intel_pstate.c 22.7 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29 30 31 32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>

#define SAMPLE_COUNT		3

37 38 39
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
40
#define BYT_TURBO_VIDS		0x66d
41

42

43
#define FRAC_BITS 6
44 45
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
46
#define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
47 48 49 50 51 52 53 54 55 56 57 58

static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

static inline int32_t div_fp(int32_t x, int32_t y)
{
	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
}

struct sample {
59
	int32_t core_pct_busy;
60 61
	u64 aperf;
	u64 mperf;
62
	unsigned long long tsc;
63 64 65 66 67 68 69 70 71 72
	int freq;
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
	int	turbo_pstate;
};

73
struct vid_data {
74 75 76
	int min;
	int max;
	int turbo;
77 78 79
	int32_t ratio;
};

80 81 82 83 84 85 86
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
87
	int32_t last_err;
88 89 90 91 92 93 94 95 96 97
};

struct cpudata {
	int cpu;

	char name[64];

	struct timer_list timer;

	struct pstate_data pstate;
98
	struct vid_data vid;
99 100 101 102
	struct _pid pid;

	u64	prev_aperf;
	u64	prev_mperf;
103
	unsigned long long prev_tsc;
104
	struct sample sample;
105 106 107 108 109 110 111 112 113 114 115 116
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

117 118 119 120
struct pstate_funcs {
	int (*get_max)(void);
	int (*get_min)(void);
	int (*get_turbo)(void);
121 122
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
123 124
};

125 126 127
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
128 129
};

130 131 132
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;

133 134 135 136 137 138
struct perf_limits {
	int no_turbo;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
139 140
	int max_policy_pct;
	int max_sysfs_pct;
141 142 143 144 145 146 147 148
};

static struct perf_limits limits = {
	.no_turbo = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
149 150
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
151 152 153 154 155 156 157
};

static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
			int deadband, int integral) {
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
158
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{

	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

177
static signed int pid_calc(struct _pid *pid, int32_t busy)
178
{
179
	signed int result;
180 181 182
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

183
	fp_error = int_tofp(pid->setpoint) - busy;
184

185
	if (abs(fp_error) <= int_tofp(pid->deadband))
186 187 188 189 190 191 192 193 194 195 196 197 198
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

	/* limit the integral term */
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

199 200
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
201 202 203 204 205 206 207 208

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;

	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
209 210 211
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
212 213

	pid_reset(&cpu->pid,
214
		pid_params.setpoint,
215
		100,
216
		pid_params.deadband,
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
		0);
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
			pid_param_set, "%llu\n");

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
250 251 252 253 254 255
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	{NULL, NULL}
};

static struct dentry *debugfs_parent;
static void intel_pstate_debug_expose_params(void)
{
	int i = 0;

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
				debugfs_parent, pid_files[i].value,
				&fops_pid_param);
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.no_turbo = clamp_t(int, input, 0 , 1);

	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

307 308
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
				const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

	return count;
}

show_one(no_turbo, no_turbo);
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};
static struct kobject *intel_pstate_kobject;

static void intel_pstate_sysfs_expose_params(void)
{
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
	rc = sysfs_create_group(intel_pstate_kobject,
				&intel_pstate_attr_group);
	BUG_ON(rc);
}

/************************** sysfs end ************************/
360 361 362 363
static int byt_get_min_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
364
	return (value >> 8) & 0x3F;
365 366 367 368 369 370
}

static int byt_get_max_pstate(void)
{
	u64 value;
	rdmsrl(BYT_RATIOS, value);
371
	return (value >> 16) & 0x3F;
372
}
373

374 375 376 377 378 379 380
static int byt_get_turbo_pstate(void)
{
	u64 value;
	rdmsrl(BYT_TURBO_RATIOS, value);
	return value & 0x3F;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
	vid = fp_toint(vid_fp);

398 399 400
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

401 402 403 404 405 406 407 408 409
	val |= vid;

	wrmsrl(MSR_IA32_PERF_CTL, val);
}

static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

410

411
	rdmsrl(BYT_VIDS, value);
412 413
	cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
414 415 416 417
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
418 419 420

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
421 422 423
}


424
static int core_get_min_pstate(void)
425 426
{
	u64 value;
427
	rdmsrl(MSR_PLATFORM_INFO, value);
428 429 430
	return (value >> 40) & 0xFF;
}

431
static int core_get_max_pstate(void)
432 433
{
	u64 value;
434
	rdmsrl(MSR_PLATFORM_INFO, value);
435 436 437
	return (value >> 8) & 0xFF;
}

