blk-mq.c 66.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42 43 44

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

203 204
	rq->cmd = rq->__cmd;

205 206 207 208 209 210
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
211 212
	rq->timeout = 0;

213 214 215 216
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

217
	ctx->rq_dispatched[op_is_sync(op)]++;
218
}
219
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220

221 222
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
223 224 225 226
{
	struct request *rq;
	unsigned int tag;

227
	tag = blk_mq_get_tag(data);
228
	if (tag != BLK_MQ_TAG_FAIL) {
229 230 231
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
232

233 234 235 236
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
237 238 239 240
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
241 242 243 244
			rq->tag = tag;
			rq->internal_tag = -1;
		}

245
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
246 247 248 249 250
		return rq;
	}

	return NULL;
}
251
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
252

253 254
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
255
{
256
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
257
	struct request *rq;
258
	int ret;
259

260
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
261 262
	if (ret)
		return ERR_PTR(ret);
263

264
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
265

266 267 268 269
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
270
		return ERR_PTR(-EWOULDBLOCK);
271 272 273 274

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
275 276
	return rq;
}
277
EXPORT_SYMBOL(blk_mq_alloc_request);
278

M
Ming Lin 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

304 305 306 307
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
308
	hctx = q->queue_hw_ctx[hctx_idx];
309 310 311 312
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
313 314 315
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
316
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
317
	if (!rq) {
318 319
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
320 321 322
	}

	return rq;
323 324 325 326

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
327 328 329
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

330 331
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
332
{
333
	const int sched_tag = rq->internal_tag;
334 335
	struct request_queue *q = rq->q;

336
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
337
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
338 339

	wbt_done(q->rq_wb, &rq->issue_stat);
340
	rq->rq_flags = 0;
341

342
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
343
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
344 345 346 347
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
348
	blk_queue_exit(q);
349 350
}

351
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
352
				     struct request *rq)
353 354 355 356
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
357 358 359 360 361 362
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
363 364 365 366
}

void blk_mq_free_request(struct request *rq)
{
367
	blk_mq_sched_put_request(rq);
368
}
J
Jens Axboe 已提交
369
EXPORT_SYMBOL_GPL(blk_mq_free_request);
370

371
inline void __blk_mq_end_request(struct request *rq, int error)
372
{
M
Ming Lei 已提交
373 374
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
375
	if (rq->end_io) {
J
Jens Axboe 已提交
376
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
377
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
378 379 380
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
381
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
382
	}
383
}
384
EXPORT_SYMBOL(__blk_mq_end_request);
385

386
void blk_mq_end_request(struct request *rq, int error)
387 388 389
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
390
	__blk_mq_end_request(rq, error);
391
}
392
EXPORT_SYMBOL(blk_mq_end_request);
393

394
static void __blk_mq_complete_request_remote(void *data)
395
{
396
	struct request *rq = data;
397

398
	rq->q->softirq_done_fn(rq);
399 400
}

401
static void blk_mq_ipi_complete_request(struct request *rq)
402 403
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
404
	bool shared = false;
405 406
	int cpu;

C
Christoph Hellwig 已提交
407
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408 409 410
		rq->q->softirq_done_fn(rq);
		return;
	}
411 412

	cpu = get_cpu();
C
Christoph Hellwig 已提交
413 414 415 416
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417
		rq->csd.func = __blk_mq_complete_request_remote;
418 419
		rq->csd.info = rq;
		rq->csd.flags = 0;
420
		smp_call_function_single_async(ctx->cpu, &rq->csd);
421
	} else {
422
		rq->q->softirq_done_fn(rq);
423
	}
424 425
	put_cpu();
}
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

442
static void __blk_mq_complete_request(struct request *rq)
443 444 445
{
	struct request_queue *q = rq->q;

446 447
	blk_mq_stat_add(rq);

