c_can.c 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38
#include <linux/pinctrl/consumer.h>
39 40 41 42

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
43
#include <linux/can/led.h>
44 45 46

#include "c_can.h"

47 48 49 50
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

51 52 53
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR		BIT(8)

54 55 56 57 58 59 60 61 62 63
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

64 65
#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)

66 67 68 69 70 71 72 73 74
/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
75
#define STATUS_PDA		BIT(10)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
114
#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
115 116
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
117 118 119 120 121

/* TX buffer setup */
#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
				 IF_COMM_TXRQST |		 \
				 IF_COMM_DATAA | IF_COMM_DATAB)
122

123 124 125 126 127 128
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
				 IF_COMM_DATAA | IF_COMM_DATAB)

/* For the high buffers we clear the interrupt bit and newdat */
129
#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
130

131 132 133 134

/* Receive setup of message objects */
#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)

135 136 137
/* Invalidation of message objects */
#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)

138
/* IFx arbitration */
139 140 141
#define IF_ARB_MSGVAL		BIT(31)
#define IF_ARB_MSGXTD		BIT(30)
#define IF_ARB_TRANSMIT		BIT(29)
142 143 144 145 146 147 148 149 150 151 152 153 154

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

155 156 157
#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)

158 159
#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)

160
/*
T
Thomas Gleixner 已提交
161
 * Use IF1 for RX and IF2 for TX
162
 */
T
Thomas Gleixner 已提交
163 164
#define IF_RX			0
#define IF_TX			1
165 166 167 168

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

169 170 171
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS		1000

172 173 174 175 176 177 178 179 180 181 182 183 184
/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
T
Thomas Gleixner 已提交
185
	LEC_MASK = LEC_UNUSED,
186 187 188 189 190 191 192 193 194 195 196 197 198
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

199
static const struct can_bittiming_const c_can_bittiming_const = {
200 201 202 203 204 205 206 207 208 209 210
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

235 236 237 238 239 240
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
	if (priv->raminit)
		priv->raminit(priv, enable);
}

241
static void c_can_irq_control(struct c_can_priv *priv, bool enable)
242
{
243
	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
244 245

	if (enable)
246
		ctrl |= CONTROL_IRQMSK;
247

248
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
249 250
}

251
static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
252
{
253 254 255
	struct c_can_priv *priv = netdev_priv(dev);
	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);

256
	priv->write_reg32(priv, reg, (cmd << 16) | obj);
257

258 259 260
	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
			return;
261 262
		udelay(1);
	}
263
	netdev_err(dev, "Updating object timed out\n");
264 265 266

}

267 268
static inline void c_can_object_get(struct net_device *dev, int iface,
				    u32 obj, u32 cmd)
269
{
270
	c_can_obj_update(dev, iface, cmd, obj);
271 272
}

273 274
static inline void c_can_object_put(struct net_device *dev, int iface,
				    u32 obj, u32 cmd)
275
{
276
	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/*
 * Note: According to documentation clearing TXIE while MSGVAL is set
 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 * load significantly.
 */
static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
{
	struct c_can_priv *priv = netdev_priv(dev);

	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
}

static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
{
	struct c_can_priv *priv = netdev_priv(dev);

	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	c_can_inval_tx_object(dev, iface, obj);
}

T
Thomas Gleixner 已提交
301
static void c_can_setup_tx_object(struct net_device *dev, int iface,
302
				  struct can_frame *frame, int idx)
303 304
{
	struct c_can_priv *priv = netdev_priv(dev);
305
	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
306
	bool rtr = frame->can_id & CAN_RTR_FLAG;
307
	u32 arb = IF_ARB_MSGVAL;
308
	int i;
309 310

	if (frame->can_id & CAN_EFF_FLAG) {
311
		arb |= frame->can_id & CAN_EFF_MASK;
312
		arb |= IF_ARB_MSGXTD;
313 314 315 316
	} else {
		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
	}