438
static int core_get_turbo_pstate(void)
439 440 441
{
	u64 value;
	int nont, ret;
442
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
443
	nont = core_get_max_pstate();
444 445 446 447 448 449
	ret = ((value) & 255);
	if (ret <= nont)
		ret = nont;
	return ret;
}

450
static void core_set_pstate(struct cpudata *cpudata, int pstate)
451 452 453 454 455 456 457
{
	u64 val;

	val = pstate << 8;
	if (limits.no_turbo)
		val |= (u64)1 << 32;

458
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
}

static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.set = core_set_pstate,
	},
};

478 479 480 481 482 483 484 485 486 487 488 489
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
		.get_min = byt_get_min_pstate,
490
		.get_turbo = byt_get_turbo_pstate,
491 492
		.set = byt_set_pstate,
		.get_vid = byt_get_vid,
493 494 495 496
	},
};


497 498 499
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
500
	int max_perf_adj;
501 502 503 504
	int min_perf;
	if (limits.no_turbo)
		max_perf = cpu->pstate.max_pstate;

505 506
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
	*min = clamp_t(int, min_perf,
			cpu->pstate.min_pstate, max_perf);
}

static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);

	pstate = clamp_t(int, pstate, min_perf, max_perf);

	if (pstate == cpu->pstate.current_pstate)
		return;

	trace_cpu_frequency(pstate * 100000, cpu->cpu);
526

527 528
	cpu->pstate.current_pstate = pstate;

529
	pstate_funcs.set(cpu, pstate);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
}

static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate + steps;

	intel_pstate_set_pstate(cpu, target);
}

static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
{
	int target;
	target = cpu->pstate.current_pstate - steps;
	intel_pstate_set_pstate(cpu, target);
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
	sprintf(cpu->name, "Intel 2nd generation core");

551 552 553
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
554

555 556 557
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);

558 559 560 561 562 563 564 565 566 567
	/*
	 * goto max pstate so we don't slow up boot if we are built-in if we are
	 * a module we will take care of it during normal operation
	 */
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
}

static inline void intel_pstate_calc_busy(struct cpudata *cpu,
					struct sample *sample)
{
568 569
	int32_t core_pct;
	int32_t c0_pct;
570

571 572 573 574 575 576
	core_pct = div_fp(int_tofp((sample->aperf)),
			int_tofp((sample->mperf)));
	core_pct = mul_fp(core_pct, int_tofp(100));
	FP_ROUNDUP(core_pct);

	c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
577 578

	sample->freq = fp_toint(
579
		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
580

581
	sample->core_pct_busy = mul_fp(core_pct, c0_pct);
582 583 584 585 586
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
587
	unsigned long long tsc;
588 589 590

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
591
	tsc = native_read_tsc();
592

593 594 595 596
	aperf = aperf >> FRAC_BITS;
	mperf = mperf >> FRAC_BITS;
	tsc = tsc >> FRAC_BITS;

597 598 599 600 601 602
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
	cpu->sample.tsc = tsc;
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
	cpu->sample.tsc -= cpu->prev_tsc;
603

604
	intel_pstate_calc_busy(cpu, &cpu->sample);
605 606 607

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
608
	cpu->prev_tsc = tsc;
609 610 611 612 613 614
}

static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
	int sample_time, delay;

615
	sample_time = pid_params.sample_rate_ms;
616 617 618 619
	delay = msecs_to_jiffies(sample_time);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

620
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
621
{
622
	int32_t core_busy, max_pstate, current_pstate;
623

624
	core_busy = cpu->sample.core_pct_busy;
625
	max_pstate = int_tofp(cpu->pstate.max_pstate);
626
	current_pstate = int_tofp(cpu->pstate.current_pstate);
627 628
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
	return FP_ROUNDUP(core_busy);
629 630 631 632
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
633
	int32_t busy_scaled;
634 635 636 637 638 639 640 641 642 643
	struct _pid *pid;
	signed int ctl = 0;
	int steps;

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

	steps = abs(ctl);
644

645 646 647 648 649 650 651 652 653
	if (ctl < 0)
		intel_pstate_pstate_increase(cpu, steps);
	else
		intel_pstate_pstate_decrease(cpu, steps);
}

static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;
654
	struct sample *sample;
655 656

	intel_pstate_sample(cpu);
657

658
	sample = &cpu->sample;
659

660
	intel_pstate_adjust_busy_pstate(cpu);
661 662 663 664 665 666 667 668

	trace_pstate_sample(fp_toint(sample->core_pct_busy),
			fp_toint(intel_pstate_get_scaled_busy(cpu)),
			cpu->pstate.current_pstate,
			sample->mperf,
			sample->aperf,
			sample->freq);

