c_can.c 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38 39 40 41

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
42
#include <linux/can/led.h>
43 44 45

#include "c_can.h"

46 47 48 49
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

50 51 52
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR		BIT(8)

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
72
#define STATUS_PDA		BIT(10)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
				IF_COMM_CONTROL | IF_COMM_TXRQST | \
				IF_COMM_DATAA | IF_COMM_DATAB)

117 118 119 120 121 122 123 124
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
				 IF_COMM_DATAA | IF_COMM_DATAB)

/* For the high buffers we clear the interrupt bit and newdat */
#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_TXRQST)

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/* IFx arbitration */
#define IF_ARB_MSGVAL		BIT(15)
#define IF_ARB_MSGXTD		BIT(14)
#define IF_ARB_TRANSMIT		BIT(13)

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

T
Thomas Gleixner 已提交
142 143 144 145 146 147
/*
 * Use IF1 for RX and IF2 for TX
 */
#define IF_RX			0
#define IF_TX			1

148 149 150 151 152 153 154 155 156 157
/* status interrupt */
#define STATUS_INTERRUPT	0x8000

/* global interrupt masks */
#define ENABLE_ALL_INTERRUPTS	1
#define DISABLE_ALL_INTERRUPTS	0

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

158 159 160
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS		1000

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

187
static const struct can_bittiming_const c_can_bittiming_const = {
188 189 190 191 192 193 194 195 196 197 198
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

223 224 225 226 227 228
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
	if (priv->raminit)
		priv->raminit(priv, enable);
}

229 230 231 232 233 234
static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

235
static inline int get_tx_echo_msg_obj(int txecho)
236
{
237
	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
238 239
}

240
static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
241
{
242 243
	u32 val = priv->read_reg(priv, index);
	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
244 245 246 247 248 249 250
	return val;
}

static void c_can_enable_all_interrupts(struct c_can_priv *priv,
						int enable)
{
	unsigned int cntrl_save = priv->read_reg(priv,
251
						C_CAN_CTRL_REG);
252 253 254 255 256 257

	if (enable)
		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
	else
		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);

258
	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
259 260 261 262 263 264 265
}

static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
{
	int count = MIN_TIMEOUT_VALUE;

	while (count && priv->read_reg(priv,
266
				C_CAN_IFACE(COMREQ_REG, iface)) &
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
				IF_COMR_BUSY) {
		count--;
		udelay(1);
	}

	if (!count)
		return 1;

	return 0;
}

static inline void c_can_object_get(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
289
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
290
			IFX_WRITE_LOW_16BIT(mask));
291
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object get\n");
}

static inline void c_can_object_put(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
309
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
310
			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
311
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object put\n");
}

static void c_can_write_msg_object(struct net_device *dev,
			int iface, struct can_frame *frame, int objno)
{
	int i;
	u16 flags = 0;
	unsigned int id;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(frame->can_id & CAN_RTR_FLAG))
		flags |= IF_ARB_TRANSMIT;

	if (frame->can_id & CAN_EFF_FLAG) {
		id = frame->can_id & CAN_EFF_MASK;
		flags |= IF_ARB_MSGXTD;
	} else
		id = ((frame->can_id & CAN_SFF_MASK) << 18);

	flags |= IF_ARB_MSGVAL;

337
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
338
				IFX_WRITE_LOW_16BIT(id));
339
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
340 341 342
				IFX_WRITE_HIGH_16BIT(id));

	for (i = 0; i < frame->can_dlc; i += 2) {
343
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
344 345 346 347
				frame->data[i] | (frame->data[i + 1] << 8));
	}

	/* enable interrupt for this message object */
348
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
349 350 351 352 353 354 355 356 357 358 359 360 361
			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
			frame->can_dlc);
	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
						int iface,
						int ctrl_mask)
{
	int i;
	struct c_can_priv *priv = netdev_priv(dev);

	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
362
		priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
363
				ctrl_mask & ~IF_MCONT_NEWDAT);
364 365 366 367
		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
	}
}

