c_can.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38 39 40 41 42 43 44

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>

#include "c_can.h"

45 46 47 48
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
				IF_COMM_CONTROL | IF_COMM_TXRQST | \
				IF_COMM_DATAA | IF_COMM_DATAB)

/* IFx arbitration */
#define IF_ARB_MSGVAL		BIT(15)
#define IF_ARB_MSGXTD		BIT(14)
#define IF_ARB_TRANSMIT		BIT(13)

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_CLR_MSGLST	(0 << 14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

/*
 * IFx register masks:
 * allow easy operation on 16-bit registers when the
 * argument is 32-bit instead
 */
#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)

/* message object split */
#define C_CAN_NO_OF_OBJECTS	32
#define C_CAN_MSG_OBJ_RX_NUM	16
#define C_CAN_MSG_OBJ_TX_NUM	16

#define C_CAN_MSG_OBJ_RX_FIRST	1
#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
				C_CAN_MSG_OBJ_RX_NUM - 1)

#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
				C_CAN_MSG_OBJ_TX_NUM - 1)

#define C_CAN_MSG_OBJ_RX_SPLIT	9
#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)

#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
#define RECEIVE_OBJECT_BITS	0x0000ffff

/* status interrupt */
#define STATUS_INTERRUPT	0x8000

/* global interrupt masks */
#define ENABLE_ALL_INTERRUPTS	1
#define DISABLE_ALL_INTERRUPTS	0

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

193
static const struct can_bittiming_const c_can_bittiming_const = {
194 195 196 197 198 199 200 201 202 203 204
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

229 230 231 232 233 234 235 236 237 238 239 240
static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

241
static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
242
{
243 244
	u32 val = priv->read_reg(priv, index);
	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
245 246 247 248 249 250 251
	return val;
}

static void c_can_enable_all_interrupts(struct c_can_priv *priv,
						int enable)
{
	unsigned int cntrl_save = priv->read_reg(priv,
252
						C_CAN_CTRL_REG);
253 254 255 256 257 258

	if (enable)
		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
	else
		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);

259
	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
260 261 262 263 264 265 266
}

static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
{
	int count = MIN_TIMEOUT_VALUE;

	while (count && priv->read_reg(priv,
267
				C_CAN_IFACE(COMREQ_REG, iface)) &
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
				IF_COMR_BUSY) {
		count--;
		udelay(1);
	}

	if (!count)
		return 1;

	return 0;
}

static inline void c_can_object_get(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
290
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
291
			IFX_WRITE_LOW_16BIT(mask));
292
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object get\n");
}

static inline void c_can_object_put(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
310
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
311
			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
312
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object put\n");
}

static void c_can_write_msg_object(struct net_device *dev,
			int iface, struct can_frame *frame, int objno)
{
	int i;
	u16 flags = 0;
	unsigned int id;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(frame->can_id & CAN_RTR_FLAG))
		flags |= IF_ARB_TRANSMIT;

	if (frame->can_id & CAN_EFF_FLAG) {
		id = frame->can_id & CAN_EFF_MASK;
		flags |= IF_ARB_MSGXTD;
	} else
		id = ((frame->can_id & CAN_SFF_MASK) << 18);

	flags |= IF_ARB_MSGVAL;

338
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
339
				IFX_WRITE_LOW_16BIT(id));
340
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
341 342 343
				IFX_WRITE_HIGH_16BIT(id));

	for (i = 0; i < frame->can_dlc; i += 2) {
344
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
345 346 347 348
				frame->data[i] | (frame->data[i + 1] << 8));
	}

	/* enable interrupt for this message object */
349
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
350 351 352 353 354 355 356 357 358 359 360
			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
			frame->can_dlc);
	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
}

static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
						int iface, int ctrl_mask,
						int obj)
{
	struct c_can_priv *priv = netdev_priv(dev);

361
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
362 363 364 365 366 367 368 369 370 371 372 373 374
			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);