448
	if (!q->softirq_done_fn)
449
		blk_mq_end_request(rq, rq->errors);
450 451 452 453
	else
		blk_mq_ipi_complete_request(rq);
}

454 455 456 457 458 459 460 461
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
462
void blk_mq_complete_request(struct request *rq, int error)
463
{
464 465 466
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
467
		return;
468 469
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
470
		__blk_mq_complete_request(rq);
471
	}
472 473
}
EXPORT_SYMBOL(blk_mq_complete_request);
474

475 476 477 478 479 480
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

481
void blk_mq_start_request(struct request *rq)
482 483 484
{
	struct request_queue *q = rq->q;

485 486
	blk_mq_sched_started_request(rq);

487 488
	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
489
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
490 491
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
492

493 494 495
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
496
		wbt_issue(q->rq_wb, &rq->issue_stat);
497 498
	}

499
	blk_add_timer(rq);
500

501 502 503 504 505 506
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

507 508 509 510 511 512
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
513 514 515 516
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 518 519 520 521 522 523 524 525

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
526
}
527
EXPORT_SYMBOL(blk_mq_start_request);
528

529
static void __blk_mq_requeue_request(struct request *rq)
530 531 532 533
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
534
	wbt_requeue(q->rq_wb, &rq->issue_stat);
535
	blk_mq_sched_requeue_request(rq);
536

537 538 539 540
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
541 542
}

543
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
544 545 546 547
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
548
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
549 550 551
}
EXPORT_SYMBOL(blk_mq_requeue_request);

552 553 554
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
555
		container_of(work, struct request_queue, requeue_work.work);
556 557 558 559 560 561 562 563 564
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
565
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
566 567
			continue;

568
		rq->rq_flags &= ~RQF_SOFTBARRIER;
569
		list_del_init(&rq->queuelist);
570
		blk_mq_sched_insert_request(rq, true, false, false);
571 572 573 574 575
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
576
		blk_mq_sched_insert_request(rq, false, false, false);
577 578
	}

579
	blk_mq_run_hw_queues(q, false);
580 581
}

582 583
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
584 585 586 587 588 589 590 591
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
592
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
593 594 595

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
596
		rq->rq_flags |= RQF_SOFTBARRIER;
597 598 599 600 601
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
602 603 604

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
605 606 607 608 609
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
610
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
611 612 613
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

614 615 616 617 618 619 620 621
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

642 643
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
644 645
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
646
		return tags->rqs[tag];
647
	}
648 649

	return NULL;
650 651 652
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

653
struct blk_mq_timeout_data {
654 655
	unsigned long next;
	unsigned int next_set;
656 657
};

658
void blk_mq_rq_timed_out(struct request *req, bool reserved)
659
{
J
Jens Axboe 已提交
660
	const struct blk_mq_ops *ops = req->q->mq_ops;
661
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
662 663 664 665 666 667 668 669 670 671

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
672 673
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
674

675
	if (ops->timeout)
676
		ret = ops->timeout(req, reserved);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
692
}
693

694 695 696 697
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
698

699 700 701 702 703
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
704 705 706 707
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
708
		return;
709
	}
710

711 712
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
713
			blk_mq_rq_timed_out(rq, reserved);
714 715 716 717
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
718 719
}

720
static void blk_mq_timeout_work(struct work_struct *work)
721
{
722 723
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
724 725 726 727 728
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
744 745
		return;

746
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
747

748 749 750
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
751
	} else {
752 753
		struct blk_mq_hw_ctx *hctx;

754 755 756 757 758
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
759
	}
760
	blk_queue_exit(q);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
784 785 786 787 788 789
		if (el_ret == ELEVATOR_NO_MERGE)
			continue;

		if (!blk_mq_sched_allow_merge(q, rq, bio))
			break;

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

826 827 828 829
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
830
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
831
{
832 833 834 835
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
836

837
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
838
}
839
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
840

