process.c 12.6 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

3 4 5 6
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
7
#include <linux/prctl.h>
8 9
#include <linux/slab.h>
#include <linux/sched.h>
10 11
#include <linux/init.h>
#include <linux/export.h>
12
#include <linux/pm.h>
13
#include <linux/tick.h>
A
Amerigo Wang 已提交
14
#include <linux/random.h>
A
Avi Kivity 已提交
15
#include <linux/user-return-notifier.h>
16 17
#include <linux/dmi.h>
#include <linux/utsname.h>
18 19 20
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
21
#include <trace/events/power.h>
22
#include <linux/hw_breakpoint.h>
23
#include <asm/cpu.h>
24
#include <asm/apic.h>
25
#include <asm/syscalls.h>
26 27
#include <asm/idle.h>
#include <asm/uaccess.h>
28
#include <asm/mwait.h>
29
#include <asm/fpu/internal.h>
30
#include <asm/debugreg.h>
31
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
32
#include <asm/tlbflush.h>
33
#include <asm/mce.h>
34
#include <asm/vm86.h>
35
#include <asm/switch_to.h>
36

T
Thomas Gleixner 已提交
37 38 39 40 41 42 43
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
44 45
__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
	.x86_tss = {
46
		.sp0 = TOP_OF_INIT_STACK,
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
62 63 64
#ifdef CONFIG_X86_32
	.SYSENTER_stack_canary	= STACK_END_MAGIC,
#endif
65
};
66
EXPORT_PER_CPU_SYMBOL(cpu_tss);
T
Thomas Gleixner 已提交
67

68 69 70 71
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
72 73
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
74
	memcpy(dst, src, arch_task_struct_size);
75 76 77
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
78

79
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
80
}
81

82 83 84
/*
 * Free current thread data structures etc..
 */
85
void exit_thread(struct task_struct *tsk)
86
{
87
	struct thread_struct *t = &tsk->thread;
88
	unsigned long *bp = t->io_bitmap_ptr;
89
	struct fpu *fpu = &t->fpu;
90

91
	if (bp) {
92
		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
93 94 95 96 97 98 99 100 101

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
102
		kfree(bp);
103
	}
104

105 106
	free_vm86(t);

107
	fpu__drop(fpu);
108 109 110 111 112 113
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

114
	flush_ptrace_hw_breakpoint(tsk);
115
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
116

117
	fpu__clear(&tsk->thread.fpu);
118 119 120 121
}

static void hard_disable_TSC(void)
{
A
Andy Lutomirski 已提交
122
	cr4_set_bits(X86_CR4_TSD);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
A
Andy Lutomirski 已提交
139
	cr4_clear_bits(X86_CR4_TSD);
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

P
Peter Zijlstra 已提交
186 187 188 189 190 191 192 193 194 195
	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
			debugctl |= DEBUGCTLMSR_BTF;

		update_debugctlmsr(debugctl);
	}
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
A
Avi Kivity 已提交
219
	propagate_user_return_notify(prev_p, next_p);
220 221
}

222 223 224
/*
 * Idle related variables and functions
 */
225
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
226 227
EXPORT_SYMBOL(boot_option_idle_override);

228
static void (*x86_idle)(void);
229

230 231 232 233 234 235 236
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

T
Thomas Gleixner 已提交
237 238 239 240
void arch_cpu_idle_enter(void)
{
	local_touch_nmi();
}
241

T
Thomas Gleixner 已提交
242 243 244 245
void arch_cpu_idle_dead(void)
{
	play_dead();
}
246

T
Thomas Gleixner 已提交
247 248 249 250 251
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
252
	x86_idle();
253 254
}

255
/*
T
Thomas Gleixner 已提交
256
 * We use this if we don't have any better idle routine..
257
 */
258
void __cpuidle default_idle(void)
259
{
260
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
261
	safe_halt();
262
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
263
}
264
#ifdef CONFIG_APM_MODULE
265 266 267
EXPORT_SYMBOL(default_idle);
#endif

268 269
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
270
{
271
	bool ret = !!x86_idle;
272

273
	x86_idle = default_idle;
274 275 276

	return ret;
}
277
#endif
278 279 280 281 282 283
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
284
	set_cpu_online(smp_processor_id(), false);
285
	disable_local_APIC();
286
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
287

