book3s_hv.c 65.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35 36 37 38 39 40 41 42 43 44 45 46

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
47
#include <asm/cputhreads.h>
48
#include <asm/page.h>
49
#include <asm/hvcall.h>
50
#include <asm/switch_to.h>
51
#include <asm/smp.h>
52 53 54
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
55
#include <linux/hugetlb.h>
56
#include <linux/module.h>
57

58 59
#include "book3s.h"

60 61 62 63
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

64 65 66
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

67 68 69
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

70 71
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

72
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
73
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
74

75
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	int me;
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

	me = get_cpu();

	/* CPU points to the first thread of the core */
	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
91
#ifdef CONFIG_PPC_ICP_NATIVE
92 93 94
		int real_cpu = cpu + vcpu->arch.ptid;
		if (paca[real_cpu].kvm_hstate.xics_phys)
			xics_wake_cpu(real_cpu);
95 96 97
		else
#endif
		if (cpu_online(cpu))
98 99 100 101 102
			smp_send_reschedule(cpu);
	}
	put_cpu();
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 * of the vcpu that has taken responsibility for running the vcore
 * (i.e. vc->runner).  The stolen times are measured in units of
 * timebase ticks.  (Note that the != TB_NIL checks below are
 * purely defensive; they should never fail.)
 */

137
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
138
{
139
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
140
	unsigned long flags;
141

142
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
143 144
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
	    vc->preempt_tb != TB_NIL) {
145
		vc->stolen_tb += mftb() - vc->preempt_tb;
146 147 148 149 150 151 152
		vc->preempt_tb = TB_NIL;
	}
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
153
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
154 155
}

156
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
157
{
158
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
159
	unsigned long flags;
160

161
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
162 163
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
164 165
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
166
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
167 168
}

169
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
170 171
{
	vcpu->arch.shregs.msr = msr;
172
	kvmppc_end_cede(vcpu);
173 174
}

175
void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
176 177 178 179
{
	vcpu->arch.pvr = pvr;
}

180 181 182 183 184 185 186 187 188 189 190
int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return -EINVAL;	/* 970 has no compat mode support */

		switch (arch_compat) {
		case PVR_ARCH_205:
191 192 193 194 195
			/*
			 * If an arch bit is set in PCR, all the defined
			 * higher-order arch bits also have to be set.
			 */
			pcr = PCR_ARCH_206 | PCR_ARCH_205;
196 197 198
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
199 200 201
			pcr = PCR_ARCH_206;
			break;
		case PVR_ARCH_207:
202 203 204 205
			break;
		default:
			return -EINVAL;
		}
206 207 208 209 210 211 212

		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
			/* POWER7 can't emulate POWER8 */
			if (!(pcr & PCR_ARCH_206))
				return -EINVAL;
			pcr &= ~PCR_ARCH_206;
		}
213 214 215 216 217 218 219 220 221 222
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
252
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
253 254 255
	       vcpu->arch.last_inst);
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
274
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
275 276 277
	vpa->yield_count = 1;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

310 311 312 313 314
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
315
	unsigned long len, nb;
316 317
	void *va;
	struct kvm_vcpu *tvcpu;
318 319 320
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
321 322 323 324 325

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

326 327 328 329 330
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
331
			return H_PARAMETER;
332 333

		/* convert logical addr to kernel addr and read length */
334 335
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
336
			return H_PARAMETER;
337 338
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
339
		else
340
			len = ((struct reg_vpa *)va)->length.word;
341
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
358
			break;
359 360 361 362 363 364
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
365
			break;
366 367 368 369 370
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
371
			break;
372 373 374 375 376 377 378 379 380

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
381
			break;
382 383 384 385 386 387 388 389 390 391

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
392
			break;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
413
	}
414

415 416
	spin_unlock(&tvcpu->arch.vpa_update_lock);

417
	return err;
418 419
}

420
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
421
{
422
	struct kvm *kvm = vcpu->kvm;
423 424
	void *va;
	unsigned long nb;
425
	unsigned long gpa;
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
441
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
442 443 444 445 446
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
447
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
448 449 450 451 452 453 454 455 456
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
457
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
458
		va = NULL;
459 460
	}
	if (vpap->pinned_addr)
461 462 463
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
464
	vpap->pinned_addr = va;
465
	vpap->dirty = false;
466 467 468 469 470 471
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
472 473 474 475 476
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

