blk-mq.c 67.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202 203 204
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
205 206
	rq->timeout = 0;

207 208 209 210
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

211
	ctx->rq_dispatched[op_is_sync(op)]++;
212
}
213
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214

215 216
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
217 218 219 220
{
	struct request *rq;
	unsigned int tag;

221
	tag = blk_mq_get_tag(data);
222
	if (tag != BLK_MQ_TAG_FAIL) {
223 224 225
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
226

227 228 229 230
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
231 232 233 234
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
235 236 237 238
			rq->tag = tag;
			rq->internal_tag = -1;
		}

239
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 241 242 243 244
		return rq;
	}

	return NULL;
}
245
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246

247 248
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
249
{
250
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
251
	struct request *rq;
252
	int ret;
253

254
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 256
	if (ret)
		return ERR_PTR(ret);
257

258
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259

260 261 262 263
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
264
		return ERR_PTR(-EWOULDBLOCK);
265 266 267 268

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
269 270
	return rq;
}
271
EXPORT_SYMBOL(blk_mq_alloc_request);
272

M
Ming Lin 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

298 299 300 301
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
302
	hctx = q->queue_hw_ctx[hctx_idx];
303 304 305 306
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
307 308 309
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
311
	if (!rq) {
312 313
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
314 315 316
	}

	return rq;
317 318 319 320

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
321 322 323
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

324 325
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
326
{
327
	const int sched_tag = rq->internal_tag;
328 329
	struct request_queue *q = rq->q;

330
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
331
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
332 333

	wbt_done(q->rq_wb, &rq->issue_stat);
334
	rq->rq_flags = 0;
335

336
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 339 340 341
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
342
	blk_mq_sched_restart_queues(hctx);
343
	blk_queue_exit(q);
344 345
}

346
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347
				     struct request *rq)
348 349 350 351
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
352 353 354 355 356 357
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 359 360 361
}

void blk_mq_free_request(struct request *rq)
{
362
	blk_mq_sched_put_request(rq);
363
}
J
Jens Axboe 已提交
364
EXPORT_SYMBOL_GPL(blk_mq_free_request);
365

366
inline void __blk_mq_end_request(struct request *rq, int error)
367
{
M
Ming Lei 已提交
368 369
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
370
	if (rq->end_io) {
J
Jens Axboe 已提交
371
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
372
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
373 374 375
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
376
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
377
	}
378
}
379
EXPORT_SYMBOL(__blk_mq_end_request);
380

381
void blk_mq_end_request(struct request *rq, int error)
382 383 384
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
385
	__blk_mq_end_request(rq, error);
386
}
387
EXPORT_SYMBOL(blk_mq_end_request);
388

389
static void __blk_mq_complete_request_remote(void *data)
390
{
391
	struct request *rq = data;
392

393
	rq->q->softirq_done_fn(rq);
394 395
}

396
static void blk_mq_ipi_complete_request(struct request *rq)
397 398
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
399
	bool shared = false;
400 401
	int cpu;

C
Christoph Hellwig 已提交
402
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 404 405
		rq->q->softirq_done_fn(rq);
		return;
	}
406 407

	cpu = get_cpu();
C
Christoph Hellwig 已提交
408 409 410 411
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412
		rq->csd.func = __blk_mq_complete_request_remote;
413 414
		rq->csd.info = rq;
		rq->csd.flags = 0;
415
		smp_call_function_single_async(ctx->cpu, &rq->csd);
416
	} else {
417
		rq->q->softirq_done_fn(rq);
418
	}
419 420
	put_cpu();
}
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

437
static void __blk_mq_complete_request(struct request *rq)
438 439 440
{
	struct request_queue *q = rq->q;

441 442
	blk_mq_stat_add(rq);

443
	if (!q->softirq_done_fn)
444
		blk_mq_end_request(rq, rq->errors);
445 446 447 448
	else
		blk_mq_ipi_complete_request(rq);
}