}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
						int iface,
						int ctrl_mask)
{
	int i;
	struct c_can_priv *priv = netdev_priv(dev);

	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
375
		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
376 377 378 379 380 381 382 383 384 385 386 387
				ctrl_mask & ~(IF_MCONT_MSGLST |
					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
	}
}

static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
						int iface, int ctrl_mask,
						int obj)
{
	struct c_can_priv *priv = netdev_priv(dev);

388
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
			ctrl_mask & ~(IF_MCONT_MSGLST |
				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
}

static void c_can_handle_lost_msg_obj(struct net_device *dev,
					int iface, int objno)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	netdev_err(dev, "msg lost in buffer %d\n", objno);

	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);

406
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
			IF_MCONT_CLR_MSGLST);

	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);

	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
		return;

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
	stats->rx_errors++;
	stats->rx_over_errors++;

	netif_receive_skb(skb);
}

static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
{
	u16 flags, data;
	int i;
	unsigned int val;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

442 443
	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
444 445 446 447 448 449 450 451 452 453 454 455
		(flags << 16);

	if (flags & IF_ARB_MSGXTD)
		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		frame->can_id = (val >> 18) & CAN_SFF_MASK;

	if (flags & IF_ARB_TRANSMIT)
		frame->can_id |= CAN_RTR_FLAG;
	else {
		for (i = 0; i < frame->can_dlc; i += 2) {
			data = priv->read_reg(priv,
456
				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	netif_receive_skb(skb);

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;

	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
					int objno, unsigned int mask,
					unsigned int id, unsigned int mcont)
{
	struct c_can_priv *priv = netdev_priv(dev);

476
	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
477
			IFX_WRITE_LOW_16BIT(mask));
478
	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
479 480
			IFX_WRITE_HIGH_16BIT(mask));

481
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
482
			IFX_WRITE_LOW_16BIT(id));
483
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
484 485
			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));

486
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
487 488 489
	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
490
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
491 492 493 494 495 496
}

static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
{
	struct c_can_priv *priv = netdev_priv(dev);

497 498 499
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
500 501 502 503

	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
504
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
505 506 507 508
}

static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
{
509
	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	/*
	 * as transmission request register's bit n-1 corresponds to
	 * message object n, we need to handle the same properly.
	 */
	if (val & (1 << (objno - 1)))
		return 1;

	return 0;
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
					struct net_device *dev)
{
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct can_frame *frame = (struct can_frame *)skb->data;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

	msg_obj_no = get_tx_next_msg_obj(priv);

	/* prepare message object for transmission */
	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);

	/*
	 * we have to stop the queue in case of a wrap around or
	 * if the next TX message object is still in use
	 */
	priv->tx_next++;
	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
		netif_stop_queue(dev);

	return NETDEV_TX_OK;
}

static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

572 573
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
	priv->write_reg(priv, C_CAN_CTRL_REG,
574
			ctrl_save | CONTROL_CCE | CONTROL_INIT);
575 576 577
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

	return 0;
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
		c_can_inval_msg_object(dev, 0, i);

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
		c_can_setup_receive_object(dev, 0, i, 0, 0,
			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);

	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
static void c_can_chip_config(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

618
	/* enable automatic retransmission */
619
	priv->write_reg(priv, C_CAN_CTRL_REG,
620
			CONTROL_ENABLE_AR);
621

622 623
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
624
		/* loopback + silent mode : useful for hot self-test */
625
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
626
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
627
		priv->write_reg(priv, C_CAN_TEST_REG,
628 629 630
				TEST_LBACK | TEST_SILENT);
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
631
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
632
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
633
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
634 635
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
636
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
637
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
638
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
639 640
	} else
		/* normal mode*/
641
		priv->write_reg(priv, C_CAN_CTRL_REG,
642 643 644 645 646 647
				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
648
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

	/* set bittiming params */
	c_can_set_bittiming(dev);
}

static void c_can_start(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/* basic c_can configuration */
	c_can_chip_config(dev);