317
	if (!rtr)
318
		arb |= IF_ARB_TRANSMIT;
319

320 321 322 323 324 325 326 327 328 329 330
	/*
	 * If we change the DIR bit, we need to invalidate the buffer
	 * first, i.e. clear the MSGVAL flag in the arbiter.
	 */
	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;

		c_can_inval_msg_object(dev, iface, obj);
		change_bit(idx, &priv->tx_dir);
	}

331
	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
332

333
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
334 335

	for (i = 0; i < frame->can_dlc; i += 2) {
336
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
337 338 339 340 341
				frame->data[i] | (frame->data[i + 1] << 8));
	}
}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
342
						       int iface)
343 344 345
{
	int i;

346 347
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
348 349
}

350 351
static int c_can_handle_lost_msg_obj(struct net_device *dev,
				     int iface, int objno, u32 ctrl)
352 353
{
	struct net_device_stats *stats = &dev->stats;
354
	struct c_can_priv *priv = netdev_priv(dev);
355
	struct can_frame *frame;
356
	struct sk_buff *skb;
357

358 359
	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
T
Thomas Gleixner 已提交
360
	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
361

362 363 364
	stats->rx_errors++;
	stats->rx_over_errors++;

365 366 367
	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
368
		return 0;
369 370 371 372 373

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);
374
	return 1;
375 376
}

377
static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
378 379
{
	struct net_device_stats *stats = &dev->stats;
380
	struct c_can_priv *priv = netdev_priv(dev);
381
	struct can_frame *frame;
382 383
	struct sk_buff *skb;
	u32 arb, data;
384 385 386 387 388 389 390 391 392

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

393
	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
394

395
	if (arb & IF_ARB_MSGXTD)
396
		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
397
	else
398
		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
399

400
	if (arb & IF_ARB_TRANSMIT) {
401
		frame->can_id |= CAN_RTR_FLAG;
402 403 404 405 406
	} else {
		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);

		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
			data = priv->read_reg(priv, dreg);
407 408 409 410 411 412 413
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;
414 415

	netif_receive_skb(skb);
416 417 418 419
	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
420
				       u32 obj, u32 mask, u32 id, u32 mcont)
421 422 423
{
	struct c_can_priv *priv = netdev_priv(dev);

424
	mask |= BIT(29);
425
	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
426

427
	id |= IF_ARB_MSGVAL;
428
	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
429

430
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
431
	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
432 433 434
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
T
Thomas Gleixner 已提交
435
				    struct net_device *dev)
436 437
{
	struct can_frame *frame = (struct can_frame *)skb->data;
T
Thomas Gleixner 已提交
438 439
	struct c_can_priv *priv = netdev_priv(dev);
	u32 idx, obj;
440 441 442 443

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;
	/*
T
Thomas Gleixner 已提交
444 445
	 * This is not a FIFO. C/D_CAN sends out the buffers
	 * prioritized. The lowest buffer number wins.
446
	 */
T
Thomas Gleixner 已提交
447 448 449 450 451
	idx = fls(atomic_read(&priv->tx_active));
	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;

	/* If this is the last buffer, stop the xmit queue */
	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
452
		netif_stop_queue(dev);
T
Thomas Gleixner 已提交
453 454 455 456 457
	/*
	 * Store the message in the interface so we can call
	 * can_put_echo_skb(). We must do this before we enable
	 * transmit as we might race against do_tx().
	 */
458
	c_can_setup_tx_object(dev, IF_TX, frame, idx);
T
Thomas Gleixner 已提交
459 460 461 462 463 464 465
	priv->dlc[idx] = frame->can_dlc;
	can_put_echo_skb(skb, dev, idx);

	/* Update the active bits */
	atomic_add((1 << idx), &priv->tx_active);
	/* Start transmission */
	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
466 467 468 469

	return NETDEV_TX_OK;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static int c_can_wait_for_ctrl_init(struct net_device *dev,
				    struct c_can_priv *priv, u32 init)
{
	int retry = 0;

	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
		udelay(10);
		if (retry++ > 1000) {
			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
			return -EIO;
		}
	}
	return 0;
}

485 486 487 488 489 490 491
static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
492
	int res;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

509
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
510 511 512 513 514 515
	ctrl_save &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
	if (res)
		return res;

516 517 518
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
519

520
	return c_can_wait_for_ctrl_init(dev, priv, 0);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
T
Thomas Gleixner 已提交
538
		c_can_inval_msg_object(dev, IF_RX, i);
539 540 541

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
542
		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
543