449 450 451 452 453 454 455 456
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
457
void blk_mq_complete_request(struct request *rq, int error)
458
{
459 460 461
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
462
		return;
463 464
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
465
		__blk_mq_complete_request(rq);
466
	}
467 468
}
EXPORT_SYMBOL(blk_mq_complete_request);
469

470 471 472 473 474 475
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

476
void blk_mq_start_request(struct request *rq)
477 478 479
{
	struct request_queue *q = rq->q;

480 481
	blk_mq_sched_started_request(rq);

482 483
	trace_block_rq_issue(q, rq);

484 485 486
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
487
		wbt_issue(q->rq_wb, &rq->issue_stat);
488 489
	}

490
	blk_add_timer(rq);
491

492 493 494 495 496 497
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

498 499 500 501 502 503
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
504 505 506 507
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508 509 510 511 512 513 514 515 516

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
517
}
518
EXPORT_SYMBOL(blk_mq_start_request);
519

520
static void __blk_mq_requeue_request(struct request *rq)
521 522 523 524
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
525
	wbt_requeue(q->rq_wb, &rq->issue_stat);
526
	blk_mq_sched_requeue_request(rq);
527

528 529 530 531
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
532 533
}

534
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 536 537 538
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
539
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 541 542
}
EXPORT_SYMBOL(blk_mq_requeue_request);

543 544 545
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
546
		container_of(work, struct request_queue, requeue_work.work);
547 548 549 550 551 552 553 554 555
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 558
			continue;

559
		rq->rq_flags &= ~RQF_SOFTBARRIER;
560
		list_del_init(&rq->queuelist);
561
		blk_mq_sched_insert_request(rq, true, false, false, true);
562 563 564 565 566
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
567
		blk_mq_sched_insert_request(rq, false, false, false, true);
568 569
	}

570
	blk_mq_run_hw_queues(q, false);
571 572
}

573 574
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
575 576 577 578 579 580 581 582
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
583
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584 585 586

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
587
		rq->rq_flags |= RQF_SOFTBARRIER;
588 589 590 591 592
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
593 594 595

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
596 597 598 599 600
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
601
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 603 604
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

605 606 607 608 609 610 611 612
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

633 634
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
635 636
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
637
		return tags->rqs[tag];
638
	}
639 640

	return NULL;
641 642 643
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

644
struct blk_mq_timeout_data {
645 646
	unsigned long next;
	unsigned int next_set;
647 648
};

649
void blk_mq_rq_timed_out(struct request *req, bool reserved)
650
{
J
Jens Axboe 已提交
651
	const struct blk_mq_ops *ops = req->q->mq_ops;
652
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653 654 655 656 657 658 659 660 661 662

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
663 664
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
665

666
	if (ops->timeout)
667
		ret = ops->timeout(req, reserved);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
683
}
684

685 686 687 688
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
689

690 691 692 693 694
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
695 696 697 698
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
699
		return;
700
	}
701

702 703
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
704
			blk_mq_rq_timed_out(rq, reserved);
705 706 707 708
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
709 710
}

711
static void blk_mq_timeout_work(struct work_struct *work)
712
{
713 714
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
715 716 717 718 719
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
735 736
		return;

737
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738

739 740 741
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
742
	} else {
743 744
		struct blk_mq_hw_ctx *hctx;

745 746 747 748 749
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
750
	}
751
	blk_queue_exit(q);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
775 776 777 778 779 780
		if (el_ret == ELEVATOR_NO_MERGE)
			continue;

		if (!blk_mq_sched_allow_merge(q, rq, bio))
			break;

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

817 818 819 820
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
821
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822
{
823 824 825 826
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
827

828
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829
}
830
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831

832 833 834 835
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
836

837
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 839
}

840 841
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (blk_mq_hctx_stopped(data.hctx))
		return false;

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
861 862 863 864
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
865 866 867 868 869 870 871
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

911
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912 913 914
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
915 916
	LIST_HEAD(driver_list);
	struct list_head *dptr;
917
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
918