288 289
	for (;;)
		halt();
290 291
}

292 293
bool amd_e400_c1e_detected;
EXPORT_SYMBOL(amd_e400_c1e_detected);
294

295
static cpumask_var_t amd_e400_c1e_mask;
296

297
void amd_e400_remove_cpu(int cpu)
298
{
299 300
	if (amd_e400_c1e_mask != NULL)
		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
301 302
}

303
/*
304
 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
305 306 307
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
308
static void amd_e400_idle(void)
309
{
310
	if (!amd_e400_c1e_detected) {
311 312 313
		u32 lo, hi;

		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
314

315
		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
316
			amd_e400_c1e_detected = true;
317
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
318
				mark_tsc_unstable("TSC halt in AMD C1E");
319
			pr_info("System has AMD C1E enabled\n");
320 321 322
		}
	}

323
	if (amd_e400_c1e_detected) {
324 325
		int cpu = smp_processor_id();

326 327
		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
328 329
			/* Force broadcast so ACPI can not interfere. */
			tick_broadcast_force();
330
			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
331
		}
332
		tick_broadcast_enter();
333

334
		default_idle();
335 336 337 338 339

		/*
		 * The switch back from broadcast mode needs to be
		 * called with interrupts disabled.
		 */
340
		local_irq_disable();
341
		tick_broadcast_exit();
342
		local_irq_enable();
343 344 345 346
	} else
		default_idle();
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

362
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
363 364 365 366 367 368
		return 0;

	return 1;
}

/*
369 370 371
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
372
 */
373
static __cpuidle void mwait_idle(void)
374
{
375
	if (!current_set_polling_and_test()) {
376
		trace_cpu_idle_rcuidle(1, smp_processor_id());
377
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
378
			mb(); /* quirk */
379
			clflush((void *)&current_thread_info()->flags);
380
			mb(); /* quirk */
381
		}
382 383 384 385 386 387

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
388
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
389
	} else {
390
		local_irq_enable();
391 392
	}
	__current_clr_polling();
393 394
}

395
void select_idle_routine(const struct cpuinfo_x86 *c)
396
{
397
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
398
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
399
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
400
#endif
T
Thomas Gleixner 已提交
401
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
402 403
		return;

404
	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
405
		/* E400: APIC timer interrupt does not wake up CPU from C1e */
406
		pr_info("using AMD E400 aware idle routine\n");
407
		x86_idle = amd_e400_idle;
408 409 410
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
411
	} else
412
		x86_idle = default_idle;
413 414
}

415
void __init init_amd_e400_c1e_mask(void)
416
{
417
	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
418
	if (x86_idle == amd_e400_idle)
419
		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
420 421
}

422 423
static int __init idle_setup(char *str)
{
424 425 426
	if (!str)
		return -EINVAL;

427
	if (!strcmp(str, "poll")) {
428
		pr_info("using polling idle threads\n");
429
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
430
		cpu_idle_poll_ctrl(true);
431
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
432 433 434 435 436 437 438
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
439
		x86_idle = default_idle;
440
		boot_option_idle_override = IDLE_HALT;
441 442 443 444 445 446 447
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
448
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
449
	} else
450 451 452 453 454 455
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
456 457 458 459 460 461 462 463 464
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
465
	return randomize_page(mm->brk, 0x02000000);
A
Amerigo Wang 已提交
466 467
}

B
Brian Gerst 已提交
468 469 470 471 472 473 474 475 476 477 478
/*
 * Return saved PC of a blocked thread.
 * What is this good for? it will be always the scheduler or ret_from_fork.
 */
unsigned long thread_saved_pc(struct task_struct *tsk)
{
	struct inactive_task_frame *frame =
		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
	return READ_ONCE_NOCHECK(frame->ret_addr);
}

479 480 481 482 483 484 485 486
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
487
	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
488 489 490 491 492
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

493 494 495
	if (!try_get_task_stack(p))
		return 0;

496 497
	start = (unsigned long)task_stack_page(p);
	if (!start)
498
		goto out;
499 500 501 502 503 504 505 506

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
507
	 * ----------- bottom = start
508 509 510 511 512 513 514 515 516 517
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
518
	bottom = start;
519 520 521

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
522
		goto out;
523

524
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
525 526
	do {
		if (fp < bottom || fp > top)
527
			goto out;
528
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
529 530 531 532
		if (!in_sched_functions(ip)) {
			ret = ip;
			goto out;
		}
533
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
534
	} while (count++ < 16 && p->state != TASK_RUNNING);
535 536 537 538

out:
	put_task_stack(p);
	return ret;
539
}