841 842 843 844
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
845

846
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static bool blk_mq_get_driver_tag(struct request *rq,
				  struct blk_mq_hw_ctx **hctx, bool wait)
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.ctx = rq->mq_ctx,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (blk_mq_hctx_stopped(data.hctx))
		return false;

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
871 872 873 874
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

906
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
907 908 909
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
910 911
	LIST_HEAD(driver_list);
	struct list_head *dptr;
912
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
913

914 915 916 917 918 919
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

920 921 922
	/*
	 * Now process all the entries, sending them to the driver.
	 */
923
	queued = 0;
924
	while (!list_empty(list)) {
925
		struct blk_mq_queue_data bd;
926

927
		rq = list_first_entry(list, struct request, queuelist);
928 929 930 931 932 933
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
			blk_mq_sched_mark_restart(hctx);
			break;
		}
934 935
		list_del_init(&rq->queuelist);

936 937
		bd.rq = rq;
		bd.list = dptr;
938
		bd.last = list_empty(list);
939 940

		ret = q->mq_ops->queue_rq(hctx, &bd);
941 942 943
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
944
			break;
945
		case BLK_MQ_RQ_QUEUE_BUSY:
946
			list_add(&rq->queuelist, list);
947
			__blk_mq_requeue_request(rq);
948 949 950 951
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
952
			rq->errors = -EIO;
953
			blk_mq_end_request(rq, rq->errors);
954 955 956 957 958
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
959 960 961 962 963

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
964
		if (!dptr && list->next != list->prev)
965
			dptr = &driver_list;
966 967
	}

968
	hctx->dispatched[queued_to_index(queued)]++;
969 970 971 972 973

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
974
	if (!list_empty(list)) {
975
		spin_lock(&hctx->lock);
976
		list_splice(list, &hctx->dispatch);
977
		spin_unlock(&hctx->lock);
978

979 980 981 982 983 984 985 986
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
987 988 989 990 991 992
		 *
		 * If RESTART is set, then let completion restart the queue
		 * instead of potentially looping here.
		 */
		if (!blk_mq_sched_needs_restart(hctx))
			blk_mq_run_hw_queue(hctx, true);
993
	}
994 995 996 997

	return ret != BLK_MQ_RQ_QUEUE_BUSY;
}

998 999 1000 1001 1002 1003 1004 1005 1006
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1007
		blk_mq_sched_dispatch_requests(hctx);
1008 1009 1010
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1011
		blk_mq_sched_dispatch_requests(hctx);
1012 1013 1014 1015
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1016 1017 1018 1019 1020 1021 1022 1023
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1024 1025
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1026 1027

	if (--hctx->next_cpu_batch <= 0) {
1028
		int next_cpu;
1029 1030 1031 1032 1033 1034 1035 1036 1037

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1038
	return hctx->next_cpu;
1039 1040
}

1041 1042
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1043 1044
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1045 1046
		return;

1047
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1048 1049
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1050
			__blk_mq_run_hw_queue(hctx);
1051
			put_cpu();
1052 1053
			return;
		}
1054

1055
		put_cpu();
1056
	}
1057

1058
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1059 1060
}

1061
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1062 1063 1064 1065 1066
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1067
		if (!blk_mq_hctx_has_pending(hctx) ||
1068
		    blk_mq_hctx_stopped(hctx))
1069 1070
			continue;

1071
		blk_mq_run_hw_queue(hctx, async);
1072 1073
	}
}
1074
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1096 1097
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1098
	cancel_work(&hctx->run_work);
1099
	cancel_delayed_work(&hctx->delay_work);
1100 1101 1102 1103
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1114 1115 1116
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1117

1118
	blk_mq_run_hw_queue(hctx, false);
1119 1120 1121
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1142
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1143 1144 1145 1146
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1147 1148
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1149 1150 1151
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1152
static void blk_mq_run_work_fn(struct work_struct *work)
1153 1154 1155
{
	struct blk_mq_hw_ctx *hctx;