919 920 921 922 923 924
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

925 926 927
	/*
	 * Now process all the entries, sending them to the driver.
	 */
928
	queued = 0;
929
	while (!list_empty(list)) {
930
		struct blk_mq_queue_data bd;
931

932
		rq = list_first_entry(list, struct request, queuelist);
933 934 935
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
936 937 938 939 940 941 942

			/*
			 * We failed getting a driver tag. Mark the queue(s)
			 * as needing a restart. Retry getting a tag again,
			 * in case the needed IO completed right before we
			 * marked the queue as needing a restart.
			 */
943
			blk_mq_sched_mark_restart(hctx);
944 945
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
				break;
946
		}
947 948
		list_del_init(&rq->queuelist);

949 950
		bd.rq = rq;
		bd.list = dptr;
951
		bd.last = list_empty(list);
952 953

		ret = q->mq_ops->queue_rq(hctx, &bd);
954 955 956
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
957
			break;
958
		case BLK_MQ_RQ_QUEUE_BUSY:
959
			blk_mq_put_driver_tag(hctx, rq);
960
			list_add(&rq->queuelist, list);
961
			__blk_mq_requeue_request(rq);
962 963 964 965
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
966
			rq->errors = -EIO;
967
			blk_mq_end_request(rq, rq->errors);
968 969 970 971 972
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
973 974 975 976 977

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
978
		if (!dptr && list->next != list->prev)
979
			dptr = &driver_list;
980 981
	}

982
	hctx->dispatched[queued_to_index(queued)]++;
983 984 985 986 987

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
988
	if (!list_empty(list)) {
989
		spin_lock(&hctx->lock);
990
		list_splice_init(list, &hctx->dispatch);
991
		spin_unlock(&hctx->lock);
992

993 994 995 996 997 998 999 1000
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1001 1002 1003 1004 1005 1006
		 *
		 * If RESTART is set, then let completion restart the queue
		 * instead of potentially looping here.
		 */
		if (!blk_mq_sched_needs_restart(hctx))
			blk_mq_run_hw_queue(hctx, true);
1007
	}
1008 1009 1010 1011

	return ret != BLK_MQ_RQ_QUEUE_BUSY;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1021
		blk_mq_sched_dispatch_requests(hctx);
1022 1023 1024
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1025
		blk_mq_sched_dispatch_requests(hctx);
1026 1027 1028 1029
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1030 1031 1032 1033 1034 1035 1036 1037
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1038 1039
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1040 1041

	if (--hctx->next_cpu_batch <= 0) {
1042
		int next_cpu;
1043 1044 1045 1046 1047 1048 1049 1050 1051

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1052
	return hctx->next_cpu;
1053 1054
}

1055 1056
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1057 1058
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1059 1060
		return;

1061
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1062 1063
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1064
			__blk_mq_run_hw_queue(hctx);
1065
			put_cpu();
1066 1067
			return;
		}
1068

1069
		put_cpu();
1070
	}
1071

1072
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1073 1074
}

1075
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1076 1077 1078 1079 1080
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1081
		if (!blk_mq_hctx_has_pending(hctx) ||
1082
		    blk_mq_hctx_stopped(hctx))
1083 1084
			continue;

1085
		blk_mq_run_hw_queue(hctx, async);
1086 1087
	}
}
1088
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1110 1111
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1112
	cancel_work(&hctx->run_work);
1113
	cancel_delayed_work(&hctx->delay_work);
1114 1115 1116 1117
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1128 1129 1130
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1131

1132
	blk_mq_run_hw_queue(hctx, false);
1133 1134 1135
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1156
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1157 1158 1159 1160
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1161 1162
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1163 1164 1165
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1166
static void blk_mq_run_work_fn(struct work_struct *work)
1167 1168 1169
{
	struct blk_mq_hw_ctx *hctx;

1170
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1171

1172 1173 1174
	__blk_mq_run_hw_queue(hctx);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1187 1188
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1189