T
Thomas Gleixner 已提交
544
	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
545
				   IF_MCONT_RCV_EOB);
546 547 548 549 550 551 552 553
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
554
static int c_can_chip_config(struct net_device *dev)
555 556 557
{
	struct c_can_priv *priv = netdev_priv(dev);

558
	/* enable automatic retransmission */
T
Thomas Gleixner 已提交
559
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
560

561 562
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
563
		/* loopback + silent mode : useful for hot self-test */
T
Thomas Gleixner 已提交
564 565
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
566 567
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
T
Thomas Gleixner 已提交
568
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
569
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
570 571
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
T
Thomas Gleixner 已提交
572
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
573
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
T
Thomas Gleixner 已提交
574
	}
575 576 577 578 579

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
580
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
581

T
Thomas Gleixner 已提交
582 583 584
	/* Clear all internal status */
	atomic_set(&priv->tx_active, 0);
	priv->rxmasked = 0;
585
	priv->tx_dir = 0;
T
Thomas Gleixner 已提交
586

587
	/* set bittiming params */
588
	return c_can_set_bittiming(dev);
589 590
}

591
static int c_can_start(struct net_device *dev)
592 593
{
	struct c_can_priv *priv = netdev_priv(dev);
594
	int err;
595 596

	/* basic c_can configuration */
597 598 599
	err = c_can_chip_config(dev);
	if (err)
		return err;
600

601 602 603 604
	/* Setup the command for new messages */
	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;

605 606
	priv->can.state = CAN_STATE_ERROR_ACTIVE;

607 608
	/* activate pins */
	pinctrl_pm_select_default_state(dev->dev.parent);
609
	return 0;
610 611 612 613 614 615
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

616
	c_can_irq_control(priv, false);
617

618 619 620
	/* put ctrl to init on stop to end ongoing transmission */
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);

621 622
	/* deactivate pins */
	pinctrl_pm_select_sleep_state(dev->dev.parent);
623 624 625 626 627
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
T
Thomas Gleixner 已提交
628
	struct c_can_priv *priv = netdev_priv(dev);
629 630
	int err;

631 632
	switch (mode) {
	case CAN_MODE_START:
633 634 635
		err = c_can_start(dev);
		if (err)
			return err;
636
		netif_wake_queue(dev);
637
		c_can_irq_control(priv, true);
638 639 640 641 642 643 644 645
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

646 647
static int __c_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
648 649 650 651
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

652
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
653 654 655 656
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

657 658 659 660 661 662 663 664 665 666 667
	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_get_sync(priv);
	err = __c_can_get_berr_counter(dev, bec);
668 669
	c_can_pm_runtime_put_sync(priv);

670
	return err;
671 672 673 674 675 676
}

static void c_can_do_tx(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
T
Thomas Gleixner 已提交
677
	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
678

T
Thomas Gleixner 已提交
679
	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
680

T
Thomas Gleixner 已提交
681 682 683 684
	while ((idx = ffs(pend))) {
		idx--;
		pend &= ~(1 << idx);
		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
685
		c_can_inval_tx_object(dev, IF_RX, obj);
T
Thomas Gleixner 已提交
686 687
		can_get_echo_skb(dev, idx);
		bytes += priv->dlc[idx];
688
		pkts++;
689 690
	}

T
Thomas Gleixner 已提交
691 692
	/* Clear the bits in the tx_active mask */
	atomic_sub(clr, &priv->tx_active);
693

T
Thomas Gleixner 已提交
694 695
	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
		netif_wake_queue(dev);
696 697 698 699 700 701

	if (pkts) {
		stats->tx_bytes += bytes;
		stats->tx_packets += pkts;
		can_led_event(dev, CAN_LED_EVENT_TX);
	}
702 703
}

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
/*
 * If we have a gap in the pending bits, that means we either
 * raced with the hardware or failed to readout all upper
 * objects in the last run due to quota limit.
 */
static u32 c_can_adjust_pending(u32 pend)
{
	u32 weight, lasts;

	if (pend == RECEIVE_OBJECT_BITS)
		return pend;

	/*
	 * If the last set bit is larger than the number of pending
	 * bits we have a gap.
	 */
	weight = hweight32(pend);
	lasts = fls(pend);

	/* If the bits are linear, nothing to do */
	if (lasts == weight)
		return pend;