477 478
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
479
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
480 481
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
482 483
	}
	if (vcpu->arch.dtl.update_pending) {
484
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
485 486 487 488
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
489
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
490 491 492
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;

	/*
	 * If we are the task running the vcore, then since we hold
	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
	 * can't be updated, so we don't need the tbacct_lock.
	 * If the vcore is inactive, it can't become active (since we
	 * hold the vcore lock), so the vcpu load/put functions won't
	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
	 */
	if (vc->vcore_state != VCORE_INACTIVE &&
	    vc->runner->arch.run_task != current) {
511
		spin_lock_irq(&vc->runner->arch.tbacct_lock);
512 513 514
		p = vc->stolen_tb;
		if (vc->preempt_tb != TB_NIL)
			p += now - vc->preempt_tb;
515
		spin_unlock_irq(&vc->runner->arch.tbacct_lock);
516 517 518 519 520 521
	} else {
		p = vc->stolen_tb;
	}
	return p;
}

522 523 524 525 526
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
527 528 529
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
530 531 532

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
533 534 535 536
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
537
	spin_lock_irq(&vcpu->arch.tbacct_lock);
538 539
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
540
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
541 542 543 544 545
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
546
	dt->timebase = now + vc->tb_offset;
547
	dt->enqueue_to_dispatch_time = stolen;
548 549 550 551 552 553 554 555 556
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
557
	vcpu->arch.dtl.dirty = true;
558 559
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

602 603 604 605 606
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
607
	int idx, rc;
608

609 610 611 612
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

613
	switch (req) {
614
	case H_ENTER:
615
		idx = srcu_read_lock(&vcpu->kvm->srcu);
616 617 618 619
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
620
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
621
		break;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
641 642 643 644 645 646 647 648 649
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		kvm_vcpu_yield_to(tvcpu);
650 651 652 653 654 655
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
656 657 658 659
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

660
		idx = srcu_read_lock(&vcpu->kvm->srcu);
661
		rc = kvmppc_rtas_hcall(vcpu);
662
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
663 664 665 666 667 668 669 670

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
671 672 673 674 675 676 677 678
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
679 680 681 682
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
683 684
	case H_IPOLL:
	case H_XIRR_X:
685 686 687 688
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
689 690 691 692 693 694 695 696
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

697 698 699 700 701 702 703
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
704
	case H_SET_MODE:
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

720 721
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
722 723 724 725 726 727 728 729 730 731 732 733 734 735
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
736
	case BOOK3S_INTERRUPT_H_DOORBELL:
737 738 739 740 741 742
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
743 744 745 746 747 748 749 750 751 752 753
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

773 774 775 776
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

777 778 779 780 781 782 783 784 785
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
786 787 788 789 790
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
791 792
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
793
		r = RESUME_PAGE_FAULT;
794 795
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
796 797 798
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
799 800 801 802 803 804 805
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
806 807 808 809 810 811 812 813 814 815
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		r = RESUME_GUEST;
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
	 * is prohibited by HFSCR.  We just generate a program interrupt to
	 * the guest.
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
816 817 818 819 820 821 822
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
823
		run->hw.hardware_exit_reason = vcpu->arch.trap;
824 825 826 827 828 829 830
		r = RESUME_HOST;
		break;
	}

	return r;
}

831 832
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
833 834 835 836
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
837
	sregs->pvr = vcpu->arch.pvr;
838 839 840 841 842 843 844 845
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

846 847
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
848 849 850
{
	int i, j;

851
	kvmppc_set_pvr_hv(vcpu, sregs->pvr);
852 853 854 855 856 857 858 859 860 861 862 863 864 865

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

866 867 868 869 870 871
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm *kvm = vcpu->kvm;
		struct kvm_vcpu *vcpu;
		int i;

		mutex_lock(&kvm->lock);
		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
		mutex_unlock(&kvm->lock);
	}

893 894 895
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
896
	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
897 898
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
899 900
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
901 902 903 904
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

905 906
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
907
{
908 909
	int r = 0;
	long int i;
910

