643
	spin_unlock(&vc->lock);
644

645
	kvm_guest_enter();
646
	__kvmppc_vcore_entry(NULL, vcpu0);
647

648
	spin_lock(&vc->lock);
649 650 651 652
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
653 654 655
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
656
	vc->vcore_state = VCORE_EXITING;
657 658 659 660
	spin_unlock(&vc->lock);

	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
661 662 663 664 665 666
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

	now = get_tb();
667 668 669 670 671
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
672 673 674 675 676 677

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

678 679
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
680 681 682 683 684 685 686

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
687
	}
688

689
	spin_lock(&vc->lock);
690
 out:
691
	vc->vcore_state = VCORE_INACTIVE;
692 693 694 695 696 697 698 699 700 701 702
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}

	return 1;
}

703 704 705 706 707
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
708 709 710
{
	DEFINE_WAIT(wait);

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);
	struct kvm_vcpu *v;
	int all_idle = 1;

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
	list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
		if (!v->arch.ceded || v->arch.pending_exceptions) {
			all_idle = 0;
			break;
		}
735
	}
736 737 738 739 740 741
	if (all_idle)
		schedule();
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
742

743 744 745 746 747 748
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	int prev_state;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
749

750 751 752 753 754 755 756 757 758
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
759
	vcpu->arch.ceded = 0;
760 761
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
762 763
	prev_state = vcpu->arch.state;
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
764 765 766
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

767 768 769 770 771 772 773 774 775 776
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
	if (prev_state == KVMPPC_VCPU_STOPPED) {
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
			kvmppc_start_thread(vcpu);
777 778
		}

779 780
	} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
		--vc->n_busy;
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
		if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		n_ceded = 0;
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
			n_ceded += v->arch.ceded;
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);

		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
			kvmppc_core_deliver_interrupts(v);
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
	}
810

811 812 813 814 815 816 817 818 819 820 821 822 823
	if (signal_pending(current)) {
		if (vc->vcore_state == VCORE_RUNNING ||
		    vc->vcore_state == VCORE_EXITING) {
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
			spin_lock(&vc->lock);
		}
		if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
			kvmppc_remove_runnable(vc, vcpu);
			vcpu->stat.signal_exits++;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			vcpu->arch.ret = -EINTR;
		}
824 825 826 827
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
828 829
}

830 831 832 833
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;

834 835 836 837 838
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

	/* On PPC970, check that we have an RMA region */
	if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
		return -EPERM;

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;

854 855 856 857 858 859 860 861 862 863 864 865
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
			kvmppc_core_deliver_interrupts(vcpu);
		}
	} while (r == RESUME_GUEST);
	return r;
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
static long kvmppc_stt_npages(unsigned long window_size)
{
	return ALIGN((window_size >> SPAPR_TCE_SHIFT)
		     * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
}

static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
{
	struct kvm *kvm = stt->kvm;
	int i;

	mutex_lock(&kvm->lock);
	list_del(&stt->list);
	for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
		__free_page(stt->pages[i]);
	kfree(stt);
	mutex_unlock(&kvm->lock);

	kvm_put_kvm(kvm);
}

static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
	struct page *page;

	if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
		return VM_FAULT_SIGBUS;

	page = stt->pages[vmf->pgoff];
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
	.fault = kvm_spapr_tce_fault,
};

static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_ops = &kvm_spapr_tce_vm_ops;
	return 0;
}

static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
{
	struct kvmppc_spapr_tce_table *stt = filp->private_data;

	release_spapr_tce_table(stt);
	return 0;
}

static struct file_operations kvm_spapr_tce_fops = {
	.mmap           = kvm_spapr_tce_mmap,
	.release	= kvm_spapr_tce_release,
};

long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
				   struct kvm_create_spapr_tce *args)
{
	struct kvmppc_spapr_tce_table *stt = NULL;
	long npages;
	int ret = -ENOMEM;
	int i;

	/* Check this LIOBN hasn't been previously allocated */
	list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
		if (stt->liobn == args->liobn)
			return -EBUSY;
	}

	npages = kvmppc_stt_npages(args->window_size);

	stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
		      GFP_KERNEL);
	if (!stt)
		goto fail;

	stt->liobn = args->liobn;
	stt->window_size = args->window_size;
	stt->kvm = kvm;

	for (i = 0; i < npages; i++) {
		stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
		if (!stt->pages[i])
			goto fail;
	}

	kvm_get_kvm(kvm);

	mutex_lock(&kvm->lock);
	list_add(&stt->list, &kvm->arch.spapr_tce_tables);

	mutex_unlock(&kvm->lock);

	return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
				stt, O_RDWR);

fail:
	if (stt) {
		for (i = 0; i < npages; i++)
			if (stt->pages[i])
				__free_page(stt->pages[i]);

		kfree(stt);
	}
	return ret;
}

976
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
977
   Assumes POWER7 or PPC970. */
978 979 980 981
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
982 983 984
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct kvmppc_rma_info *ri = vma->vm_file->private_data;
	struct page *page;

	if (vmf->pgoff >= ri->npages)
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
	struct kvmppc_rma_info *ri = filp->private_data;

	kvm_release_rma(ri);
	return 0;
}

static struct file_operations kvm_rma_fops = {
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
	struct kvmppc_rma_info *ri;
	long fd;

