process.c 13.0 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

3 4 5 6
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
7
#include <linux/prctl.h>
8 9
#include <linux/slab.h>
#include <linux/sched.h>
10 11
#include <linux/module.h>
#include <linux/pm.h>
12
#include <linux/tick.h>
A
Amerigo Wang 已提交
13
#include <linux/random.h>
A
Avi Kivity 已提交
14
#include <linux/user-return-notifier.h>
15 16
#include <linux/dmi.h>
#include <linux/utsname.h>
17 18 19
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
20
#include <trace/events/power.h>
21
#include <linux/hw_breakpoint.h>
22
#include <asm/cpu.h>
23
#include <asm/apic.h>
24
#include <asm/syscalls.h>
25 26
#include <asm/idle.h>
#include <asm/uaccess.h>
27
#include <asm/mwait.h>
28
#include <asm/fpu/internal.h>
29
#include <asm/debugreg.h>
30
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
31
#include <asm/tlbflush.h>
32
#include <asm/mce.h>
33
#include <asm/vm86.h>
34

T
Thomas Gleixner 已提交
35 36 37 38 39 40 41
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
42 43
__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
	.x86_tss = {
44
		.sp0 = TOP_OF_INIT_STACK,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
};
61
EXPORT_PER_CPU_SYMBOL(cpu_tss);
T
Thomas Gleixner 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#ifdef CONFIG_X86_64
static DEFINE_PER_CPU(unsigned char, is_idle);
static ATOMIC_NOTIFIER_HEAD(idle_notifier);

void idle_notifier_register(struct notifier_block *n)
{
	atomic_notifier_chain_register(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_register);

void idle_notifier_unregister(struct notifier_block *n)
{
	atomic_notifier_chain_unregister(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_unregister);
#endif
Z
Zhao Yakui 已提交
79

80 81 82 83
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
84 85
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
86
	memcpy(dst, src, arch_task_struct_size);
87

88
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
89
}
90

91 92 93 94 95 96 97
/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
	struct task_struct *me = current;
	struct thread_struct *t = &me->thread;
98
	unsigned long *bp = t->io_bitmap_ptr;
99
	struct fpu *fpu = &t->fpu;
100

101
	if (bp) {
102
		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
103 104 105 106 107 108 109 110 111

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
112
		kfree(bp);
113
	}
114

115 116
	free_vm86(t);

117
	fpu__drop(fpu);
118 119 120 121 122 123
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

124
	flush_ptrace_hw_breakpoint(tsk);
125
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
126

127
	fpu__clear(&tsk->thread.fpu);
128 129 130 131
}

static void hard_disable_TSC(void)
{
A
Andy Lutomirski 已提交
132
	cr4_set_bits(X86_CR4_TSD);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
A
Andy Lutomirski 已提交
149
	cr4_clear_bits(X86_CR4_TSD);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

P
Peter Zijlstra 已提交
196 197 198 199 200 201 202 203 204 205
	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
			debugctl |= DEBUGCTLMSR_BTF;

		update_debugctlmsr(debugctl);
	}
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
A
Avi Kivity 已提交
229
	propagate_user_return_notify(prev_p, next_p);
230 231
}

232 233 234
/*
 * Idle related variables and functions
 */
235
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
236 237
EXPORT_SYMBOL(boot_option_idle_override);

238
static void (*x86_idle)(void);
239

240 241 242 243 244 245 246 247 248 249
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

#ifdef CONFIG_X86_64
void enter_idle(void)
{
250
	this_cpu_write(is_idle, 1);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
}

static void __exit_idle(void)
{
	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
		return;
	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
}

/* Called from interrupts to signify idle end */
void exit_idle(void)
{
	/* idle loop has pid 0 */
	if (current->pid)
		return;
	__exit_idle();
}
#endif

T
Thomas Gleixner 已提交
271 272 273 274 275
void arch_cpu_idle_enter(void)
{
	local_touch_nmi();
	enter_idle();
}
276

T
Thomas Gleixner 已提交
277 278 279 280
void arch_cpu_idle_exit(void)
{
	__exit_idle();
}
281

T
Thomas Gleixner 已提交
282 283 284 285
void arch_cpu_idle_dead(void)
{
	play_dead();
}
286

T
Thomas Gleixner 已提交
287 288 289 290 291
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
292
	x86_idle();
293 294
}