	/*
	 * Find the first set bit after the gap. We walk backwards
	 * from the last set bit.
	 */
	for (lasts--; pend & (1 << (lasts - 1)); lasts--);

	return pend & ~((1 << lasts) - 1);
}

736 737
static inline void c_can_rx_object_get(struct net_device *dev,
				       struct c_can_priv *priv, u32 obj)
738
{
739
		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
740 741 742 743 744
}

static inline void c_can_rx_finalize(struct net_device *dev,
				     struct c_can_priv *priv, u32 obj)
{
745 746
	if (priv->type != BOSCH_D_CAN)
		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
747 748
}

749 750 751
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
			      u32 pend, int quota)
{
752
	u32 pkts = 0, ctrl, obj;
753 754 755 756

	while ((obj = ffs(pend)) && quota > 0) {
		pend &= ~BIT(obj - 1);

757
		c_can_rx_object_get(dev, priv, obj);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));

		if (ctrl & IF_MCONT_MSGLST) {
			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);

			pkts += n;
			quota -= n;
			continue;
		}

		/*
		 * This really should not happen, but this covers some
		 * odd HW behaviour. Do not remove that unless you
		 * want to brick your machine.
		 */
		if (!(ctrl & IF_MCONT_NEWDAT))
			continue;

		/* read the data from the message object */
		c_can_read_msg_object(dev, IF_RX, ctrl);

779
		c_can_rx_finalize(dev, priv, obj);
780 781 782 783 784 785

		pkts++;
		quota--;
	}

	return pkts;
786 787
}

788 789 790 791 792 793 794
static inline u32 c_can_get_pending(struct c_can_priv *priv)
{
	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);

	return pend;
}

795 796 797 798 799 800 801 802 803
/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
804 805 806
 * We clear the newdat bit right away.
 *
 * This can result in packet reordering when the readout is slow.
807 808 809 810
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct c_can_priv *priv = netdev_priv(dev);
811
	u32 pkts = 0, pend = 0, toread, n;
812 813 814 815 816 817 818 819

	/*
	 * It is faster to read only one 16bit register. This is only possible
	 * for a maximum number of 16 objects.
	 */
	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
			"Implementation does not support more message objects than 16");

820 821
	while (quota > 0) {
		if (!pend) {
822
			pend = c_can_get_pending(priv);
823
			if (!pend)
824
				break;
825 826 827 828
			/*
			 * If the pending field has a gap, handle the
			 * bits above the gap first.
			 */
829
			toread = c_can_adjust_pending(pend);
830
		} else {
831
			toread = pend;
832
		}
833
		/* Remove the bits from pend */
834 835 836 837 838
		pend &= ~toread;
		/* Read the objects */
		n = c_can_read_objects(dev, priv, toread, quota);
		pkts += n;
		quota -= n;
839 840
	}

841 842 843
	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

844
	return pkts;
845 846 847 848 849 850 851 852 853 854 855 856 857
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

L
Lucas De Marchi 已提交
878
	/* propagate the error condition to the CAN stack */
879 880 881 882
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

883
	__c_can_get_berr_counter(dev, &bec);
884
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
921
	netif_receive_skb(skb);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

T
Thomas Gleixner 已提交
942 943 944
	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		return 0;

945 946 947 948
	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;

L
Lucas De Marchi 已提交
949
	/* propagate the error condition to the CAN stack */
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
972
		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
973 974 975 976 977 978 979 980 981 982 983 984
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
985
		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
986 987 988 989 990 991 992 993
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
994
	netif_receive_skb(skb);
995 996 997 998 999 1000 1001
	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);
1002 1003
	u16 curr, last = priv->last_status;
	int work_done = 0;
1004

1005 1006 1007 1008
	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
	/* Ack status on C_CAN. D_CAN is self clearing */
	if (priv->type != BOSCH_D_CAN)
		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1009

1010 1011 1012 1013 1014
	/* handle state changes */
	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
		netdev_dbg(dev, "entered error warning state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
	}
1015

1016 1017 1018 1019
	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
		netdev_dbg(dev, "entered error passive state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
	}
1020

