book3s_hv.c 51.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34 35 36 37 38 39 40 41 42 43 44 45

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
46
#include <asm/cputhreads.h>
47
#include <asm/page.h>
48
#include <asm/hvcall.h>
49
#include <asm/switch_to.h>
50
#include <asm/smp.h>
51 52 53
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
54
#include <linux/hugetlb.h>
55 56 57 58 59

/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

60 61 62
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

63 64 65
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

66
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int me;
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

	me = get_cpu();

	/* CPU points to the first thread of the core */
	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
		int real_cpu = cpu + vcpu->arch.ptid;
		if (paca[real_cpu].kvm_hstate.xics_phys)
			xics_wake_cpu(real_cpu);
		else if (cpu_online(cpu))
			smp_send_reschedule(cpu);
	}
	put_cpu();
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 * of the vcpu that has taken responsibility for running the vcore
 * (i.e. vc->runner).  The stolen times are measured in units of
 * timebase ticks.  (Note that the != TB_NIL checks below are
 * purely defensive; they should never fail.)
 */

128 129
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
130 131
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

132 133 134
	spin_lock(&vcpu->arch.tbacct_lock);
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
	    vc->preempt_tb != TB_NIL) {
135
		vc->stolen_tb += mftb() - vc->preempt_tb;
136 137 138 139 140 141 142 143
		vc->preempt_tb = TB_NIL;
	}
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
	spin_unlock(&vcpu->arch.tbacct_lock);
144 145 146 147
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
148 149
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

150
	spin_lock(&vcpu->arch.tbacct_lock);
151 152
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
153 154 155
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
	spin_unlock(&vcpu->arch.tbacct_lock);
156 157 158 159 160
}

void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
	vcpu->arch.shregs.msr = msr;
161
	kvmppc_end_cede(vcpu);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
}

void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
	vcpu->arch.pvr = pvr;
}

void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198
	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199 200 201
	       vcpu->arch.last_inst);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
220
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
221 222 223
	vpa->yield_count = 1;
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

256 257 258 259 260
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
261
	unsigned long len, nb;
262 263
	void *va;
	struct kvm_vcpu *tvcpu;
264 265 266
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
267 268 269 270 271

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

272 273 274 275 276
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277
			return H_PARAMETER;
278 279

		/* convert logical addr to kernel addr and read length */
280 281
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
282
			return H_PARAMETER;
283 284
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
285
		else
286
			len = ((struct reg_vpa *)va)->length.word;
287
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
304
			break;
305 306 307 308 309 310
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
311
			break;
312 313 314 315 316
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
317
			break;
318 319 320 321 322 323 324 325 326

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
327
			break;
328 329 330 331 332 333 334 335 336 337

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
338
			break;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
359
	}
360

361 362
	spin_unlock(&tvcpu->arch.vpa_update_lock);

363
	return err;
364 365
}

366
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367
{
368
	struct kvm *kvm = vcpu->kvm;
369 370
	void *va;
	unsigned long nb;
371
	unsigned long gpa;
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
387
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388 389 390 391 392
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
393
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
394 395 396 397 398 399 400 401 402
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
403
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
404
		va = NULL;
405 406
	}
	if (vpap->pinned_addr)
407 408 409
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
410
	vpap->pinned_addr = va;
411
	vpap->dirty = false;
412 413 414 415 416 417
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
418 419 420 421 422
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

423 424
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
425
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426 427
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428 429
	}
	if (vcpu->arch.dtl.update_pending) {
430
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431 432 433 434
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
435
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436 437 438
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;

	/*
	 * If we are the task running the vcore, then since we hold
	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
	 * can't be updated, so we don't need the tbacct_lock.
	 * If the vcore is inactive, it can't become active (since we
	 * hold the vcore lock), so the vcpu load/put functions won't
	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
	 */
	if (vc->vcore_state != VCORE_INACTIVE &&
	    vc->runner->arch.run_task != current) {
		spin_lock(&vc->runner->arch.tbacct_lock);
		p = vc->stolen_tb;
		if (vc->preempt_tb != TB_NIL)
			p += now - vc->preempt_tb;
		spin_unlock(&vc->runner->arch.tbacct_lock);
	} else {
		p = vc->stolen_tb;
	}
	return p;
}