295
/*
T
Thomas Gleixner 已提交
296
 * We use this if we don't have any better idle routine..
297 298 299
 */
void default_idle(void)
{
300
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
301
	safe_halt();
302
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
303
}
304
#ifdef CONFIG_APM_MODULE
305 306 307
EXPORT_SYMBOL(default_idle);
#endif

308 309
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
310
{
311
	bool ret = !!x86_idle;
312

313
	x86_idle = default_idle;
314 315 316

	return ret;
}
317
#endif
318 319 320 321 322 323
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
324
	set_cpu_online(smp_processor_id(), false);
325
	disable_local_APIC();
326
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
327

328 329
	for (;;)
		halt();
330 331
}

332 333
bool amd_e400_c1e_detected;
EXPORT_SYMBOL(amd_e400_c1e_detected);
334

335
static cpumask_var_t amd_e400_c1e_mask;
336

337
void amd_e400_remove_cpu(int cpu)
338
{
339 340
	if (amd_e400_c1e_mask != NULL)
		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
341 342
}

343
/*
344
 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
345 346 347
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
348
static void amd_e400_idle(void)
349
{
350
	if (!amd_e400_c1e_detected) {
351 352 353
		u32 lo, hi;

		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
354

355
		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
356
			amd_e400_c1e_detected = true;
357
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
358
				mark_tsc_unstable("TSC halt in AMD C1E");
359
			pr_info("System has AMD C1E enabled\n");
360 361 362
		}
	}

363
	if (amd_e400_c1e_detected) {
364 365
		int cpu = smp_processor_id();

366 367
		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
368 369
			/* Force broadcast so ACPI can not interfere. */
			tick_broadcast_force();
370
			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
371
		}
372
		tick_broadcast_enter();
373

374
		default_idle();
375 376 377 378 379

		/*
		 * The switch back from broadcast mode needs to be
		 * called with interrupts disabled.
		 */
380
		local_irq_disable();
381
		tick_broadcast_exit();
382
		local_irq_enable();
383 384 385 386
	} else
		default_idle();
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (!cpu_has(c, X86_FEATURE_MWAIT))
		return 0;

	return 1;
}

/*
409 410 411
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
412 413 414
 */
static void mwait_idle(void)
{
415
	if (!current_set_polling_and_test()) {
416
		trace_cpu_idle_rcuidle(1, smp_processor_id());
417 418
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
			smp_mb(); /* quirk */
419
			clflush((void *)&current_thread_info()->flags);
420 421
			smp_mb(); /* quirk */
		}
422 423 424 425 426 427

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
428
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
429
	} else {
430
		local_irq_enable();
431 432
	}
	__current_clr_polling();
433 434
}

435
void select_idle_routine(const struct cpuinfo_x86 *c)
436
{
437
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
438
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
439
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
440
#endif
T
Thomas Gleixner 已提交
441
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
442 443
		return;

444
	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
445
		/* E400: APIC timer interrupt does not wake up CPU from C1e */
446
		pr_info("using AMD E400 aware idle routine\n");
447
		x86_idle = amd_e400_idle;
448 449 450
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
451
	} else
452
		x86_idle = default_idle;
453 454
}

455
void __init init_amd_e400_c1e_mask(void)
456
{
457
	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
458
	if (x86_idle == amd_e400_idle)
459
		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
460 461
}

462 463
static int __init idle_setup(char *str)
{
464 465 466
	if (!str)
		return -EINVAL;

467
	if (!strcmp(str, "poll")) {
468
		pr_info("using polling idle threads\n");
469
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
470
		cpu_idle_poll_ctrl(true);
471
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
472 473 474 475 476 477 478
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
479
		x86_idle = default_idle;
480
		boot_option_idle_override = IDLE_HALT;
481 482 483 484 485 486 487
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
488
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
489
	} else
490 491 492 493 494 495
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long range_end = mm->brk + 0x02000000;
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long start, bottom, top, sp, fp, ip;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	start = (unsigned long)task_stack_page(p);
	if (!start)
		return 0;

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
	 * ----------- bottom = start + sizeof(thread_info)
	 * thread_info
	 * ----------- start
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
	bottom = start + sizeof(struct thread_info);

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
		return 0;

553
	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
554 555 556
	do {
		if (fp < bottom || fp > top)
			return 0;
557
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
558 559
		if (!in_sched_functions(ip))
			return ip;
560
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
561 562 563
	} while (count++ < 16 && p->state != TASK_RUNNING);
	return 0;
}