368 369
static int c_can_handle_lost_msg_obj(struct net_device *dev,
				     int iface, int objno, u32 ctrl)
370 371
{
	struct net_device_stats *stats = &dev->stats;
372
	struct c_can_priv *priv = netdev_priv(dev);
373
	struct can_frame *frame;
374
	struct sk_buff *skb;
375

376 377
	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
T
Thomas Gleixner 已提交
378
	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
379 380 381 382

	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
383
		return 0;
384 385 386 387 388 389 390

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
	stats->rx_errors++;
	stats->rx_over_errors++;

	netif_receive_skb(skb);
391
	return 1;
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
{
	u16 flags, data;
	int i;
	unsigned int val;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

412 413
	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
414 415 416 417 418 419 420 421 422 423 424 425
		(flags << 16);

	if (flags & IF_ARB_MSGXTD)
		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		frame->can_id = (val >> 18) & CAN_SFF_MASK;

	if (flags & IF_ARB_TRANSMIT)
		frame->can_id |= CAN_RTR_FLAG;
	else {
		for (i = 0; i < frame->can_dlc; i += 2) {
			data = priv->read_reg(priv,
426
				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
427 428 429 430 431 432 433 434 435 436
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	netif_receive_skb(skb);

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;

437 438
	can_led_event(dev, CAN_LED_EVENT_RX);

439 440 441 442 443 444 445 446 447
	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
					int objno, unsigned int mask,
					unsigned int id, unsigned int mcont)
{
	struct c_can_priv *priv = netdev_priv(dev);

448
	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
449
			IFX_WRITE_LOW_16BIT(mask));
450 451 452 453

	/* According to C_CAN documentation, the reserved bit
	 * in IFx_MASK2 register is fixed 1
	 */
454
	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
455
			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
456

457
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
458
			IFX_WRITE_LOW_16BIT(id));
459
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
460 461
			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));

462
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
463 464 465
	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
466
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
467 468 469 470 471 472
}

static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
{
	struct c_can_priv *priv = netdev_priv(dev);

473 474 475
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
476 477 478 479

	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
480
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
481 482 483 484
}

static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
{
485
	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	/*
	 * as transmission request register's bit n-1 corresponds to
	 * message object n, we need to handle the same properly.
	 */
	if (val & (1 << (objno - 1)))
		return 1;

	return 0;
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
					struct net_device *dev)
{
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct can_frame *frame = (struct can_frame *)skb->data;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

507
	spin_lock_bh(&priv->xmit_lock);
508 509 510
	msg_obj_no = get_tx_next_msg_obj(priv);

	/* prepare message object for transmission */
T
Thomas Gleixner 已提交
511
	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
T
Thomas Gleixner 已提交
512
	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
513 514 515 516 517 518 519 520 521 522
	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);

	/*
	 * we have to stop the queue in case of a wrap around or
	 * if the next TX message object is still in use
	 */
	priv->tx_next++;
	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
		netif_stop_queue(dev);
523
	spin_unlock_bh(&priv->xmit_lock);
524 525 526 527

	return NETDEV_TX_OK;
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static int c_can_wait_for_ctrl_init(struct net_device *dev,
				    struct c_can_priv *priv, u32 init)
{
	int retry = 0;

	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
		udelay(10);
		if (retry++ > 1000) {
			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
			return -EIO;
		}
	}
	return 0;
}

543 544 545 546 547 548 549
static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
550
	int res;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

567
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
568 569 570 571 572 573
	ctrl_save &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
	if (res)
		return res;

574 575 576
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
577

578
	return c_can_wait_for_ctrl_init(dev, priv, 0);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
T
Thomas Gleixner 已提交
596
		c_can_inval_msg_object(dev, IF_RX, i);
597 598 599

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
T
Thomas Gleixner 已提交
600
		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
601 602
			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);

T
Thomas Gleixner 已提交
603
	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
604 605 606 607 608 609 610 611 612
			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
613
static int c_can_chip_config(struct net_device *dev)
614 615 616
{
	struct c_can_priv *priv = netdev_priv(dev);

617
	/* enable automatic retransmission */
618
	priv->write_reg(priv, C_CAN_CTRL_REG,
619
			CONTROL_ENABLE_AR);
620