911
	switch (id) {
912
	case KVM_REG_PPC_HIOR:
913 914 915 916 917
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
918 919 920
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
936
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
937 938 939 940 941 942
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
943
		break;
944 945 946 947
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
948 949 950 951 952 953
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
954 955
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
956
		break;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
992
		break;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1010 1011 1012
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1013 1014 1015
	case KVM_REG_PPC_LPCR:
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1016 1017 1018
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1082 1083 1084
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1085
	default:
1086
		r = -EINVAL;
1087 1088 1089 1090 1091 1092
		break;
	}

	return r;
}

1093 1094
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1095
{
1096 1097
	int r = 0;
	long int i;
1098
	unsigned long addr, len;
1099

1100
	switch (id) {
1101 1102
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1103
		if (set_reg_val(id, *val))
1104 1105
			r = -EINVAL;
		break;
1106 1107 1108
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1109 1110 1111
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1127
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1128 1129 1130 1131 1132 1133 1134
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1135 1136 1137 1138
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1139 1140 1141 1142 1143 1144
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1145 1146
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1147
		break;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1186
		break;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1207 1208
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1209 1210 1211 1212
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1213 1214 1215 1216 1217
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1218 1219 1220
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
		break;
1221 1222 1223
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1286 1287 1288
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1289
	default:
1290
		r = -EINVAL;
1291 1292 1293 1294 1295 1296
		break;
	}

	return r;
}

1297 1298
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1299 1300
{
	struct kvm_vcpu *vcpu;
1301 1302 1303
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
1304

1305
	core = id / threads_per_subcore;
1306 1307 1308 1309
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
1310
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1311 1312 1313 1314 1315 1316 1317 1318
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1330 1331 1332
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1333
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1334
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1335 1336
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1337
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1338 1339 1340

	kvmppc_mmu_book3s_hv_init(vcpu);

1341
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
1352
			init_waitqueue_head(&vcore->wq);
1353
			vcore->preempt_tb = TB_NIL;
1354
			vcore->lpcr = kvm->arch.lpcr;
1355
			vcore->first_vcpuid = core * threads_per_subcore;
1356
			vcore->kvm = kvm;
1357 1358
		}
		kvm->arch.vcores[core] = vcore;
1359
		kvm->arch.online_vcores++;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1370
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1371

1372 1373 1374
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1375 1376 1377
	return vcpu;

free_vcpu:
1378
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1379 1380 1381 1382
out:
	return ERR_PTR(err);
}

1383 1384 1385 1386 1387 1388 1389
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1390
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1391
{
1392
	spin_lock(&vcpu->arch.vpa_update_lock);
1393 1394 1395
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1396
	spin_unlock(&vcpu->arch.vpa_update_lock);
1397
	kvm_vcpu_uninit(vcpu);
1398
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1399 1400
}

1401 1402 1403 1404 1405 1406
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1407
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1408
{
1409
	unsigned long dec_nsec, now;
1410

1411 1412 1413 1414
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1415
		kvmppc_core_prepare_to_enter(vcpu);
1416
		return;
1417
	}
1418 1419 1420 1421 1422
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1423 1424
}

1425
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1426
{
1427 1428 1429 1430 1431
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1432 1433
}

1434
extern void __kvmppc_vcore_entry(void);
1435

1436 1437
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1438
{
1439 1440
	u64 now;

1441 1442
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1443
	spin_lock_irq(&vcpu->arch.tbacct_lock);
1444 1445 1446 1447 1448
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1449
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1450 1451 1452 1453
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1454 1455 1456 1457 1458 1459 1460 1461 1462
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
1463
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1494 1495 1496 1497 1498 1499
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1500 1501 1502 1503
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1504 1505 1506 1507
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
1508
	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1509
	vcpu->cpu = vc->pcpu;
1510
	smp_wmb();
1511
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1512
	if (cpu != smp_processor_id()) {
1513
		xics_wake_cpu(cpu);
1514 1515
		if (vcpu->arch.ptid)
			++vc->n_woken;
1516
	}
1517 1518
#endif
}
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
1539 1540
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1541 1542 1543 1544
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
1545
	int thr;
1546

1547 1548
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
1549
		return 0;
1550 1551 1552

	thr = 0;
	while (++thr < threads_per_subcore)
1553 1554
		if (cpu_online(cpu + thr))
			return 0;
1555 1556