468 469 470 471 472
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
473 474 475
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
476 477 478

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
479 480 481 482 483 484 485 486
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
	spin_lock(&vcpu->arch.tbacct_lock);
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
	spin_unlock(&vcpu->arch.tbacct_lock);
487 488 489 490 491
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492
	dt->timebase = now + vc->tb_offset;
493
	dt->enqueue_to_dispatch_time = stolen;
494 495 496 497 498 499 500 501 502
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
503
	vcpu->arch.dtl.dirty = true;
504 505
}

506 507 508 509 510
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
511
	int idx, rc;
512 513

	switch (req) {
514
	case H_ENTER:
515
		idx = srcu_read_lock(&vcpu->kvm->srcu);
516 517 518 519
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
520
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
521
		break;
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
541 542 543 544 545 546 547 548 549
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		kvm_vcpu_yield_to(tvcpu);
550 551 552 553 554 555
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
556 557 558 559 560 561 562 563 564 565 566 567 568
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

		rc = kvmppc_rtas_hcall(vcpu);

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
569 570 571 572 573

	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
574 575
	case H_IPOLL:
	case H_XIRR_X:
576 577 578 579
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
580 581 582 583 584 585 586 587
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
			      struct task_struct *tsk)
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
610 611 612 613 614 615 616 617 618 619 620
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

		if (vcpu->arch.shregs.msr & MSR_PR) {
			/* sc 1 from userspace - reflect to guest syscall */
			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
			r = RESUME_GUEST;
			break;
		}
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
655 656 657 658 659
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
660 661
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
662
		r = RESUME_PAGE_FAULT;
663 664
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
665 666 667
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		r = RESUME_HOST;
		BUG();
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
692
				  struct kvm_sregs *sregs)
693 694 695 696
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
697
	sregs->pvr = vcpu->arch.pvr;
698 699 700 701 702 703 704 705 706
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
707
				  struct kvm_sregs *sregs)
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
{
	int i, j;

	kvmppc_set_pvr(vcpu, sregs->pvr);

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

726
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
727
{
728 729
	int r = 0;
	long int i;
730

731
	switch (id) {
732
	case KVM_REG_PPC_HIOR:
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
760
		break;
761 762 763 764 765 766
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			val->vsxval[0] = vcpu->arch.vsr[2 * i];
			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
805 806 807
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
808
	default:
809
		r = -EINVAL;
810 811 812 813 814 815
		break;
	}

	return r;
}

816
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
817
{
818 819
	int r = 0;
	long int i;
820
	unsigned long addr, len;
821

822
	switch (id) {
823 824
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
825
		if (set_reg_val(id, *val))
826 827
			r = -EINVAL;
		break;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
854 855 856 857 858 859
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
#ifdef CONFIG_VSX
	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			/* VSX => FP reg i is stored in arch.vsr[2*i] */
			long int i = id - KVM_REG_PPC_FPR0;
			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
		} else {
			/* let generic code handle it */
			r = -EINVAL;
		}
		break;
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
		if (cpu_has_feature(CPU_FTR_VSX)) {
			long int i = id - KVM_REG_PPC_VSR0;
			vcpu->arch.vsr[2 * i] = val->vsxval[0];
			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
		} else {
			r = -ENXIO;
		}
		break;
#endif /* CONFIG_VSX */
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
901 902
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
903 904 905 906
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
907 908 909 910 911
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
912
	default:
913
		r = -EINVAL;
914 915 916 917 918 919
		break;
	}

	return r;
}

920 921
int kvmppc_core_check_processor_compat(void)
{
922
	if (cpu_has_feature(CPU_FTR_HVMODE))
923 924 925 926 927 928 929
		return 0;
	return -EIO;
}

struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
	struct kvm_vcpu *vcpu;
930 931 932
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
933

934 935 936 937 938
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
939
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
940 941 942 943 944 945 946 947 948 949 950 951 952
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
	vcpu->arch.pvr = mfspr(SPRN_PVR);
	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
953
	spin_lock_init(&vcpu->arch.vpa_update_lock);
954 955
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
956 957 958

	kvmppc_mmu_book3s_hv_init(vcpu);

959
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
960 961 962 963 964 965 966 967 968 969