621 622
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
623
		/* loopback + silent mode : useful for hot self-test */
624
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
625
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
626
		priv->write_reg(priv, C_CAN_TEST_REG,
627 628 629
				TEST_LBACK | TEST_SILENT);
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
630
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
631
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
632
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
633 634
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
635
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_EIE |
636
				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
637
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
638 639
	} else
		/* normal mode*/
640
		priv->write_reg(priv, C_CAN_CTRL_REG,
641 642 643 644 645 646
				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
647
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
648 649

	/* set bittiming params */
650
	return c_can_set_bittiming(dev);
651 652
}

653
static int c_can_start(struct net_device *dev)
654 655
{
	struct c_can_priv *priv = netdev_priv(dev);
656
	int err;
657 658

	/* basic c_can configuration */
659 660 661
	err = c_can_chip_config(dev);
	if (err)
		return err;
662 663 664 665 666

	priv->can.state = CAN_STATE_ERROR_ACTIVE;

	/* reset tx helper pointers */
	priv->tx_next = priv->tx_echo = 0;
667 668 669

	/* enable status change, error and module interrupts */
	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
670 671

	return 0;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);

	/* set the state as STOPPED */
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
687 688
	int err;

689 690
	switch (mode) {
	case CAN_MODE_START:
691 692 693
		err = c_can_start(dev);
		if (err)
			return err;
694 695 696 697 698 699 700 701 702
		netif_wake_queue(dev);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

703 704
static int __c_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
705 706 707 708
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

709
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
710 711 712 713
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

714 715 716 717 718 719 720 721 722 723 724
	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_get_sync(priv);
	err = __c_can_get_berr_counter(dev, bec);
725 726
	c_can_pm_runtime_put_sync(priv);

727
	return err;
728 729 730 731 732 733 734 735 736
}

/*
 * priv->tx_echo holds the number of the oldest can_frame put for
 * transmission into the hardware, but not yet ACKed by the CAN tx
 * complete IRQ.
 *
 * We iterate from priv->tx_echo to priv->tx_next and check if the
 * packet has been transmitted, echo it back to the CAN framework.
737
 * If we discover a not yet transmitted packet, stop looking for more.
738 739 740 741 742
 */
static void c_can_do_tx(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
743
	u32 val, obj, pkts = 0, bytes = 0;
744

745 746 747
	spin_lock_bh(&priv->xmit_lock);

	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
748
		obj = get_tx_echo_msg_obj(priv->tx_echo);
749
		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
750 751

		if (val & (1 << (obj - 1)))
752
			break;
753 754 755 756 757

		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
		pkts++;
		c_can_inval_msg_object(dev, IF_TX, obj);
758 759 760 761 762 763
	}

	/* restart queue if wrap-up or if queue stalled on last pkt */
	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
		netif_wake_queue(dev);
764 765

	spin_unlock_bh(&priv->xmit_lock);
766 767 768 769 770 771

	if (pkts) {
		stats->tx_bytes += bytes;
		stats->tx_packets += pkts;
		can_led_event(dev, CAN_LED_EVENT_TX);
	}
772 773
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/*
 * If we have a gap in the pending bits, that means we either
 * raced with the hardware or failed to readout all upper
 * objects in the last run due to quota limit.
 */
static u32 c_can_adjust_pending(u32 pend)
{
	u32 weight, lasts;

	if (pend == RECEIVE_OBJECT_BITS)
		return pend;

	/*
	 * If the last set bit is larger than the number of pending
	 * bits we have a gap.
	 */
	weight = hweight32(pend);
	lasts = fls(pend);

	/* If the bits are linear, nothing to do */
	if (lasts == weight)
		return pend;

	/*
	 * Find the first set bit after the gap. We walk backwards
	 * from the last set bit.
	 */
	for (lasts--; pend & (1 << (lasts - 1)); lasts--);

	return pend & ~((1 << lasts) - 1);
}

806 807 808
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
			      u32 pend, int quota)
{
809
	u32 pkts = 0, ctrl, obj, mcmd;
810 811 812 813

	while ((obj = ffs(pend)) && quota > 0) {
		pend &= ~BIT(obj - 1);