1156
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1157

1158 1159 1160
	__blk_mq_run_hw_queue(hctx);
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1173 1174
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1175

1176
	blk_mq_stop_hw_queue(hctx);
1177 1178
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1179 1180 1181
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1182 1183 1184
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1185
{
J
Jens Axboe 已提交
1186 1187
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1188 1189
	trace_block_rq_insert(hctx->queue, rq);

1190 1191 1192 1193
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1194
}
1195

1196 1197
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1198 1199 1200
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1201
	__blk_mq_insert_req_list(hctx, rq, at_head);
1202 1203 1204
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1205 1206
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1218
		BUG_ON(rq->mq_ctx != ctx);
1219
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1220
		__blk_mq_insert_req_list(hctx, rq, false);
1221
	}
1222
	blk_mq_hctx_mark_pending(hctx, ctx);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1259 1260 1261 1262
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1279 1280 1281
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1282 1283 1284 1285 1286 1287
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1288

1289
	blk_account_io_start(rq, true);
1290 1291
}

1292 1293 1294 1295 1296 1297
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1298 1299 1300
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1301
{
1302
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1303 1304 1305 1306 1307 1308 1309
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1310 1311
		struct request_queue *q = hctx->queue;

1312 1313 1314 1315 1316
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1317

1318
		spin_unlock(&ctx->lock);
1319
		__blk_mq_finish_request(hctx, ctx, rq);
1320
		return true;
1321
	}
1322
}
1323

1324 1325
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1326 1327 1328 1329
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1330 1331
}

1332
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1333 1334 1335 1336 1337 1338 1339
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1340 1341 1342
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1343

1344
	if (q->elevator)
1345 1346
		goto insert;

1347 1348 1349 1350 1351
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1352 1353 1354 1355 1356 1357
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1358 1359
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1360
		return;
1361
	}
1362

1363 1364 1365 1366 1367 1368
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1369
		return;
1370
	}
1371

1372
insert:
1373
	blk_mq_sched_insert_request(rq, false, true, true);
1374 1375
}

1376 1377 1378 1379 1380
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1381
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1382
{
1383
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1384
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1385
	struct blk_mq_alloc_data data = { .flags = 0 };
1386
	struct request *rq;
1387
	unsigned int request_count = 0, srcu_idx;
1388
	struct blk_plug *plug;
1389
	struct request *same_queue_rq = NULL;
1390
	blk_qc_t cookie;
J
Jens Axboe 已提交
1391
	unsigned int wb_acct;
1392 1393 1394 1395

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1396
		bio_io_error(bio);
1397
		return BLK_QC_T_NONE;
1398 1399
	}

1400 1401
	blk_queue_split(q, &bio, q->bio_split);

1402 1403 1404
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1405

1406 1407 1408
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1409 1410
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1411 1412 1413
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1414 1415
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1416
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1417 1418 1419
	}

	wbt_track(&rq->issue_stat, wb_acct);
1420

1421
	cookie = request_to_qc_t(data.hctx, rq);
1422 1423 1424

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1425
		blk_mq_get_driver_tag(rq, NULL, true);
1426 1427 1428 1429
		blk_insert_flush(rq);
		goto run_queue;
	}

1430
	plug = current->plug;
1431 1432 1433 1434 1435
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1436 1437 1438
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1439 1440 1441 1442

		blk_mq_bio_to_request(rq, bio);

		/*
1443
		 * We do limited plugging. If the bio can be merged, do that.
1444 1445
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1446
		 */
1447
		if (plug) {
1448 1449
			/*
			 * The plug list might get flushed before this. If that
1450 1451 1452
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1453 1454
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1455
				list_del_init(&old_rq->queuelist);
1456
			}
1457 1458 1459 1460 1461
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1462
			goto done;
1463 1464 1465

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1466
			blk_mq_try_issue_directly(old_rq, &cookie);
1467 1468 1469
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1470
			blk_mq_try_issue_directly(old_rq, &cookie);
1471 1472
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1473
		goto done;
1474 1475
	}