	/* Grab all hw threads so they can't go into the kernel */
1557
	for (thr = 1; thr < threads_per_subcore; ++thr) {
1558 1559 1560 1561 1562 1563 1564 1565
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1566 1567 1568 1569 1570 1571 1572
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1573
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1574
{
1575
	struct kvm_vcpu *vcpu, *vnext;
1576 1577
	long ret;
	u64 now;
1578
	int i, need_vpa_update;
1579
	int srcu_idx;
1580
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1581 1582

	/* don't start if any threads have a signal pending */
1583 1584
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1585
		if (signal_pending(vcpu->arch.run_task))
1586 1587 1588 1589 1590
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1591 1592 1593 1594 1595 1596 1597 1598 1599
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1600
	vc->vcore_state = VCORE_STARTING;
1601 1602 1603 1604 1605 1606 1607 1608 1609
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1610 1611
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1612 1613
		spin_lock(&vc->lock);
	}
1614

1615
	/*
1616 1617 1618
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
1619
	 */
1620 1621
	if ((threads_per_core > 1) &&
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1622 1623 1624 1625 1626
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1627

1628
	vc->pcpu = smp_processor_id();
1629
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1630
		kvmppc_start_thread(vcpu);
1631
		kvmppc_create_dtl_entry(vcpu, vc);
1632
	}
1633

1634 1635 1636 1637
	/* Set this explicitly in case thread 0 doesn't have a vcpu */
	get_paca()->kvm_hstate.kvm_vcore = vc;
	get_paca()->kvm_hstate.ptid = 0;

1638
	vc->vcore_state = VCORE_RUNNING;
1639
	preempt_disable();
1640
	spin_unlock(&vc->lock);
1641

1642
	kvm_guest_enter();
1643

1644
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1645

1646
	__kvmppc_vcore_entry();
1647

1648
	spin_lock(&vc->lock);
1649 1650 1651 1652
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1653 1654
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1655
	for (i = 0; i < threads_per_subcore; ++i)
1656
		kvmppc_release_hwthread(vc->pcpu + i);
1657
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1658
	vc->vcore_state = VCORE_EXITING;
1659 1660
	spin_unlock(&vc->lock);

1661
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1662

1663 1664
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1665 1666 1667
	kvm_guest_exit();

	preempt_enable();
1668
	cond_resched();
1669

1670
	spin_lock(&vc->lock);
1671
	now = get_tb();
1672 1673 1674 1675 1676
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1677 1678 1679

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
1680 1681
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);
1682

1683 1684
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1685 1686

		if (vcpu->arch.ceded) {
1687
			if (!is_kvmppc_resume_guest(ret))
1688 1689 1690 1691
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1692
	}
1693 1694

 out:
1695
	vc->vcore_state = VCORE_INACTIVE;
1696 1697
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
1698
		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1699 1700 1701 1702 1703 1704
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1705 1706 1707 1708 1709
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1710 1711 1712
{
	DEFINE_WAIT(wait);

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1730
	schedule();
1731 1732 1733 1734
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1735

1736 1737 1738 1739 1740
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1741

1742 1743 1744
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1745
	kvmppc_update_vpas(vcpu);
1746 1747 1748 1749 1750 1751

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1752
	vcpu->arch.ceded = 0;
1753 1754
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1755
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1756
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1757
	vcpu->arch.busy_preempt = TB_NIL;
1758 1759 1760
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1761 1762 1763 1764 1765
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
1766
	if (!signal_pending(current)) {
1767 1768
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
1769
			kvmppc_create_dtl_entry(vcpu, vc);
1770
			kvmppc_start_thread(vcpu);
1771 1772
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
1773 1774
		}

1775
	}
1776

1777 1778
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
1779
		if (vc->vcore_state != VCORE_INACTIVE) {
1780 1781 1782 1783 1784 1785 1786
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1787
			kvmppc_core_prepare_to_enter(v);
1788 1789 1790 1791 1792 1793 1794 1795
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1796 1797 1798 1799
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		vc->runner = vcpu;
		n_ceded = 0;
1800
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1801 1802
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
1803 1804 1805
			else
				v->arch.ceded = 0;
		}
1806 1807 1808 1809
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);
1810
		vc->runner = NULL;
1811
	}
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
1833 1834 1835 1836
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1837 1838
}

1839
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1840 1841
{
	int r;
1842
	int srcu_idx;
1843