814 815 816 817
		mcmd = obj < C_CAN_MSG_RX_LOW_LAST ?
			IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;

		c_can_object_get(dev, IF_RX, obj, mcmd);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));

		if (ctrl & IF_MCONT_MSGLST) {
			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);

			pkts += n;
			quota -= n;
			continue;
		}

		/*
		 * This really should not happen, but this covers some
		 * odd HW behaviour. Do not remove that unless you
		 * want to brick your machine.
		 */
		if (!(ctrl & IF_MCONT_NEWDAT))
			continue;

		/* read the data from the message object */
		c_can_read_msg_object(dev, IF_RX, ctrl);

839
		if (obj == C_CAN_MSG_RX_LOW_LAST)
840 841 842 843 844 845 846 847 848 849
			/* activate all lower message objects */
			c_can_activate_all_lower_rx_msg_obj(dev, IF_RX, ctrl);

		pkts++;
		quota--;
	}

	return pkts;
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
 * To ensure in-order frame reception we use the following
 * approach while re-activating a message object to receive further
 * frames:
 * - if the current message object number is lower than
 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 *   the INTPND bit.
 * - if the current message object number is equal to
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 *   receive message objects.
 * - if the current message object number is greater than
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 *   only this message object.
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct c_can_priv *priv = netdev_priv(dev);
875
	u32 pkts = 0, pend = 0, toread, n;
876 877 878 879 880 881 882 883

	/*
	 * It is faster to read only one 16bit register. This is only possible
	 * for a maximum number of 16 objects.
	 */
	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
			"Implementation does not support more message objects than 16");

884 885 886 887
	while (quota > 0) {
		if (!pend) {
			pend = priv->read_reg(priv, C_CAN_INTPND1_REG);
			if (!pend)
888
				break;
889 890 891 892
			/*
			 * If the pending field has a gap, handle the
			 * bits above the gap first.
			 */
893
			toread = c_can_adjust_pending(pend);
894
		} else {
895
			toread = pend;
896 897
		}
		/* Remove the bits from pend */
898 899 900 901 902
		pend &= ~toread;
		/* Read the objects */
		n = c_can_read_objects(dev, priv, toread, quota);
		pkts += n;
		quota -= n;
903
	}
904
	return pkts;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
}

static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
{
	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
		(priv->current_status & LEC_UNUSED);
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

L
Lucas De Marchi 已提交
924
	/* propagate the error condition to the CAN stack */
925 926 927 928
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

929
	__c_can_get_berr_counter(dev, &bec);
930
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		cf->can_id |= CAN_ERR_BUSOFF;
		/*
		 * disable all interrupts in bus-off mode to ensure that
		 * the CPU is not hogged down
		 */
		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
		can_bus_off(dev);
		break;
	default:
		break;
	}

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

L
Lucas De Marchi 已提交
998
	/* propagate the error condition to the CAN stack */
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */

	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
1025
		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
1038
		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1039 1040 1041 1042 1043 1044 1045
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	/* set a `lec` value so that we can check for updates later */
1046
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	netif_receive_skb(skb);
	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;

	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	u16 irqstatus;
	int lec_type = 0;
	int work_done = 0;
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);

1063
	irqstatus = priv->irqstatus;
1064 1065 1066 1067 1068 1069
	if (!irqstatus)
		goto end;

	/* status events have the highest priority */
	if (irqstatus == STATUS_INTERRUPT) {
		priv->current_status = priv->read_reg(priv,
1070
					C_CAN_STS_REG);
1071 1072 1073

		/* handle Tx/Rx events */
		if (priv->current_status & STATUS_TXOK)
1074
			priv->write_reg(priv, C_CAN_STS_REG,
1075 1076 1077
					priv->current_status & ~STATUS_TXOK);

		if (priv->current_status & STATUS_RXOK)
1078
			priv->write_reg(priv, C_CAN_STS_REG,
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
					priv->current_status & ~STATUS_RXOK);