1021 1022 1023 1024
	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
		netdev_dbg(dev, "entered bus off state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
		goto end;
1025 1026
	}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/* handle bus recovery events */
	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
		netdev_dbg(dev, "left bus off state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}
	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
		netdev_dbg(dev, "left error passive state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}

	/* handle lec errors on the bus */
	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);

	/* Handle Tx/Rx events. We do this unconditionally */
	work_done += c_can_do_rx_poll(dev, (quota - work_done));
	c_can_do_tx(dev);

1044 1045 1046
end:
	if (work_done < quota) {
		napi_complete(napi);
1047 1048
		/* enable all IRQs if we are not in bus off state */
		if (priv->can.state != CAN_STATE_BUS_OFF)
1049
			c_can_irq_control(priv, true);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1060
	if (!priv->read_reg(priv, C_CAN_INT_REG))
1061 1062 1063
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
1064
	c_can_irq_control(priv, false);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1075
	c_can_pm_runtime_get_sync(priv);
1076
	c_can_reset_ram(priv, true);
1077

1078 1079 1080 1081
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1082
		goto exit_open_fail;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1093 1094 1095 1096
	/* start the c_can controller */
	err = c_can_start(dev);
	if (err)
		goto exit_start_fail;
1097

1098 1099
	can_led_event(dev, CAN_LED_EVENT_OPEN);

1100
	napi_enable(&priv->napi);
T
Thomas Gleixner 已提交
1101
	/* enable status change, error and module interrupts */
1102
	c_can_irq_control(priv, true);
1103 1104 1105 1106
	netif_start_queue(dev);

	return 0;

1107 1108
exit_start_fail:
	free_irq(dev->irq, dev);
1109 1110
exit_irq_fail:
	close_candev(dev);
1111
exit_open_fail:
1112
	c_can_reset_ram(priv, false);
1113
	c_can_pm_runtime_put_sync(priv);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1126 1127

	c_can_reset_ram(priv, false);
1128
	c_can_pm_runtime_put_sync(priv);
1129

1130 1131
	can_led_event(dev, CAN_LED_EVENT_STOP);

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1151
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1152 1153 1154 1155 1156 1157 1158
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	/* set PDR value so the device goes to power down mode */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val |= CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);

	/* Wait for the PDA bit to get set */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

	c_can_stop(dev);

1187
	c_can_reset_ram(priv, false);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	c_can_pm_runtime_put_sync(priv);

	return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);

int c_can_power_up(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);
T
Thomas Gleixner 已提交
1199
	int ret;
1200 1201 1202 1203 1204 1205 1206

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	c_can_pm_runtime_get_sync(priv);
1207
	c_can_reset_ram(priv, true);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	/* Clear PDR and INIT bits */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val &= ~CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
	val = priv->read_reg(priv, C_CAN_CTRL_REG);
	val &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, val);

	/* Wait for the PDA bit to get clear */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

T
Thomas Gleixner 已提交
1226 1227
	ret = c_can_start(dev);
	if (!ret)
1228
		c_can_irq_control(priv, true);
T
Thomas Gleixner 已提交
1229 1230

	return ret;
1231 1232 1233 1234
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif

1235 1236
void free_c_can_dev(struct net_device *dev)
{
1237 1238 1239
	struct c_can_priv *priv = netdev_priv(dev);

	netif_napi_del(&priv->napi);
1240 1241 1242 1243 1244 1245 1246 1247
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
1248
	.ndo_change_mtu = can_change_mtu,
1249 1250 1251 1252
};

int register_c_can_dev(struct net_device *dev)
{
1253 1254 1255
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

1256 1257 1258 1259 1260 1261 1262
	/* Deactivate pins to prevent DRA7 DCAN IP from being
	 * stuck in transition when module is disabled.
	 * Pins are activated in c_can_start() and deactivated
	 * in c_can_stop()
	 */
	pinctrl_pm_select_sleep_state(dev->dev.parent);

1263 1264
	c_can_pm_runtime_enable(priv);

1265 1266 1267
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1268 1269 1270
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);
1271 1272
	else
		devm_can_led_init(dev);
1273 1274

	return err;
1275 1276 1277 1278 1279 1280 1281 1282
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	unregister_candev(dev);
1283 1284

	c_can_pm_runtime_disable(priv);
1285 1286 1287 1288 1289 1290
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");