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	/* reset tx helper pointers */
	priv->tx_next = priv->tx_echo = 0;
665 666 667

	/* enable status change, error and module interrupts */
	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);

	/* set the state as STOPPED */
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
	switch (mode) {
	case CAN_MODE_START:
		c_can_start(dev);
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
					struct can_berr_counter *bec)
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

701 702
	c_can_pm_runtime_get_sync(priv);

703
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
704 705 706 707
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

708 709
	c_can_pm_runtime_put_sync(priv);

710 711 712 713 714 715 716 717 718 719 720 721
	return 0;
}

/*
 * theory of operation:
 *
 * priv->tx_echo holds the number of the oldest can_frame put for
 * transmission into the hardware, but not yet ACKed by the CAN tx
 * complete IRQ.
 *
 * We iterate from priv->tx_echo to priv->tx_next and check if the
 * packet has been transmitted, echo it back to the CAN framework.
722
 * If we discover a not yet transmitted packet, stop looking for more.
723 724 725 726 727 728 729 730 731 732
 */
static void c_can_do_tx(struct net_device *dev)
{
	u32 val;
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;

	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
		msg_obj_no = get_tx_echo_msg_obj(priv);
733
		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
734
		if (!(val & (1 << (msg_obj_no - 1)))) {
735 736 737
			can_get_echo_skb(dev,
					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
			stats->tx_bytes += priv->read_reg(priv,
738
					C_CAN_IFACE(MSGCTRL_REG, 0))
739 740
					& IF_MCONT_DLC_MASK;
			stats->tx_packets++;
741
			c_can_inval_msg_object(dev, 0, msg_obj_no);
742 743
		} else {
			break;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		}
	}

	/* restart queue if wrap-up or if queue stalled on last pkt */
	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
		netif_wake_queue(dev);
}

/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
 * To ensure in-order frame reception we use the following
 * approach while re-activating a message object to receive further
 * frames:
 * - if the current message object number is lower than
 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 *   the INTPND bit.
 * - if the current message object number is equal to
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 *   receive message objects.
 * - if the current message object number is greater than
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 *   only this message object.
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	u32 num_rx_pkts = 0;
	unsigned int msg_obj, msg_ctrl_save;
	struct c_can_priv *priv = netdev_priv(dev);
780
	u32 val = c_can_read_reg32(priv, C_CAN_INTPND1_REG);
781 782 783

	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
784
			val = c_can_read_reg32(priv, C_CAN_INTPND1_REG),
785 786 787 788 789 790 791 792 793
			msg_obj++) {
		/*
		 * as interrupt pending register's bit n-1 corresponds to
		 * message object n, we need to handle the same properly.
		 */
		if (val & (1 << (msg_obj - 1))) {
			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
					~IF_COMM_TXRQST);
			msg_ctrl_save = priv->read_reg(priv,
794
					C_CAN_IFACE(MSGCTRL_REG, 0));
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

			if (msg_ctrl_save & IF_MCONT_EOB)
				return num_rx_pkts;

			if (msg_ctrl_save & IF_MCONT_MSGLST) {
				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
				num_rx_pkts++;
				quota--;
				continue;
			}

			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
				continue;

			/* read the data from the message object */
			c_can_read_msg_object(dev, 0, msg_ctrl_save);

			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
				c_can_mark_rx_msg_obj(dev, 0,
						msg_ctrl_save, msg_obj);
			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
				/* activate this msg obj */
				c_can_activate_rx_msg_obj(dev, 0,
						msg_ctrl_save, msg_obj);
			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
				/* activate all lower message objects */
				c_can_activate_all_lower_rx_msg_obj(dev,
						0, msg_ctrl_save);

			num_rx_pkts++;
			quota--;
		}
	}

	return num_rx_pkts;
}

static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
{
	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
		(priv->current_status & LEC_UNUSED);
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