1190
	blk_mq_stop_hw_queue(hctx);
1191 1192
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1193 1194 1195
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1196 1197 1198
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1199
{
J
Jens Axboe 已提交
1200 1201
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1202 1203
	trace_block_rq_insert(hctx->queue, rq);

1204 1205 1206 1207
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1208
}
1209

1210 1211
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1212 1213 1214
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1215
	__blk_mq_insert_req_list(hctx, rq, at_head);
1216 1217 1218
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1219 1220
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1232
		BUG_ON(rq->mq_ctx != ctx);
1233
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1234
		__blk_mq_insert_req_list(hctx, rq, false);
1235
	}
1236
	blk_mq_hctx_mark_pending(hctx, ctx);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1273 1274 1275 1276
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1293 1294 1295
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1296 1297 1298 1299 1300 1301
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1302

1303
	blk_account_io_start(rq, true);
1304 1305
}

1306 1307 1308 1309 1310 1311
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1312 1313 1314
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1315
{
1316
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1317 1318 1319 1320 1321 1322 1323
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1324 1325
		struct request_queue *q = hctx->queue;

1326 1327 1328 1329 1330
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1331

1332
		spin_unlock(&ctx->lock);
1333
		__blk_mq_finish_request(hctx, ctx, rq);
1334
		return true;
1335
	}
1336
}
1337

1338 1339
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1340 1341 1342 1343
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1344 1345
}

1346
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1347 1348 1349 1350 1351 1352 1353
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1354 1355 1356
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1357

1358
	if (q->elevator)
1359 1360
		goto insert;

1361 1362 1363 1364 1365
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1366 1367 1368 1369 1370 1371
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1372 1373
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1374
		return;
1375
	}
1376

1377 1378 1379 1380 1381 1382
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1383
		return;
1384
	}
1385

1386
insert:
1387
	blk_mq_sched_insert_request(rq, false, true, true, false);
1388 1389
}

1390 1391 1392 1393 1394
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1395
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1396
{
1397
	const int is_sync = op_is_sync(bio->bi_opf);
1398
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1399
	struct blk_mq_alloc_data data = { .flags = 0 };
1400
	struct request *rq;
1401
	unsigned int request_count = 0, srcu_idx;
1402
	struct blk_plug *plug;
1403
	struct request *same_queue_rq = NULL;
1404
	blk_qc_t cookie;
J
Jens Axboe 已提交
1405
	unsigned int wb_acct;
1406 1407 1408 1409

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1410
		bio_io_error(bio);
1411
		return BLK_QC_T_NONE;
1412 1413
	}

1414 1415
	blk_queue_split(q, &bio, q->bio_split);

1416 1417 1418
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1419

1420 1421 1422
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1423 1424
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1425 1426 1427
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1428 1429
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1430
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1431 1432 1433
	}

	wbt_track(&rq->issue_stat, wb_acct);
1434

1435
	cookie = request_to_qc_t(data.hctx, rq);
1436 1437

	if (unlikely(is_flush_fua)) {
1438
		blk_mq_put_ctx(data.ctx);
1439
		blk_mq_bio_to_request(rq, bio);
1440
		blk_mq_get_driver_tag(rq, NULL, true);
1441
		blk_insert_flush(rq);
1442 1443
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1444 1445
	}

1446
	plug = current->plug;
1447 1448 1449 1450 1451
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1452 1453 1454
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1455 1456 1457 1458

		blk_mq_bio_to_request(rq, bio);

		/*
1459
		 * We do limited plugging. If the bio can be merged, do that.
1460 1461
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1462
		 */
1463
		if (plug) {
1464 1465
			/*
			 * The plug list might get flushed before this. If that
1466 1467 1468
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1469 1470
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1471
				list_del_init(&old_rq->queuelist);
1472
			}
1473 1474 1475 1476 1477
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1478
			goto done;
1479 1480 1481