1476 1477 1478 1479 1480 1481
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
		blk_mq_sched_insert_request(rq, false, true, true);
		goto done;
	}
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1493 1494
done:
	return cookie;
1495 1496 1497 1498 1499 1500
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1501
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1502
{
1503
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1504
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1505 1506
	struct blk_plug *plug;
	unsigned int request_count = 0;
1507
	struct blk_mq_alloc_data data = { .flags = 0 };
1508
	struct request *rq;
1509
	blk_qc_t cookie;
J
Jens Axboe 已提交
1510
	unsigned int wb_acct;
1511 1512 1513 1514

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1515
		bio_io_error(bio);
1516
		return BLK_QC_T_NONE;
1517 1518
	}

1519 1520
	blk_queue_split(q, &bio, q->bio_split);

1521 1522 1523 1524 1525
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1526

1527 1528 1529
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1530 1531
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1532 1533 1534
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1535 1536
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1537
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1538 1539 1540
	}

	wbt_track(&rq->issue_stat, wb_acct);
1541

1542
	cookie = request_to_qc_t(data.hctx, rq);
1543 1544 1545

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1546
		blk_mq_get_driver_tag(rq, NULL, true);
1547 1548 1549 1550 1551 1552 1553 1554 1555
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1556 1557
	plug = current->plug;
	if (plug) {
1558 1559
		struct request *last = NULL;

1560
		blk_mq_bio_to_request(rq, bio);
1561 1562 1563 1564 1565 1566 1567

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1568
		if (!request_count)
1569
			trace_block_plug(q);
1570 1571
		else
			last = list_entry_rq(plug->mq_list.prev);
1572 1573 1574

		blk_mq_put_ctx(data.ctx);

1575 1576
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1577 1578
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1579
		}
1580

1581
		list_add_tail(&rq->queuelist, &plug->mq_list);
1582
		return cookie;
1583 1584
	}

1585 1586 1587 1588 1589 1590
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
		blk_mq_sched_insert_request(rq, false, true, true);
		goto done;
	}
1591 1592 1593 1594 1595 1596 1597 1598 1599
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1600 1601
	}

1602
	blk_mq_put_ctx(data.ctx);
1603
done:
1604
	return cookie;
1605 1606
}

1607 1608
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1609
{
1610
	struct page *page;
1611

1612
	if (tags->rqs && set->ops->exit_request) {
1613
		int i;
1614

1615
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1616 1617 1618
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1619
				continue;
J
Jens Axboe 已提交
1620
			set->ops->exit_request(set->driver_data, rq,
1621
						hctx_idx, i);
J
Jens Axboe 已提交
1622
			tags->static_rqs[i] = NULL;
1623
		}
1624 1625
	}

1626 1627
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1628
		list_del_init(&page->lru);
1629 1630 1631 1632 1633
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1634 1635
		__free_pages(page, page->private);
	}
1636
}
1637

1638 1639
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1640
	kfree(tags->rqs);
1641
	tags->rqs = NULL;
J
Jens Axboe 已提交
1642 1643
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1644

1645
	blk_mq_free_tags(tags);
1646 1647
}

1648 1649 1650 1651
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1652
{
1653
	struct blk_mq_tags *tags;
1654

1655
	tags = blk_mq_init_tags(nr_tags, reserved_tags,
S
Shaohua Li 已提交
1656 1657
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1658 1659
	if (!tags)
		return NULL;
1660

1661
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1662
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1663
				 set->numa_node);
1664 1665 1666 1667
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1668

J
Jens Axboe 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

	INIT_LIST_HEAD(&tags->page_list);

1694 1695 1696 1697
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1698
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1699
				cache_line_size());
1700
	left = rq_size * depth;
1701

