process.c 13.2 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

3 4 5 6
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
7
#include <linux/prctl.h>
8 9
#include <linux/slab.h>
#include <linux/sched.h>
10 11
#include <linux/init.h>
#include <linux/export.h>
12
#include <linux/pm.h>
13
#include <linux/tick.h>
A
Amerigo Wang 已提交
14
#include <linux/random.h>
A
Avi Kivity 已提交
15
#include <linux/user-return-notifier.h>
16 17
#include <linux/dmi.h>
#include <linux/utsname.h>
18 19 20
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
21
#include <trace/events/power.h>
22
#include <linux/hw_breakpoint.h>
23
#include <asm/cpu.h>
24
#include <asm/apic.h>
25
#include <asm/syscalls.h>
26 27
#include <asm/idle.h>
#include <asm/uaccess.h>
28
#include <asm/mwait.h>
29
#include <asm/fpu/internal.h>
30
#include <asm/debugreg.h>
31
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
32
#include <asm/tlbflush.h>
33
#include <asm/mce.h>
34
#include <asm/vm86.h>
35
#include <asm/switch_to.h>
36

T
Thomas Gleixner 已提交
37 38 39 40 41 42 43
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
44 45
__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
	.x86_tss = {
46
		.sp0 = TOP_OF_INIT_STACK,
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
62 63 64
#ifdef CONFIG_X86_32
	.SYSENTER_stack_canary	= STACK_END_MAGIC,
#endif
65
};
66
EXPORT_PER_CPU_SYMBOL(cpu_tss);
T
Thomas Gleixner 已提交
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#ifdef CONFIG_X86_64
static DEFINE_PER_CPU(unsigned char, is_idle);
static ATOMIC_NOTIFIER_HEAD(idle_notifier);

void idle_notifier_register(struct notifier_block *n)
{
	atomic_notifier_chain_register(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_register);

void idle_notifier_unregister(struct notifier_block *n)
{
	atomic_notifier_chain_unregister(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_unregister);
#endif
Z
Zhao Yakui 已提交
84

85 86 87 88
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
89 90
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
91
	memcpy(dst, src, arch_task_struct_size);
92 93 94
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
95

96
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
97
}
98

99 100 101
/*
 * Free current thread data structures etc..
 */
102
void exit_thread(struct task_struct *tsk)
103
{
104
	struct thread_struct *t = &tsk->thread;
105
	unsigned long *bp = t->io_bitmap_ptr;
106
	struct fpu *fpu = &t->fpu;
107

108
	if (bp) {
109
		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
110 111 112 113 114 115 116 117 118

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
119
		kfree(bp);
120
	}
121

122 123
	free_vm86(t);

124
	fpu__drop(fpu);
125 126 127 128 129 130
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

131
	flush_ptrace_hw_breakpoint(tsk);
132
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
133

134
	fpu__clear(&tsk->thread.fpu);
135 136 137 138
}

static void hard_disable_TSC(void)
{
A
Andy Lutomirski 已提交
139
	cr4_set_bits(X86_CR4_TSD);
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
A
Andy Lutomirski 已提交
156
	cr4_clear_bits(X86_CR4_TSD);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

P
Peter Zijlstra 已提交
203 204 205 206 207 208 209 210 211 212
	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
			debugctl |= DEBUGCTLMSR_BTF;

		update_debugctlmsr(debugctl);
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
A
Avi Kivity 已提交
236
	propagate_user_return_notify(prev_p, next_p);
237 238
}

239 240 241
/*
 * Idle related variables and functions
 */
242
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
243 244
EXPORT_SYMBOL(boot_option_idle_override);

245
static void (*x86_idle)(void);
246

247 248 249 250 251 252 253 254 255 256
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

#ifdef CONFIG_X86_64
void enter_idle(void)
{
257
	this_cpu_write(is_idle, 1);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
}

static void __exit_idle(void)
{
	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
		return;
	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
}

/* Called from interrupts to signify idle end */
void exit_idle(void)
{
	/* idle loop has pid 0 */
	if (current->pid)
		return;
	__exit_idle();
}
#endif

T
Thomas Gleixner 已提交
278 279 280 281 282
void arch_cpu_idle_enter(void)
{
	local_touch_nmi();
	enter_idle();
}
283

T
Thomas Gleixner 已提交
284 285 286 287
void arch_cpu_idle_exit(void)
{
	__exit_idle();
}
288

T
Thomas Gleixner 已提交
289 290 291 292
void arch_cpu_idle_dead(void)
{
	play_dead();
}
293