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
970
			init_waitqueue_head(&vcore->wq);
971
			vcore->preempt_tb = TB_NIL;
972 973
		}
		kvm->arch.vcores[core] = vcore;
974
		kvm->arch.online_vcores++;
975 976 977 978 979 980 981 982 983 984 985
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;

986 987 988
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

989 990 991
	return vcpu;

free_vcpu:
992
	kmem_cache_free(kvm_vcpu_cache, vcpu);
993 994 995 996
out:
	return ERR_PTR(err);
}

997 998 999 1000 1001 1002 1003
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1004 1005
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
1006
	spin_lock(&vcpu->arch.vpa_update_lock);
1007 1008 1009
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1010
	spin_unlock(&vcpu->arch.vpa_update_lock);
1011
	kvm_vcpu_uninit(vcpu);
1012
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1013 1014
}

1015
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1016
{
1017
	unsigned long dec_nsec, now;
1018

1019 1020 1021 1022
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1023
		kvmppc_core_prepare_to_enter(vcpu);
1024
		return;
1025
	}
1026 1027 1028 1029 1030
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1031 1032
}

1033
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1034
{
1035 1036 1037 1038 1039
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1040 1041
}

1042 1043
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);

1044 1045
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1046
{
1047 1048
	u64 now;

1049 1050
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1051 1052 1053 1054 1055 1056 1057
	spin_lock(&vcpu->arch.tbacct_lock);
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	spin_unlock(&vcpu->arch.tbacct_lock);
1058 1059 1060 1061
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
1071
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1102 1103 1104 1105 1106 1107
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1108 1109 1110 1111
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1112 1113 1114 1115
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
1116 1117
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
1118
	smp_wmb();
1119
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1120 1121 1122
	if (vcpu->arch.ptid) {
		xics_wake_cpu(cpu);
		++vc->n_woken;
1123
	}
1124 1125
#endif
}
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
1146 1147
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	/* Grab all hw threads so they can't go into the kernel */
	for (thr = 1; thr < threads_per_core; ++thr) {
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1170 1171 1172 1173 1174 1175 1176
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1177
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1178
{
1179
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1180 1181
	long ret;
	u64 now;
1182
	int ptid, i, need_vpa_update;
1183
	int srcu_idx;
1184
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1185 1186

	/* don't start if any threads have a signal pending */
1187 1188
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1189
		if (signal_pending(vcpu->arch.run_task))
1190 1191 1192 1193 1194
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1195 1196 1197 1198 1199 1200 1201 1202 1203
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1204
	vc->vcore_state = VCORE_STARTING;
1205 1206 1207 1208 1209 1210 1211 1212 1213
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1214 1215
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1216 1217
		spin_lock(&vc->lock);
	}
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
1232 1233
	if (!vcpu0)
		goto out;	/* nothing to run; should never happen */
1234 1235 1236 1237
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 */
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1248
	vc->pcpu = smp_processor_id();
1249
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1250
		kvmppc_start_thread(vcpu);
1251
		kvmppc_create_dtl_entry(vcpu, vc);
1252
	}
1253

1254
	vc->vcore_state = VCORE_RUNNING;
1255
	preempt_disable();
1256
	spin_unlock(&vc->lock);
1257

1258
	kvm_guest_enter();
1259 1260 1261

	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);

1262
	__kvmppc_vcore_entry(NULL, vcpu0);
1263

1264
	spin_lock(&vc->lock);
1265 1266 1267 1268
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1269 1270
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1271 1272
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1273
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1274
	vc->vcore_state = VCORE_EXITING;
1275 1276
	spin_unlock(&vc->lock);

1277 1278
	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);

1279 1280
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1281 1282 1283 1284 1285
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

1286
	spin_lock(&vc->lock);
1287
	now = get_tb();
1288 1289 1290 1291 1292
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1293 1294 1295 1296 1297 1298

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
						 vcpu->arch.run_task);

1299 1300
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1301 1302 1303 1304 1305 1306 1307

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1308
	}
1309 1310

 out:
1311
	vc->vcore_state = VCORE_INACTIVE;
1312 1313 1314 1315 1316 1317 1318 1319 1320
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1321 1322 1323 1324 1325
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1326 1327 1328
{
	DEFINE_WAIT(wait);

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1346
	schedule();
1347 1348 1349 1350
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1351