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1482
			blk_mq_try_issue_directly(old_rq, &cookie);
1483 1484 1485
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1486
			blk_mq_try_issue_directly(old_rq, &cookie);
1487 1488
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1489
		goto done;
1490 1491
	}

1492 1493 1494
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1495
		blk_mq_sched_insert_request(rq, false, true,
1496
						!is_sync || is_flush_fua, true);
1497 1498
		goto done;
	}
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1509 1510
done:
	return cookie;
1511 1512 1513 1514 1515 1516
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1517
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1518
{
1519
	const int is_sync = op_is_sync(bio->bi_opf);
1520
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1521 1522
	struct blk_plug *plug;
	unsigned int request_count = 0;
1523
	struct blk_mq_alloc_data data = { .flags = 0 };
1524
	struct request *rq;
1525
	blk_qc_t cookie;
J
Jens Axboe 已提交
1526
	unsigned int wb_acct;
1527 1528 1529 1530

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1531
		bio_io_error(bio);
1532
		return BLK_QC_T_NONE;
1533 1534
	}

1535 1536
	blk_queue_split(q, &bio, q->bio_split);

1537 1538 1539 1540 1541
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1542

1543 1544 1545
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1546 1547
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1548 1549 1550
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1551 1552
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1553
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1554 1555 1556
	}

	wbt_track(&rq->issue_stat, wb_acct);
1557

1558
	cookie = request_to_qc_t(data.hctx, rq);
1559 1560

	if (unlikely(is_flush_fua)) {
1561
		blk_mq_put_ctx(data.ctx);
1562
		blk_mq_bio_to_request(rq, bio);
1563
		blk_mq_get_driver_tag(rq, NULL, true);
1564
		blk_insert_flush(rq);
1565 1566
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1567 1568 1569 1570 1571 1572 1573
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1574 1575
	plug = current->plug;
	if (plug) {
1576 1577
		struct request *last = NULL;

1578
		blk_mq_bio_to_request(rq, bio);
1579 1580 1581 1582 1583 1584 1585

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1586
		if (!request_count)
1587
			trace_block_plug(q);
1588 1589
		else
			last = list_entry_rq(plug->mq_list.prev);
1590 1591 1592

		blk_mq_put_ctx(data.ctx);

1593 1594
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1595 1596
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1597
		}
1598

1599
		list_add_tail(&rq->queuelist, &plug->mq_list);
1600
		return cookie;
1601 1602
	}

1603 1604 1605
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1606
		blk_mq_sched_insert_request(rq, false, true,
1607
						!is_sync || is_flush_fua, true);
1608 1609
		goto done;
	}
1610 1611 1612 1613 1614 1615 1616 1617
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1618 1619
	}

1620
	blk_mq_put_ctx(data.ctx);
1621
done:
1622
	return cookie;
1623 1624
}

1625 1626
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1627
{
1628
	struct page *page;
1629

1630
	if (tags->rqs && set->ops->exit_request) {
1631
		int i;
1632

1633
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1634 1635 1636
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1637
				continue;
J
Jens Axboe 已提交
1638
			set->ops->exit_request(set->driver_data, rq,
1639
						hctx_idx, i);
J
Jens Axboe 已提交
1640
			tags->static_rqs[i] = NULL;
1641
		}
1642 1643
	}

1644 1645
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1646
		list_del_init(&page->lru);
1647 1648 1649 1650 1651
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1652 1653
		__free_pages(page, page->private);
	}
1654
}
1655

1656 1657
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1658
	kfree(tags->rqs);
1659
	tags->rqs = NULL;
J
Jens Axboe 已提交
1660 1661
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1662

1663
	blk_mq_free_tags(tags);
1664 1665
}

1666 1667 1668 1669
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1670
{
1671
	struct blk_mq_tags *tags;
1672

1673
	tags = blk_mq_init_tags(nr_tags, reserved_tags,
S
Shaohua Li 已提交
1674 1675
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1676 1677
	if (!tags)
		return NULL;
1678

1679
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1680
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1681
				 set->numa_node);
1682 1683 1684 1685
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1686