T
Thomas Gleixner 已提交
294 295 296 297 298
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
299
	x86_idle();
300 301
}

302
/*
T
Thomas Gleixner 已提交
303
 * We use this if we don't have any better idle routine..
304 305 306
 */
void default_idle(void)
{
307
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
308
	safe_halt();
309
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
310
}
311
#ifdef CONFIG_APM_MODULE
312 313 314
EXPORT_SYMBOL(default_idle);
#endif

315 316
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
317
{
318
	bool ret = !!x86_idle;
319

320
	x86_idle = default_idle;
321 322 323

	return ret;
}
324
#endif
325 326 327 328 329 330
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
331
	set_cpu_online(smp_processor_id(), false);
332
	disable_local_APIC();
333
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
334

335 336
	for (;;)
		halt();
337 338
}

339 340
bool amd_e400_c1e_detected;
EXPORT_SYMBOL(amd_e400_c1e_detected);
341

342
static cpumask_var_t amd_e400_c1e_mask;
343

344
void amd_e400_remove_cpu(int cpu)
345
{
346 347
	if (amd_e400_c1e_mask != NULL)
		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
348 349
}

350
/*
351
 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
352 353 354
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
355
static void amd_e400_idle(void)
356
{
357
	if (!amd_e400_c1e_detected) {
358 359 360
		u32 lo, hi;

		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
361

362
		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
363
			amd_e400_c1e_detected = true;
364
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
365
				mark_tsc_unstable("TSC halt in AMD C1E");
366
			pr_info("System has AMD C1E enabled\n");
367 368 369
		}
	}

370
	if (amd_e400_c1e_detected) {
371 372
		int cpu = smp_processor_id();

373 374
		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
375 376
			/* Force broadcast so ACPI can not interfere. */
			tick_broadcast_force();
377
			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
378
		}
379
		tick_broadcast_enter();
380

381
		default_idle();
382 383 384 385 386

		/*
		 * The switch back from broadcast mode needs to be
		 * called with interrupts disabled.
		 */
387
		local_irq_disable();
388
		tick_broadcast_exit();
389
		local_irq_enable();
390 391 392 393
	} else
		default_idle();
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

409
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
410 411 412 413 414 415
		return 0;

	return 1;
}

/*
416 417 418
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
419 420 421
 */
static void mwait_idle(void)
{
422
	if (!current_set_polling_and_test()) {
423
		trace_cpu_idle_rcuidle(1, smp_processor_id());
424
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
425
			mb(); /* quirk */
426
			clflush((void *)&current_thread_info()->flags);
427
			mb(); /* quirk */
428
		}
429 430 431 432 433 434

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
435
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
436
	} else {
437
		local_irq_enable();
438 439
	}
	__current_clr_polling();
440 441
}

442
void select_idle_routine(const struct cpuinfo_x86 *c)
443
{
444
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
445
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
446
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
447
#endif
T
Thomas Gleixner 已提交
448
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
449 450
		return;

451
	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
452
		/* E400: APIC timer interrupt does not wake up CPU from C1e */
453
		pr_info("using AMD E400 aware idle routine\n");
454
		x86_idle = amd_e400_idle;
455 456 457
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
458
	} else
459
		x86_idle = default_idle;
460 461
}

462
void __init init_amd_e400_c1e_mask(void)
463
{
464
	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
465
	if (x86_idle == amd_e400_idle)
466
		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
467 468
}

469 470
static int __init idle_setup(char *str)
{
471 472 473
	if (!str)
		return -EINVAL;

474
	if (!strcmp(str, "poll")) {
475
		pr_info("using polling idle threads\n");
476
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
477
		cpu_idle_poll_ctrl(true);
478
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
479 480 481 482 483 484 485
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
486
		x86_idle = default_idle;
487
		boot_option_idle_override = IDLE_HALT;
488 489 490 491 492 493 494
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
495
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
496
	} else
497 498 499 500 501 502
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long range_end = mm->brk + 0x02000000;
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long start, bottom, top, sp, fp, ip;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	start = (unsigned long)task_stack_page(p);
	if (!start)
		return 0;

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
	 * ----------- bottom = start + sizeof(thread_info)
	 * thread_info
	 * ----------- start
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
	bottom = start + sizeof(struct thread_info);

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
		return 0;

560
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
561 562 563
	do {
		if (fp < bottom || fp > top)
			return 0;
564
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
565 566
		if (!in_sched_functions(ip))
			return ip;
567
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
568 569 570
	} while (count++ < 16 && p->state != TASK_RUNNING);
	return 0;
}