1702
	for (i = 0; i < depth; ) {
1703 1704 1705 1706 1707
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1708
		while (this_order && left < order_to_size(this_order - 1))
1709 1710 1711
			this_order--;

		do {
1712
			page = alloc_pages_node(set->numa_node,
1713
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1714
				this_order);
1715 1716 1717 1718 1719 1720 1721 1722 1723
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1724
			goto fail;
1725 1726

		page->private = this_order;
1727
		list_add_tail(&page->lru, &tags->page_list);
1728 1729

		p = page_address(page);
1730 1731 1732 1733
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1734
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1735
		entries_per_page = order_to_size(this_order) / rq_size;
1736
		to_do = min(entries_per_page, depth - i);
1737 1738
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1739 1740 1741
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1742 1743
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1744
						rq, hctx_idx, i,
1745
						set->numa_node)) {
J
Jens Axboe 已提交
1746
					tags->static_rqs[i] = NULL;
1747
					goto fail;
1748
				}
1749 1750
			}

1751 1752 1753 1754
			p += rq_size;
			i++;
		}
	}
1755
	return 0;
1756

1757
fail:
1758 1759
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1760 1761
}

J
Jens Axboe 已提交
1762 1763 1764 1765 1766
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1767
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1768
{
1769
	struct blk_mq_hw_ctx *hctx;
1770 1771 1772
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1773
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1774
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1775 1776 1777 1778 1779 1780 1781 1782 1783

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1784
		return 0;
1785

J
Jens Axboe 已提交
1786 1787 1788
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1789 1790

	blk_mq_run_hw_queue(hctx, true);
1791
	return 0;
1792 1793
}

1794
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1795
{
1796 1797
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1798 1799
}

1800
/* hctx->ctxs will be freed in queue's release handler */
1801 1802 1803 1804
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1805 1806
	unsigned flush_start_tag = set->queue_depth;

1807 1808
	blk_mq_tag_idle(hctx);

1809 1810 1811 1812 1813
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1814 1815 1816
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1817 1818 1819
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1820
	blk_mq_remove_cpuhp(hctx);
1821
	blk_free_flush_queue(hctx->fq);
1822
	sbitmap_free(&hctx->ctx_map);
1823 1824
}

M
Ming Lei 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1834
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1844
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1845 1846 1847
		free_cpumask_var(hctx->cpumask);
}

1848 1849 1850
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1851
{
1852
	int node;
1853
	unsigned flush_start_tag = set->queue_depth;
1854 1855 1856 1857 1858

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1859
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1860 1861 1862 1863 1864
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1865
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1866

1867
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1868 1869

	hctx->tags = set->tags[hctx_idx];
1870 1871

	/*
1872 1873
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1874
	 */
1875 1876 1877 1878
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1879

1880 1881
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1882
		goto free_ctxs;
1883

1884
	hctx->nr_ctx = 0;
1885

1886 1887 1888
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1889

1890 1891 1892
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1893

1894 1895 1896 1897 1898
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1899

1900 1901 1902
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1903
	return 0;
1904

1905 1906 1907 1908 1909
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1910
 free_bitmap:
1911
	sbitmap_free(&hctx->ctx_map);
1912 1913 1914
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1915
	blk_mq_remove_cpuhp(hctx);
1916 1917
	return -1;
}
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1933 1934
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1935 1936 1937 1938 1939

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1940
		hctx = blk_mq_map_queue(q, i);
1941

1942 1943 1944 1945 1946
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1947
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1948 1949 1950
	}
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1973 1974 1975 1976 1977
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1978 1979
}

1980 1981
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1982
{
1983
	unsigned int i, hctx_idx;
1984 1985
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1986
	struct blk_mq_tag_set *set = q->tag_set;
1987

1988 1989 1990 1991 1992
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1993
	queue_for_each_hw_ctx(q, hctx, i) {
1994
		cpumask_clear(hctx->cpumask);
1995 1996 1997 1998 1999 2000
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2001
	for_each_possible_cpu(i) {
2002
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2003
		if (!cpumask_test_cpu(i, online_mask))
2004 2005
			continue;