J
Jens Axboe 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

	INIT_LIST_HEAD(&tags->page_list);

1712 1713 1714 1715
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1716
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1717
				cache_line_size());
1718
	left = rq_size * depth;
1719

1720
	for (i = 0; i < depth; ) {
1721 1722 1723 1724 1725
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1726
		while (this_order && left < order_to_size(this_order - 1))
1727 1728 1729
			this_order--;

		do {
1730
			page = alloc_pages_node(set->numa_node,
1731
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1732
				this_order);
1733 1734 1735 1736 1737 1738 1739 1740 1741
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1742
			goto fail;
1743 1744

		page->private = this_order;
1745
		list_add_tail(&page->lru, &tags->page_list);
1746 1747

		p = page_address(page);
1748 1749 1750 1751
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1752
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1753
		entries_per_page = order_to_size(this_order) / rq_size;
1754
		to_do = min(entries_per_page, depth - i);
1755 1756
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1757 1758 1759
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1760 1761
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1762
						rq, hctx_idx, i,
1763
						set->numa_node)) {
J
Jens Axboe 已提交
1764
					tags->static_rqs[i] = NULL;
1765
					goto fail;
1766
				}
1767 1768
			}

1769 1770 1771 1772
			p += rq_size;
			i++;
		}
	}
1773
	return 0;
1774

1775
fail:
1776 1777
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1778 1779
}

J
Jens Axboe 已提交
1780 1781 1782 1783 1784
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1785
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1786
{
1787
	struct blk_mq_hw_ctx *hctx;
1788 1789 1790
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1791
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1792
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1793 1794 1795 1796 1797 1798 1799 1800 1801

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1802
		return 0;
1803

J
Jens Axboe 已提交
1804 1805 1806
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1807 1808

	blk_mq_run_hw_queue(hctx, true);
1809
	return 0;
1810 1811
}

1812
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1813
{
1814 1815
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1816 1817
}

1818
/* hctx->ctxs will be freed in queue's release handler */
1819 1820 1821 1822
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1823 1824
	unsigned flush_start_tag = set->queue_depth;

1825 1826
	blk_mq_tag_idle(hctx);

1827 1828 1829 1830 1831
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1832 1833 1834
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1835 1836 1837
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1838
	blk_mq_remove_cpuhp(hctx);
1839
	blk_free_flush_queue(hctx->fq);
1840
	sbitmap_free(&hctx->ctx_map);
1841 1842
}

M
Ming Lei 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1852
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1862
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1863 1864 1865
		free_cpumask_var(hctx->cpumask);
}

1866 1867 1868
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1869
{
1870
	int node;
1871
	unsigned flush_start_tag = set->queue_depth;
1872 1873 1874 1875 1876

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1877
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1878 1879 1880 1881 1882
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1883
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1884

1885
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1886 1887

	hctx->tags = set->tags[hctx_idx];
1888 1889

	/*
1890 1891
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1892
	 */
1893 1894 1895 1896
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1897

1898 1899
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1900
		goto free_ctxs;
1901

1902
	hctx->nr_ctx = 0;
1903

1904 1905 1906
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1907

1908 1909 1910
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1911

1912 1913 1914 1915 1916
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1917

1918 1919 1920
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1921
	return 0;
1922

1923 1924 1925 1926 1927
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1928
 free_bitmap:
1929
	sbitmap_free(&hctx->ctx_map);
1930 1931 1932
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1933
	blk_mq_remove_cpuhp(hctx);
1934 1935
	return -1;
}
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1951 1952
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1953 1954 1955 1956 1957

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1958
		hctx = blk_mq_map_queue(q, i);
1959

1960 1961 1962 1963 1964
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1965
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1966 1967 1968
	}
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1991 1992 1993 1994 1995
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1996 1997
}

1998 1999
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2000
{
2001
	unsigned int i, hctx_idx;
2002 2003
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2004
	struct blk_mq_tag_set *set = q->tag_set;
2005