		/* handle state changes */
		if ((priv->current_status & STATUS_EWARN) &&
				(!(priv->last_status & STATUS_EWARN))) {
			netdev_dbg(dev, "entered error warning state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_WARNING);
		}
		if ((priv->current_status & STATUS_EPASS) &&
				(!(priv->last_status & STATUS_EPASS))) {
			netdev_dbg(dev, "entered error passive state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_ERROR_PASSIVE);
		}
		if ((priv->current_status & STATUS_BOFF) &&
				(!(priv->last_status & STATUS_BOFF))) {
			netdev_dbg(dev, "entered bus off state\n");
			work_done += c_can_handle_state_change(dev,
						C_CAN_BUS_OFF);
		}

		/* handle bus recovery events */
		if ((!(priv->current_status & STATUS_BOFF)) &&
				(priv->last_status & STATUS_BOFF)) {
			netdev_dbg(dev, "left bus off state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}
		if ((!(priv->current_status & STATUS_EPASS)) &&
				(priv->last_status & STATUS_EPASS)) {
			netdev_dbg(dev, "left error passive state\n");
			priv->can.state = CAN_STATE_ERROR_ACTIVE;
		}

		priv->last_status = priv->current_status;

		/* handle lec errors on the bus */
		lec_type = c_can_has_and_handle_berr(priv);
		if (lec_type)
			work_done += c_can_handle_bus_err(dev, lec_type);
	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
		/* handle events corresponding to receive message objects */
		work_done += c_can_do_rx_poll(dev, (quota - work_done));
	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
		/* handle events corresponding to transmit message objects */
		c_can_do_tx(dev);
	}

end:
	if (work_done < quota) {
		napi_complete(napi);
		/* enable all IRQs */
		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1144
	priv->irqstatus = priv->read_reg(priv, C_CAN_INT_REG);
1145
	if (!priv->irqstatus)
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1160
	c_can_pm_runtime_get_sync(priv);
1161
	c_can_reset_ram(priv, true);
1162

1163 1164 1165 1166
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1167
		goto exit_open_fail;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1178 1179 1180 1181
	/* start the c_can controller */
	err = c_can_start(dev);
	if (err)
		goto exit_start_fail;
1182

1183 1184
	can_led_event(dev, CAN_LED_EVENT_OPEN);

1185
	napi_enable(&priv->napi);
1186 1187 1188 1189
	netif_start_queue(dev);

	return 0;

1190 1191
exit_start_fail:
	free_irq(dev->irq, dev);
1192 1193
exit_irq_fail:
	close_candev(dev);
1194
exit_open_fail:
1195
	c_can_reset_ram(priv, false);
1196
	c_can_pm_runtime_put_sync(priv);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1209 1210

	c_can_reset_ram(priv, false);
1211
	c_can_pm_runtime_put_sync(priv);
1212

1213 1214
	can_led_event(dev, CAN_LED_EVENT_STOP);

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
1228
	spin_lock_init(&priv->xmit_lock);
1229 1230 1231 1232 1233 1234
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1235
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1236 1237 1238 1239 1240 1241 1242
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	/* set PDR value so the device goes to power down mode */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val |= CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);

	/* Wait for the PDA bit to get set */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

	c_can_stop(dev);

1271
	c_can_reset_ram(priv, false);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	c_can_pm_runtime_put_sync(priv);

	return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);

int c_can_power_up(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	c_can_pm_runtime_get_sync(priv);
1290
	c_can_reset_ram(priv, true);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	/* Clear PDR and INIT bits */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val &= ~CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
	val = priv->read_reg(priv, C_CAN_CTRL_REG);
	val &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, val);

	/* Wait for the PDA bit to get clear */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

1309
	return c_can_start(dev);
1310 1311 1312 1313
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif

1314 1315
void free_c_can_dev(struct net_device *dev)
{
1316 1317 1318
	struct c_can_priv *priv = netdev_priv(dev);

	netif_napi_del(&priv->napi);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
};

int register_c_can_dev(struct net_device *dev)
{
1331 1332 1333 1334 1335
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_enable(priv);

1336 1337 1338
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1339 1340 1341
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);
1342 1343
	else
		devm_can_led_init(dev);
1344 1345

	return err;
1346 1347 1348 1349 1350 1351 1352 1353
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	unregister_candev(dev);
1354 1355

	c_can_pm_runtime_disable(priv);
1356 1357 1358 1359 1360 1361
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");