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
	if (fd < 0)
		kvm_release_rma(ri);

	ret->rma_size = ri->npages << PAGE_SHIFT;
	return fd;
}

static struct page *hva_to_page(unsigned long addr)
{
	struct page *page[1];
	int npages;

	might_sleep();

	npages = get_user_pages_fast(addr, 1, 1, page);

	if (unlikely(npages != 1))
		return 0;

	return page[0];
}

1072 1073 1074
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	unsigned long psize, porder;
	unsigned long i, npages, totalpages;
	unsigned long pg_ix;
	struct kvmppc_pginfo *pginfo;
	unsigned long hva;
	struct kvmppc_rma_info *ri = NULL;
	struct page *page;

	/* For now, only allow 16MB pages */
	porder = LARGE_PAGE_ORDER;
	psize = 1ul << porder;
	if ((mem->memory_size & (psize - 1)) ||
	    (mem->guest_phys_addr & (psize - 1))) {
		pr_err("bad memory_size=%llx @ %llx\n",
		       mem->memory_size, mem->guest_phys_addr);
		return -EINVAL;
	}

	npages = mem->memory_size >> porder;
	totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;

	/* More memory than we have space to track? */
	if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
		return -EINVAL;

	/* Do we already have an RMA registered? */
	if (mem->guest_phys_addr == 0 && kvm->arch.rma)
		return -EINVAL;

	if (totalpages > kvm->arch.ram_npages)
		kvm->arch.ram_npages = totalpages;

	/* Is this one of our preallocated RMAs? */
	if (mem->guest_phys_addr == 0) {
		struct vm_area_struct *vma;

		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, mem->userspace_addr);
		if (vma && vma->vm_file &&
		    vma->vm_file->f_op == &kvm_rma_fops &&
		    mem->userspace_addr == vma->vm_start)
			ri = vma->vm_file->private_data;
		up_read(&current->mm->mmap_sem);
1118 1119 1120 1121
		if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("CPU requires an RMO\n");
			return -EINVAL;
		}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	}

	if (ri) {
		unsigned long rma_size;
		unsigned long lpcr;
		long rmls;

		rma_size = ri->npages << PAGE_SHIFT;
		if (rma_size > mem->memory_size)
			rma_size = mem->memory_size;
		rmls = lpcr_rmls(rma_size);
		if (rmls < 0) {
			pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
			return -EINVAL;
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
		kvm->arch.n_rma_pages = rma_size >> porder;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
		}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		kvm->arch.lpcr = lpcr;
		pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
	}

	pg_ix = mem->guest_phys_addr >> porder;
	pginfo = kvm->arch.ram_pginfo + pg_ix;
	for (i = 0; i < npages; ++i, ++pg_ix) {
		if (ri && pg_ix < kvm->arch.n_rma_pages) {
			pginfo[i].pfn = ri->base_pfn +
				(pg_ix << (porder - PAGE_SHIFT));
			continue;
		}
		hva = mem->userspace_addr + (i << porder);
		page = hva_to_page(hva);
		if (!page) {
			pr_err("oops, no pfn for hva %lx\n", hva);
			goto err;
		}
		/* Check it's a 16MB page */
		if (!PageHead(page) ||
		    compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
			pr_err("page at %lx isn't 16MB (o=%d)\n",
			       hva, compound_order(page));
			goto err;
		}
		pginfo[i].pfn = page_to_pfn(page);
	}

1187
	return 0;
1188 1189 1190

 err:
	return -EINVAL;
1191 1192 1193 1194 1195
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem)
{
1196 1197
	if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
	    !kvm->arch.rma)
1198 1199 1200 1201 1202 1203
		kvmppc_map_vrma(kvm, mem);
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
	long r;
1204 1205 1206
	unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
	long err = -ENOMEM;
	unsigned long lpcr;
1207 1208 1209

	/* Allocate hashed page table */
	r = kvmppc_alloc_hpt(kvm);
1210 1211
	if (r)
		return r;
1212

1213
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
				       GFP_KERNEL);
	if (!kvm->arch.ram_pginfo) {
		pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
		       npages * sizeof(struct kvmppc_pginfo));
		goto out_free;
	}

	kvm->arch.ram_npages = 0;
	kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
	kvm->arch.ram_porder = LARGE_PAGE_ORDER;
	kvm->arch.rma = NULL;
	kvm->arch.n_rma_pages = 0;

1229
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		unsigned long lpid = kvm->arch.lpid;
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
			LPCR_VPM0 | LPCR_VRMA_L;
	}
	kvm->arch.lpcr = lpcr;
1248

1249
	return 0;
1250 1251 1252 1253

 out_free:
	kvmppc_free_hpt(kvm);
	return err;
1254 1255 1256 1257
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	struct kvmppc_pginfo *pginfo;
	unsigned long i;

	if (kvm->arch.ram_pginfo) {
		pginfo = kvm->arch.ram_pginfo;
		kvm->arch.ram_pginfo = NULL;
		for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
			if (pginfo[i].pfn)
				put_page(pfn_to_page(pginfo[i].pfn));
		kfree(pginfo);
	}
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1274
	kvmppc_free_hpt(kvm);
1275
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
{
	return EMULATE_FAIL;
}

int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);