2006 2007 2008 2009 2010
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2011
	queue_for_each_hw_ctx(q, hctx, i) {
2012
		cpumask_clear(hctx->cpumask);
2013 2014 2015 2016 2017 2018
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2019
	for_each_possible_cpu(i) {
2020
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2021
		if (!cpumask_test_cpu(i, online_mask))
2022 2023
			continue;

2024 2025
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2026 2027
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2028 2029 2030 2031 2032 2033
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2034
			q->mq_map[i] = 0;
2035 2036
		}

2037
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2038
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2039

2040
		cpumask_set_cpu(i, hctx->cpumask);
2041 2042 2043
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2044

2045 2046
	mutex_unlock(&q->sysfs_lock);

2047
	queue_for_each_hw_ctx(q, hctx, i) {
2048
		/*
2049 2050
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2051 2052
		 */
		if (!hctx->nr_ctx) {
2053 2054 2055 2056
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2057 2058 2059
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2060
			hctx->tags = NULL;
2061 2062 2063
			continue;
		}

M
Ming Lei 已提交
2064 2065 2066
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2067 2068 2069 2070 2071
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2072
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2073

2074 2075 2076
		/*
		 * Initialize batch roundrobin counts
		 */
2077 2078 2079
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2080 2081
}

2082
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2083 2084 2085 2086
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2098 2099 2100

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2101
		queue_set_hctx_shared(q, shared);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2112 2113 2114 2115 2116 2117
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2118 2119 2120 2121 2122 2123 2124 2125 2126
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2127 2128 2129 2130 2131 2132 2133 2134 2135

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2136
	list_add_tail(&q->tag_set_list, &set->tag_list);
2137

2138 2139 2140
	mutex_unlock(&set->tag_list_lock);
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2152 2153
	blk_mq_sched_teardown(q);

2154
	/* hctx kobj stays in hctx */
2155 2156 2157 2158
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2159
		kfree(hctx);
2160
	}
2161

2162 2163
	q->mq_map = NULL;

2164 2165 2166 2167 2168 2169
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2170
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2186 2187
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2188
{
K
Keith Busch 已提交
2189 2190
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2191

K
Keith Busch 已提交
2192
	blk_mq_sysfs_unregister(q);
2193
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2194
		int node;
2195

K
Keith Busch 已提交
2196 2197 2198 2199
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2200 2201
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2202
		if (!hctxs[i])
K
Keith Busch 已提交
2203
			break;
2204

2205
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2206 2207 2208 2209 2210
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2211

2212
		atomic_set(&hctxs[i]->nr_active, 0);
2213
		hctxs[i]->numa_node = node;
2214
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2215 2216 2217 2218 2219 2220 2221 2222

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2223
	}
K
Keith Busch 已提交
2224 2225 2226 2227
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2228 2229
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2246 2247 2248
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2249 2250
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2251
		goto err_exit;
K
Keith Busch 已提交
2252 2253 2254 2255 2256 2257

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2258
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2259 2260 2261 2262

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2263

2264
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2265
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2266 2267 2268

	q->nr_queues = nr_cpu_ids;

2269
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2270

2271 2272 2273
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2274 2275
	q->sg_reserved_size = INT_MAX;

2276
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2277 2278 2279
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2280 2281 2282 2283 2284
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2285 2286 2287 2288 2289
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2290 2291 2292 2293 2294
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2295 2296
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2297

2298
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2299

2300
	get_online_cpus();
2301 2302
	mutex_lock(&all_q_mutex);

2303
	list_add_tail(&q->all_q_node, &all_q_list);
2304
	blk_mq_add_queue_tag_set(set, q);
2305
	blk_mq_map_swqueue(q, cpu_online_mask);
2306

2307
	mutex_unlock(&all_q_mutex);
2308
	put_online_cpus();
2309

2310 2311 2312 2313 2314 2315 2316 2317
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2318
	return q;
2319