2006 2007
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2008 2009
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2010 2011 2012 2013 2014 2015
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2016
			q->mq_map[i] = 0;
2017 2018
		}

2019
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2020
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2021

2022
		cpumask_set_cpu(i, hctx->cpumask);
2023 2024 2025
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2026

2027 2028
	mutex_unlock(&q->sysfs_lock);

2029
	queue_for_each_hw_ctx(q, hctx, i) {
2030
		/*
2031 2032
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2033 2034
		 */
		if (!hctx->nr_ctx) {
2035 2036 2037 2038
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2039 2040 2041
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2042
			hctx->tags = NULL;
2043 2044 2045
			continue;
		}

M
Ming Lei 已提交
2046 2047 2048
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2049 2050 2051 2052 2053
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2054
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2055

2056 2057 2058
		/*
		 * Initialize batch roundrobin counts
		 */
2059 2060 2061
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2062 2063
}

2064
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2065 2066 2067 2068
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2080 2081 2082

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2083
		queue_set_hctx_shared(q, shared);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2094 2095 2096 2097 2098 2099
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2100 2101 2102 2103 2104 2105 2106 2107 2108
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2109 2110 2111 2112 2113 2114 2115 2116 2117

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2118
	list_add_tail(&q->tag_set_list, &set->tag_list);
2119

2120 2121 2122
	mutex_unlock(&set->tag_list_lock);
}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2134 2135
	blk_mq_sched_teardown(q);

2136
	/* hctx kobj stays in hctx */
2137 2138 2139 2140
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2141
		kfree(hctx);
2142
	}
2143

2144 2145
	q->mq_map = NULL;

2146 2147 2148 2149 2150 2151
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2152
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2168 2169
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2170
{
K
Keith Busch 已提交
2171 2172
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2173

K
Keith Busch 已提交
2174
	blk_mq_sysfs_unregister(q);
2175
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2176
		int node;
2177

K
Keith Busch 已提交
2178 2179 2180 2181
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2182 2183
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2184
		if (!hctxs[i])
K
Keith Busch 已提交
2185
			break;
2186

2187
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2188 2189 2190 2191 2192
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2193

2194
		atomic_set(&hctxs[i]->nr_active, 0);
2195
		hctxs[i]->numa_node = node;
2196
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2197 2198 2199 2200 2201 2202 2203 2204

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2205
	}
K
Keith Busch 已提交
2206 2207 2208 2209
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2210 2211
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2228 2229 2230
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2231 2232
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2233
		goto err_exit;
K
Keith Busch 已提交
2234 2235 2236 2237 2238 2239

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2240
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2241 2242 2243 2244

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2245

2246
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2247
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2248 2249 2250

	q->nr_queues = nr_cpu_ids;

2251
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2252

2253 2254 2255
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2256 2257
	q->sg_reserved_size = INT_MAX;

2258
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2259 2260 2261
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2262 2263 2264 2265 2266
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2267 2268 2269 2270 2271
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2272 2273 2274 2275 2276
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2277 2278
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2279

2280
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2281

2282
	get_online_cpus();
2283 2284
	mutex_lock(&all_q_mutex);

2285
	list_add_tail(&q->all_q_node, &all_q_list);
2286
	blk_mq_add_queue_tag_set(set, q);
2287
	blk_mq_map_swqueue(q, cpu_online_mask);
2288

2289
	mutex_unlock(&all_q_mutex);
2290
	put_online_cpus();
2291

2292 2293 2294 2295 2296 2297 2298 2299
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2300
	return q;
2301

2302
err_hctxs:
K
Keith Busch 已提交
2303
	kfree(q->queue_hw_ctx);
2304
err_percpu:
K
Keith Busch 已提交
2305
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2306 2307
err_exit:
	q->mq_ops = NULL;
2308 2309
	return ERR_PTR(-ENOMEM);
}
2310
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2311 2312 2313