669 670 671 672
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
673 674
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
675 676

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
677 678
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
679
	ICPU(0x37, byt_params),
680 681 682 683 684 685
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

static int intel_pstate_init_cpu(unsigned int cpunum)
{

	const struct x86_cpu_id *id;
	struct cpudata *cpu;

	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	intel_pstate_get_cpu_pstates(cpu);
707 708 709 710 711
	if (!cpu->pstate.current_pstate) {
		all_cpu_data[cpunum] = NULL;
		kfree(cpu);
		return -ENODATA;
	}
712 713

	cpu->cpu = cpunum;
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	init_timer_deferrable(&cpu->timer);
	cpu->timer.function = intel_pstate_timer_func;
	cpu->timer.data =
		(unsigned long)cpu;
	cpu->timer.expires = jiffies + HZ/100;
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);
	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);

	add_timer_on(&cpu->timer, cpunum);

	pr_info("Intel pstate controlling: cpu %d\n", cpunum);

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
739
	sample = &cpu->sample;
740 741 742 743 744 745 746 747 748
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];

749 750 751
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

752 753 754 755 756 757
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
		limits.no_turbo = 0;
758
		return 0;
759
	}
760 761 762 763
	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

764 765 766
	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
767
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
768 769 770 771 772 773

	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
774
	cpufreq_verify_within_cpu_limits(policy);
775 776 777 778 779 780 781 782

	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
		return -EINVAL;

	return 0;
}

783
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
784
{
785 786
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
787

788 789
	pr_info("intel_pstate CPU %d exiting\n", cpu_num);

790
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
791 792 793
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
	kfree(all_cpu_data[cpu_num]);
	all_cpu_data[cpu_num] = NULL;
794 795
}

796
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
797 798
{
	struct cpudata *cpu;
799
	int rc;
800 801 802 803 804 805 806 807 808 809 810 811 812

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

	if (!limits.no_turbo &&
		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

813 814
	policy->min = cpu->pstate.min_pstate * 100000;
	policy->max = cpu->pstate.turbo_pstate * 100000;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	/* cpuinfo and default policy values */
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
831
	.stop_cpu	= intel_pstate_stop_cpu,
832 833 834
	.name		= "intel_pstate",
};

835 836
static int __initdata no_load;

837 838 839 840 841 842 843 844
static int intel_pstate_msrs_not_valid(void)
{
	/* Check that all the msr's we are using are valid. */
	u64 aperf, mperf, tmp;

	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);

845 846 847
	if (!pstate_funcs.get_max() ||
		!pstate_funcs.get_min() ||
		!pstate_funcs.get_turbo())
848 849 850 851 852 853 854 855 856 857 858 859
		return -ENODEV;

	rdmsrl(MSR_IA32_APERF, tmp);
	if (!(tmp - aperf))
		return -ENODEV;

	rdmsrl(MSR_IA32_MPERF, tmp);
	if (!(tmp - mperf))
		return -ENODEV;

	return 0;
}
860

861
static void copy_pid_params(struct pstate_adjust_policy *policy)
862 863 864 865 866 867 868 869 870
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

871
static void copy_cpu_funcs(struct pstate_funcs *funcs)
872 873 874 875 876
{
	pstate_funcs.get_max   = funcs->get_max;
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
	pstate_funcs.set       = funcs->set;
877
	pstate_funcs.get_vid   = funcs->get_vid;
878 879
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
	{1, "HP    ", "ProLiant"},
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;

	if (acpi_disabled
	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
		    && intel_pstate_no_acpi_pss())
			return true;
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
#endif /* CONFIG_ACPI */

946 947
static int __init intel_pstate_init(void)
{
948
	int cpu, rc = 0;
949
	const struct x86_cpu_id *id;
950
	struct cpu_defaults *cpu_info;
951

952 953 954
	if (no_load)
		return -ENODEV;

955 956 957 958
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

959 960 961 962 963 964 965
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

966 967 968 969 970
	cpu_info = (struct cpu_defaults *)id->driver_data;

	copy_pid_params(&cpu_info->pid_policy);
	copy_cpu_funcs(&cpu_info->funcs);

971 972 973
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

974 975
	pr_info("Intel P-state driver initializing.\n");

976
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
977 978 979 980 981 982 983 984 985
	if (!all_cpu_data)
		return -ENOMEM;

	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
986

987 988
	return rc;
out:
989 990 991 992 993 994 995 996 997 998
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
999 1000 1001 1002
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1014 1015 1016
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");