1352 1353 1354 1355 1356
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1357

1358 1359 1360
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1361
	kvmppc_update_vpas(vcpu);
1362 1363 1364 1365 1366 1367

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1368
	vcpu->arch.ceded = 0;
1369 1370
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1371
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1372
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1373
	vcpu->arch.busy_preempt = TB_NIL;
1374 1375 1376
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1377 1378 1379 1380 1381
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
1382
	if (!signal_pending(current)) {
1383 1384 1385
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
1386
			kvmppc_create_dtl_entry(vcpu, vc);
1387
			kvmppc_start_thread(vcpu);
1388 1389
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
1390 1391
		}

1392
	}
1393

1394 1395
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
1396
		if (vc->vcore_state != VCORE_INACTIVE) {
1397 1398 1399 1400 1401 1402 1403
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1404
			kvmppc_core_prepare_to_enter(v);
1405 1406 1407 1408 1409 1410 1411 1412
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1413 1414 1415 1416
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		vc->runner = vcpu;
		n_ceded = 0;
1417
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1418 1419
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
1420 1421 1422
			else
				v->arch.ceded = 0;
		}
1423 1424 1425 1426
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);
1427
		vc->runner = NULL;
1428
	}
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
1450 1451 1452 1453
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1454 1455
}

1456 1457 1458
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	int r;
1459
	int srcu_idx;
1460

1461 1462 1463 1464 1465
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1466 1467
	kvmppc_core_prepare_to_enter(vcpu);

1468 1469 1470 1471 1472 1473
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1474 1475 1476 1477 1478
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1479
	if (!vcpu->kvm->arch.rma_setup_done) {
1480
		r = kvmppc_hv_setup_htab_rma(vcpu);
1481
		if (r)
1482
			goto out;
1483
	}
1484 1485 1486 1487 1488

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1489
	vcpu->arch.pgdir = current->mm->pgd;
1490
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1491

1492 1493 1494 1495 1496 1497
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1498
			kvmppc_core_prepare_to_enter(vcpu);
1499 1500 1501 1502 1503
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1504 1505
		}
	} while (r == RESUME_GUEST);
1506 1507

 out:
1508
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1509
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1510 1511 1512
	return r;
}

1513

1514
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1515
   Assumes POWER7 or PPC970. */
1516 1517 1518 1519
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1520 1521 1522
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page;
1543
	struct kvm_rma_info *ri = vma->vm_file->private_data;
1544

1545
	if (vmf->pgoff >= kvm_rma_pages)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
1560
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1561 1562 1563 1564 1565 1566
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1567
	struct kvm_rma_info *ri = filp->private_data;
1568 1569 1570 1571 1572

	kvm_release_rma(ri);
	return 0;
}

1573
static const struct file_operations kvm_rma_fops = {
1574 1575 1576 1577 1578 1579 1580
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
	long fd;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	struct kvm_rma_info *ri;
	/*
	 * Only do this on PPC970 in HV mode
	 */
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_201))
		return -EINVAL;

	if (!kvm_rma_pages)
		return -EINVAL;
1591 1592 1593 1594 1595

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

1596
	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1597 1598 1599
	if (fd < 0)
		kvm_release_rma(ri);

1600
	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1601 1602 1603
	return fd;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
1614 1615 1616 1617 1618 1619 1620
	/*
	 * Only return base page encoding. We don't want to return
	 * all the supporting pte_enc, because our H_ENTER doesn't
	 * support MPSS yet. Once they do, we can start passing all
	 * support pte_enc here
	 */
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	(*sps)++;
}

int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
1654
	if (log->slot >= KVM_USER_MEM_SLOTS)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1665
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1679
static void unpin_slot(struct kvm_memory_slot *memslot)
1680
{
1681 1682 1683
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
			      struct kvm_memory_slot *dont)
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1705
	}
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
			       unsigned long npages)
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1720

1721 1722
	return 0;
}
1723

1724 1725 1726
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				      struct kvm_memory_slot *memslot,
				      struct kvm_userspace_memory_region *mem)
1727
{
1728
	unsigned long *phys;
1729