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2314
	struct blk_mq_tag_set	*set = q->tag_set;
2315

2316 2317 2318 2319
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2320 2321
	wbt_exit(q);

2322 2323
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2324 2325
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2326 2327 2328
}

/* Basically redo blk_mq_init_queue with queue frozen */
2329 2330
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2331
{
2332
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2333

2334 2335
	blk_mq_sysfs_unregister(q);

2336 2337 2338 2339 2340 2341
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2342
	blk_mq_map_swqueue(q, online_mask);
2343

2344
	blk_mq_sysfs_register(q);
2345 2346
}

2347 2348 2349 2350 2351 2352 2353 2354
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2355 2356 2357 2358
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2359 2360 2361 2362 2363 2364 2365 2366 2367
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2368
	list_for_each_entry(q, &all_q_list, all_q_node)
2369 2370
		blk_mq_freeze_queue_wait(q);

2371
	list_for_each_entry(q, &all_q_list, all_q_node)
2372
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2373 2374 2375 2376

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2377
	mutex_unlock(&all_q_mutex);
2378 2379 2380 2381
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2382
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2398 2399 2400 2401
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2402 2403 2404 2405 2406 2407 2408
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2409 2410
}

2411 2412 2413 2414
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2415 2416
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2417 2418 2419 2420 2421 2422
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2423
		blk_mq_free_rq_map(set->tags[i]);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2463 2464 2465 2466 2467 2468
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2469 2470
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2471 2472
	int ret;

B
Bart Van Assche 已提交
2473 2474
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2475 2476
	if (!set->nr_hw_queues)
		return -EINVAL;
2477
	if (!set->queue_depth)
2478 2479 2480 2481
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2482
	if (!set->ops->queue_rq)
2483 2484
		return -EINVAL;

2485 2486 2487 2488 2489
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2500 2501 2502 2503 2504
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2505

K
Keith Busch 已提交
2506
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2507 2508
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2509
		return -ENOMEM;
2510

2511 2512 2513
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2514 2515 2516
	if (!set->mq_map)
		goto out_free_tags;

2517 2518 2519 2520 2521 2522 2523 2524 2525
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2526
		goto out_free_mq_map;
2527

2528 2529 2530
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2531
	return 0;
2532 2533 2534 2535 2536

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2537 2538
	kfree(set->tags);
	set->tags = NULL;
2539
	return ret;
2540 2541 2542 2543 2544 2545 2546
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2547 2548
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2549

2550 2551 2552
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2553
	kfree(set->tags);
2554
	set->tags = NULL;
2555 2556 2557
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2558 2559 2560 2561 2562 2563
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2564
	if (!set)
2565 2566
		return -EINVAL;

2567 2568 2569
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2570 2571
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2572 2573
		if (!hctx->tags)
			continue;
2574 2575 2576 2577
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2578 2579 2580 2581 2582 2583 2584 2585
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2586 2587 2588 2589 2590 2591 2592
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2593 2594 2595
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2596 2597 2598
	return ret;
}

K
Keith Busch 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2665
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2666
				     struct blk_mq_hw_ctx *hctx,
2667 2668 2669 2670
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2671
	unsigned int nsecs;
2672 2673
	ktime_t kt;

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2692 2693 2694 2695 2696 2697 2698 2699
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2700
	kt = nsecs;
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2723 2724 2725 2726 2727
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2728 2729 2730 2731 2732 2733 2734
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2735
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2736 2737
		return true;

J
Jens Axboe 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2781 2782 2783 2784
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2785 2786 2787 2788 2789

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2800 2801
static int __init blk_mq_init(void)
{
2802 2803
	blk_mq_debugfs_init();

2804 2805
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2806

2807 2808 2809
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2810 2811 2812
	return 0;
}
subsys_initcall(blk_mq_init);