1844 1845 1846 1847 1848
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1849 1850
	kvmppc_core_prepare_to_enter(vcpu);

1851 1852 1853 1854 1855 1856
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1857 1858 1859 1860 1861
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1862
	if (!vcpu->kvm->arch.rma_setup_done) {
1863
		r = kvmppc_hv_setup_htab_rma(vcpu);
1864
		if (r)
1865
			goto out;
1866
	}
1867 1868 1869 1870 1871

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1872
	vcpu->arch.pgdir = current->mm->pgd;
1873
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1874

1875 1876 1877 1878 1879 1880
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1881
			kvmppc_core_prepare_to_enter(vcpu);
1882 1883 1884 1885 1886
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1887
		}
1888
	} while (is_kvmppc_resume_guest(r));
1889 1890

 out:
1891
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1892
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1893 1894 1895
	return r;
}

1896

1897
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1898
   Assumes POWER7 or PPC970. */
1899 1900 1901 1902
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1903 1904 1905
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page;
1926
	struct kvm_rma_info *ri = vma->vm_file->private_data;
1927

1928
	if (vmf->pgoff >= kvm_rma_pages)
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
1943
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1944 1945 1946 1947 1948 1949
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1950
	struct kvm_rma_info *ri = filp->private_data;
1951 1952 1953 1954 1955

	kvm_release_rma(ri);
	return 0;
}

1956
static const struct file_operations kvm_rma_fops = {
1957 1958 1959 1960
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

1961 1962
static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
				      struct kvm_allocate_rma *ret)
1963 1964
{
	long fd;
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	struct kvm_rma_info *ri;
	/*
	 * Only do this on PPC970 in HV mode
	 */
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_201))
		return -EINVAL;

	if (!kvm_rma_pages)
		return -EINVAL;
1975 1976 1977 1978 1979

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

1980
	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1981 1982 1983
	if (fd < 0)
		kvm_release_rma(ri);

1984
	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1985 1986 1987
	return fd;
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
1998 1999 2000 2001 2002 2003 2004
	/*
	 * Only return base page encoding. We don't want to return
	 * all the supporting pte_enc, because our H_ENTER doesn't
	 * support MPSS yet. Once they do, we can start passing all
	 * support pte_enc here
	 */
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2005 2006 2007 2008 2009 2010 2011
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
2012 2013 2014
	(*sps)++;
}

2015 2016
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

2034 2035 2036
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
2037 2038
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
2039 2040 2041 2042 2043 2044 2045 2046
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
2047
	if (log->slot >= KVM_USER_MEM_SLOTS)
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

2058
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

2072
static void unpin_slot(struct kvm_memory_slot *memslot)
2073
{
2074 2075 2076
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

2092 2093
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
2094 2095 2096 2097
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
2098
	}
2099 2100 2101 2102 2103 2104 2105
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

2106 2107
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
2108 2109 2110 2111 2112
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
2113

2114 2115
	return 0;
}
2116

2117 2118 2119
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
2120
{
2121
	unsigned long *phys;
2122

2123 2124 2125 2126 2127 2128 2129
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
2130
	}
2131 2132

	return 0;
2133 2134
}

2135 2136 2137
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
2138
{
2139 2140 2141
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

2142
	if (npages && old->npages) {
2143 2144 2145 2146 2147 2148 2149 2150 2151
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
2152 2153
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

2180 2181 2182 2183 2184
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

2185
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2186 2187 2188
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
2189
	struct kvm_rma_info *ri = NULL;
2190 2191 2192
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
2193 2194
	unsigned long lpcr = 0, senc;
	unsigned long lpcr_mask = 0;
2195 2196 2197 2198
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
2199
	unsigned long i, npages;
2200
	int srcu_idx;
2201 2202 2203 2204

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

2215
	/* Look up the memslot for guest physical address 0 */
2216
	srcu_idx = srcu_read_lock(&kvm->srcu);
2217
	memslot = gfn_to_memslot(kvm, 0);
2218

2219 2220 2221
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2222
		goto out_srcu;
2223 2224 2225 2226 2227 2228 2229 2230 2231

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
2232
	porder = __ilog2(psize);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
2246
			goto out_srcu;
2247 2248
		}

2249 2250 2251 2252
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
2253
			goto out_srcu;
2254