1730 1731 1732 1733 1734 1735 1736
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1737
	}
1738 1739

	return 0;
1740 1741 1742
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
1743
				      struct kvm_userspace_memory_region *mem,
1744
				      const struct kvm_memory_slot *old)
1745
{
1746 1747 1748
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

1749
	if (npages && old->npages) {
1750 1751 1752 1753 1754 1755 1756 1757 1758
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1759 1760
}

1761
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1762 1763 1764
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1765
	struct kvm_rma_info *ri = NULL;
1766 1767 1768
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1769
	unsigned long lpcr, senc;
1770 1771 1772 1773
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1774
	unsigned long i, npages;
1775
	int srcu_idx;
1776 1777 1778 1779

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

1790
	/* Look up the memslot for guest physical address 0 */
1791
	srcu_idx = srcu_read_lock(&kvm->srcu);
1792
	memslot = gfn_to_memslot(kvm, 0);
1793

1794 1795 1796
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1797
		goto out_srcu;
1798 1799 1800 1801 1802 1803 1804 1805 1806

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1807
	porder = __ilog2(psize);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
1821
			goto out_srcu;
1822 1823
		}

1824 1825 1826 1827
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
1828
			goto out_srcu;
1829

1830
		/* Update VRMASD field in the LPCR */
1831
		senc = slb_pgsize_encoding(psize);
1832 1833
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1834 1835
		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1836 1837 1838
		kvm->arch.lpcr = lpcr;

		/* Create HPTEs in the hash page table for the VRMA */
1839
		kvmppc_map_vrma(vcpu, memslot, porder);
1840 1841 1842

	} else {
		/* Set up to use an RMO region */
1843
		rma_size = kvm_rma_pages;
1844 1845 1846
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1847
		rmls = lpcr_rmls(rma_size);
1848
		err = -EINVAL;
1849
		if ((long)rmls < 0) {
1850
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1851
			goto out_srcu;
1852 1853 1854
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

		/* Update LPCR and RMOR */
		lpcr = kvm->arch.lpcr;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
			lpcr &= ~((1ul << HID4_RMLS0_SH) |
				  (3ul << HID4_RMLS2_SH));
			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
			lpcr |= rmls << LPCR_RMLS_SH;
1871
			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1872
		}
1873
		kvm->arch.lpcr = lpcr;
1874
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1875 1876
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1877
		/* Initialize phys addrs of pages in RMO */
1878
		npages = kvm_rma_pages;
1879
		porder = __ilog2(npages);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
1890 1891
	}

1892 1893 1894 1895
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
1896 1897
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1898 1899 1900
 out:
	mutex_unlock(&kvm->lock);
	return err;
1901

1902 1903
 up_out:
	up_read(&current->mm->mmap_sem);
1904
	goto out_srcu;
1905 1906 1907 1908
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
1909
	unsigned long lpcr, lpid;
1910

1911 1912 1913
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
1914
	if ((long)lpid < 0)
1915 1916
		return -ENOMEM;
	kvm->arch.lpid = lpid;
1917

1918 1919 1920 1921 1922 1923 1924
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

1925
	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1926
	INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1927 1928 1929

	kvm->arch.rma = NULL;

1930
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1945 1946 1947
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1948 1949
	}
	kvm->arch.lpcr = lpcr;
1950

1951
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1952
	spin_lock_init(&kvm->arch.slot_phys_lock);
1953 1954 1955 1956 1957 1958 1959

	/*
	 * Don't allow secondary CPU threads to come online
	 * while any KVM VMs exist.
	 */
	inhibit_secondary_onlining();

1960
	return 0;
1961 1962 1963 1964
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
1965 1966
	uninhibit_secondary_onlining();

1967 1968 1969 1970 1971
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

1972 1973
	kvmppc_rtas_tokens_free(kvm);

1974
	kvmppc_free_hpt(kvm);
1975
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
}

/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}

/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
                           unsigned int inst, int *advance)
{
	return EMULATE_FAIL;
}

1990
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1991 1992 1993 1994
{
	return EMULATE_FAIL;
}

1995
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
{
	return EMULATE_FAIL;
}

static int kvmppc_book3s_hv_init(void)
{
	int r;

	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (r)
		return r;

	r = kvmppc_mmu_hv_init();

	return r;
}

static void kvmppc_book3s_hv_exit(void)
{
	kvm_exit();
}

module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);