L
Lucas De Marchi 已提交
849
	/* propagate the error condition to the CAN stack */
850 851 852 853 854
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	c_can_get_berr_counter(dev, &bec);
855
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		cf->can_id |= CAN_ERR_BUSOFF;
		/*
		 * disable all interrupts in bus-off mode to ensure that
		 * the CPU is not hogged down
		 */
		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
		can_bus_off(dev);
		break;
	default:
		break;
	}

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

L
Lucas De Marchi 已提交
923
	/* propagate the error condition to the CAN stack */
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */

	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
		cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
		cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	/* set a `lec` value so that we can check for updates later */
971
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	u16 irqstatus;
	int lec_type = 0;
	int work_done = 0;
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);

988
	irqstatus = priv->irqstatus;
989 990 991 992 993 994
	if (!irqstatus)
		goto end;

	/* status events have the highest priority */
	if (irqstatus == STATUS_INTERRUPT) {
		priv->current_status = priv->read_reg(priv,
995
					C_CAN_STS_REG);
996 997 998

		/* handle Tx/Rx events */
		if (priv->current_status & STATUS_TXOK)
999
			priv->write_reg(priv, C_CAN_STS_REG,
1000 1001 1002
					priv->current_status & ~STATUS_TXOK);

		if (priv->current_status & STATUS_RXOK)
1003
			priv->write_reg(priv, C_CAN_STS_REG,
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
					priv->current_status & ~STATUS_RXOK);

		/* handle state changes */
		if ((priv->current_status & STATUS_EWARN) &&
				(!(priv->last_status & STATUS_EWARN))) {
			netdev_dbg(dev, "entered error warning state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_WARNING);
		}
		if ((priv->current_status & STATUS_EPASS) &&
				(!(priv->last_status & STATUS_EPASS))) {
			netdev_dbg(dev, "entered error passive state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_PASSIVE);
		}
		if ((priv->current_status & STATUS_BOFF) &&
				(!(priv->last_status & STATUS_BOFF))) {
			netdev_dbg(dev, "entered bus off state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_BUS_OFF);
		}

		/* handle bus recovery events */
		if ((!(priv->current_status & STATUS_BOFF)) &&
				(priv->last_status & STATUS_BOFF)) {
			netdev_dbg(dev, "left bus off state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}
		if ((!(priv->current_status & STATUS_EPASS)) &&
				(priv->last_status & STATUS_EPASS)) {
			netdev_dbg(dev, "left error passive state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}

		priv->last_status = priv->current_status;

		/* handle lec errors on the bus */
		lec_type = c_can_has_and_handle_berr(priv);
		if (lec_type)
			work_done += c_can_handle_bus_err(dev, lec_type);
	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
		/* handle events corresponding to receive message objects */
		work_done += c_can_do_rx_poll(dev, (quota - work_done));
	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
		/* handle events corresponding to transmit message objects */
		c_can_do_tx(dev);
	}

end:
	if (work_done < quota) {
		napi_complete(napi);
		/* enable all IRQs */
		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1069
	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1070
	if (!priv->irqstatus)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1085 1086
	c_can_pm_runtime_get_sync(priv);

1087 1088 1089 1090
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1091
		goto exit_open_fail;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1102 1103
	napi_enable(&priv->napi);

1104 1105 1106 1107 1108 1109 1110 1111 1112
	/* start the c_can controller */
	c_can_start(dev);

	netif_start_queue(dev);

	return 0;

exit_irq_fail:
	close_candev(dev);
1113 1114
exit_open_fail:
	c_can_pm_runtime_put_sync(priv);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1127
	c_can_pm_runtime_put_sync(priv);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1148
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

void free_c_can_dev(struct net_device *dev)
{
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
};

int register_c_can_dev(struct net_device *dev)
{
1170 1171 1172 1173 1174
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_enable(priv);

1175 1176 1177
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1178 1179 1180 1181 1182
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);

	return err;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);

	unregister_candev(dev);
1194 1195

	c_can_pm_runtime_disable(priv);
1196 1197 1198 1199 1200 1201
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");