2255
		/* Update VRMASD field in the LPCR */
2256
		senc = slb_pgsize_encoding(psize);
2257 2258
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2259 2260 2261
		lpcr_mask = LPCR_VRMASD;
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
2262 2263

		/* Create HPTEs in the hash page table for the VRMA */
2264
		kvmppc_map_vrma(vcpu, memslot, porder);
2265 2266 2267

	} else {
		/* Set up to use an RMO region */
2268
		rma_size = kvm_rma_pages;
2269 2270 2271
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
2272
		rmls = lpcr_rmls(rma_size);
2273
		err = -EINVAL;
2274
		if ((long)rmls < 0) {
2275
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2276
			goto out_srcu;
2277 2278 2279
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
2280 2281 2282 2283

		/* Update LPCR and RMOR */
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
2284 2285 2286
			lpcr_mask = (1ul << HID4_RMLS0_SH) |
				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2287 2288 2289 2290 2291 2292
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
2293 2294
			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
			lpcr = rmls << LPCR_RMLS_SH;
2295
			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2296
		}
2297
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2298 2299
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

2300
		/* Initialize phys addrs of pages in RMO */
2301
		npages = kvm_rma_pages;
2302
		porder = __ilog2(npages);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
2313 2314
	}

2315 2316
	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);

2317 2318 2319 2320
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
2321 2322
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
2323 2324 2325
 out:
	mutex_unlock(&kvm->lock);
	return err;
2326

2327 2328
 up_out:
	up_read(&current->mm->mmap_sem);
2329
	goto out_srcu;
2330 2331
}

2332
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2333
{
2334
	unsigned long lpcr, lpid;
2335

2336 2337 2338
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
2339
	if ((long)lpid < 0)
2340 2341
		return -ENOMEM;
	kvm->arch.lpid = lpid;
2342

2343 2344 2345 2346 2347 2348 2349
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

2350 2351 2352 2353
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

2354 2355
	kvm->arch.rma = NULL;

2356
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2357

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2371 2372 2373
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2374 2375 2376
		/* On POWER8 turn on online bit to enable PURR/SPURR */
		if (cpu_has_feature(CPU_FTR_ARCH_207S))
			lpcr |= LPCR_ONL;
2377 2378
	}
	kvm->arch.lpcr = lpcr;
2379

2380
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2381
	spin_lock_init(&kvm->arch.slot_phys_lock);
2382 2383

	/*
2384 2385
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
2386
	 */
2387
	kvm_hv_vm_activated();
2388

2389
	return 0;
2390 2391
}

2392 2393 2394 2395 2396 2397 2398 2399 2400
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

	for (i = 0; i < KVM_MAX_VCORES; ++i)
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

2401
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2402
{
2403
	kvm_hv_vm_deactivated();
2404

2405
	kvmppc_free_vcores(kvm);
2406 2407 2408 2409 2410
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

2411 2412 2413
	kvmppc_free_hpt(kvm);
}

2414 2415 2416
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
2417
{
2418
	return EMULATE_FAIL;
2419 2420
}

2421 2422
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
2423 2424 2425 2426
{
	return EMULATE_FAIL;
}

2427 2428
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
2429 2430 2431 2432
{
	return EMULATE_FAIL;
}

2433
static int kvmppc_core_check_processor_compat_hv(void)
2434
{
2435 2436 2437
	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return -EIO;
	return 0;
2438 2439
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_ALLOCATE_RMA: {
		struct kvm_allocate_rma rma;
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
			r = -EFAULT;
		break;
	}

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
2526
	unsigned int hcall;
2527

2528 2529 2530 2531 2532
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
2533 2534
}

2535
static struct kvmppc_ops kvm_ops_hv = {
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2567
	.hcall_implemented = kvmppc_hcall_impl_hv,
2568 2569 2570
};

static int kvmppc_book3s_init_hv(void)
2571 2572
{
	int r;
2573 2574 2575 2576 2577
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
2578
		return -ENODEV;
2579

2580 2581
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
2582

2583 2584
	init_default_hcalls();

2585
	r = kvmppc_mmu_hv_init();
2586 2587 2588
	return r;
}

2589
static void kvmppc_book3s_exit_hv(void)
2590
{
2591
	kvmppc_hv_ops = NULL;
2592 2593
}

2594 2595
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
2596
MODULE_LICENSE("GPL");
2597 2598
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");