2320
err_hctxs:
K
Keith Busch 已提交
2321
	kfree(q->queue_hw_ctx);
2322
err_percpu:
K
Keith Busch 已提交
2323
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2324 2325
err_exit:
	q->mq_ops = NULL;
2326 2327
	return ERR_PTR(-ENOMEM);
}
2328
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2329 2330 2331

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2332
	struct blk_mq_tag_set	*set = q->tag_set;
2333

2334 2335 2336 2337
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2338 2339
	wbt_exit(q);

2340 2341
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2342 2343
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2344 2345 2346
}

/* Basically redo blk_mq_init_queue with queue frozen */
2347 2348
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2349
{
2350
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2351

2352 2353
	blk_mq_sysfs_unregister(q);

2354 2355 2356 2357 2358 2359
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2360
	blk_mq_map_swqueue(q, online_mask);
2361

2362
	blk_mq_sysfs_register(q);
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2373 2374 2375 2376
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2377 2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2386
	list_for_each_entry(q, &all_q_list, all_q_node)
2387 2388
		blk_mq_freeze_queue_wait(q);

2389
	list_for_each_entry(q, &all_q_list, all_q_node)
2390
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2391 2392 2393 2394

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2395
	mutex_unlock(&all_q_mutex);
2396 2397 2398 2399
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2400
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2416 2417 2418 2419
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2420 2421 2422 2423 2424 2425 2426
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2427 2428
}

2429 2430 2431 2432
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2433 2434
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2435 2436 2437 2438 2439 2440
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2441
		blk_mq_free_rq_map(set->tags[i]);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2481 2482 2483 2484 2485 2486
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2487 2488
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2489 2490
	int ret;

B
Bart Van Assche 已提交
2491 2492
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2493 2494
	if (!set->nr_hw_queues)
		return -EINVAL;
2495
	if (!set->queue_depth)
2496 2497 2498 2499
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2500
	if (!set->ops->queue_rq)
2501 2502
		return -EINVAL;

2503 2504 2505 2506 2507
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2518 2519 2520 2521 2522
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2523

K
Keith Busch 已提交
2524
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2525 2526
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2527
		return -ENOMEM;
2528

2529 2530 2531
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2532 2533 2534
	if (!set->mq_map)
		goto out_free_tags;

2535 2536 2537 2538 2539 2540 2541 2542 2543
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2544
		goto out_free_mq_map;
2545

2546 2547 2548
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2549
	return 0;
2550 2551 2552 2553 2554

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2555 2556
	kfree(set->tags);
	set->tags = NULL;
2557
	return ret;
2558 2559 2560 2561 2562 2563 2564
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2565 2566
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2567

2568 2569 2570
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2571
	kfree(set->tags);
2572
	set->tags = NULL;
2573 2574 2575
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2576 2577 2578 2579 2580 2581
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2582
	if (!set)
2583 2584
		return -EINVAL;

2585 2586 2587
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2588 2589
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2590 2591
		if (!hctx->tags)
			continue;
2592 2593 2594 2595
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2596 2597 2598 2599 2600 2601 2602 2603
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2604 2605 2606 2607 2608 2609 2610
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2611 2612 2613
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2614 2615 2616
	return ret;
}

K
Keith Busch 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2683
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2684
				     struct blk_mq_hw_ctx *hctx,
2685 2686 2687 2688
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2689
	unsigned int nsecs;
2690 2691
	ktime_t kt;

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2710 2711 2712 2713 2714 2715 2716 2717
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2718
	kt = nsecs;
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2741 2742 2743 2744 2745
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2746 2747 2748 2749 2750 2751 2752
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2753
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2754 2755
		return true;

J
Jens Axboe 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2799 2800 2801 2802
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2803 2804 2805 2806 2807

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2818 2819
static int __init blk_mq_init(void)
{
2820 2821
	blk_mq_debugfs_init();

2822 2823
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2824

2825 2826 2827
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2828 2829 2830
	return 0;
}
subsys_initcall(blk_mq_init);