c_can.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38 39 40 41

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
42
#include <linux/can/led.h>
43 44 45

#include "c_can.h"

46 47 48 49
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

50 51 52
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR		BIT(8)

53 54 55 56 57 58 59 60 61 62
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

63 64
#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)

65 66 67 68 69 70 71 72 73
/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
74
#define STATUS_PDA		BIT(10)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
113
#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
114 115
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
116 117 118 119 120

/* TX buffer setup */
#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
				 IF_COMM_TXRQST |		 \
				 IF_COMM_DATAA | IF_COMM_DATAB)
121

122 123 124 125 126 127
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
				 IF_COMM_DATAA | IF_COMM_DATAB)

/* For the high buffers we clear the interrupt bit and newdat */
128
#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
129

130 131 132 133

/* Receive setup of message objects */
#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)

134 135 136
/* Invalidation of message objects */
#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)

137
/* IFx arbitration */
138 139 140
#define IF_ARB_MSGVAL		BIT(31)
#define IF_ARB_MSGXTD		BIT(30)
#define IF_ARB_TRANSMIT		BIT(29)
141 142 143 144 145 146 147 148 149 150 151 152 153

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

154 155 156
#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)

157 158
#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)

159
/*
T
Thomas Gleixner 已提交
160
 * Use IF1 for RX and IF2 for TX
161
 */
T
Thomas Gleixner 已提交
162 163
#define IF_RX			0
#define IF_TX			1
164 165 166 167

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

168 169 170
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS		1000

171 172 173 174 175 176 177 178 179 180 181 182 183
/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
T
Thomas Gleixner 已提交
184
	LEC_MASK = LEC_UNUSED,
185 186 187 188 189 190 191 192 193 194 195 196 197
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

198
static const struct can_bittiming_const c_can_bittiming_const = {
199 200 201 202 203 204 205 206 207 208 209
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

234 235 236 237 238 239
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
	if (priv->raminit)
		priv->raminit(priv, enable);
}

240 241 242 243 244 245
static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

246
static inline int get_tx_echo_msg_obj(int txecho)
247
{
248
	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
249 250
}

251
static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
252
{
253 254
	u32 val = priv->read_reg(priv, index);
	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
255 256 257
	return val;
}

258
static void c_can_irq_control(struct c_can_priv *priv, bool enable)
259
{
260
	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
261 262

	if (enable)
263
		ctrl |= CONTROL_IRQMSK;
264

265
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
266 267
}

268
static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
269
{
270 271 272 273 274
	struct c_can_priv *priv = netdev_priv(dev);
	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);

	priv->write_reg(priv, reg + 1, cmd);
	priv->write_reg(priv, reg, obj);
275

276 277 278
	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
			return;
279 280
		udelay(1);
	}
281
	netdev_err(dev, "Updating object timed out\n");
282 283 284

}

285 286
static inline void c_can_object_get(struct net_device *dev, int iface,
				    u32 obj, u32 cmd)
287
{
288
	c_can_obj_update(dev, iface, cmd, obj);
289 290
}

291 292
static inline void c_can_object_put(struct net_device *dev, int iface,
				    u32 obj, u32 cmd)
293
{
294
	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
295 296
}

297 298
static void c_can_write_msg_object(struct net_device *dev, int iface,
				   struct can_frame *frame, int obj)
299 300
{
	struct c_can_priv *priv = netdev_priv(dev);
301
	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
302
	u32 arb = IF_ARB_MSGVAL;
303
	int i;
304 305

	if (frame->can_id & CAN_EFF_FLAG) {
306
		arb |= frame->can_id & CAN_EFF_MASK;
307
		arb |= IF_ARB_MSGXTD;
308 309 310 311 312
	} else {
		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
	}

	if (!(frame->can_id & CAN_RTR_FLAG))
313
		arb |= IF_ARB_TRANSMIT;
314

315 316
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), arb >> 16);
317

318
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
319 320

	for (i = 0; i < frame->can_dlc; i += 2) {
321
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
322 323 324
				frame->data[i] | (frame->data[i + 1] << 8));
	}

325
	c_can_object_put(dev, iface, obj, IF_COMM_TX);
326 327 328
}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
329
						       int iface)
330 331 332
{
	int i;

333 334
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
335 336
}

337 338
static int c_can_handle_lost_msg_obj(struct net_device *dev,
				     int iface, int objno, u32 ctrl)
339 340
{
	struct net_device_stats *stats = &dev->stats;
341
	struct c_can_priv *priv = netdev_priv(dev);
342
	struct can_frame *frame;
343
	struct sk_buff *skb;
344

345 346
	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
T
Thomas Gleixner 已提交
347
	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
348

349 350 351
	stats->rx_errors++;
	stats->rx_over_errors++;

352 353 354
	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
355
		return 0;
356 357 358 359 360

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);
361
	return 1;
362 363
}

364
static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
365 366
{
	struct net_device_stats *stats = &dev->stats;
367
	struct c_can_priv *priv = netdev_priv(dev);
368
	struct can_frame *frame;
369 370
	struct sk_buff *skb;
	u32 arb, data;
371 372 373 374 375 376 377 378 379

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

380 381
	arb = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface));
	arb |= priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface)) << 16;
382

383
	if (arb & IF_ARB_MSGXTD)
384
		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
385
	else
386
		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
387

388
	if (arb & IF_ARB_TRANSMIT) {
389
		frame->can_id |= CAN_RTR_FLAG;
390 391 392 393 394
	} else {
		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);

		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
			data = priv->read_reg(priv, dreg);
395 396 397 398 399 400 401
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;
402 403

	netif_receive_skb(skb);
404 405 406 407
	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
408
				       u32 obj, u32 mask, u32 id, u32 mcont)
409 410 411
{
	struct c_can_priv *priv = netdev_priv(dev);

412 413 414
	mask |= BIT(29);
	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface), mask >> 16);
415

416
	id |= IF_ARB_MSGVAL;
417 418
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), id);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), id >> 16);
419

420
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
421
	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
422 423
}

424
static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
425 426 427
{
	struct c_can_priv *priv = netdev_priv(dev);

428 429 430
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
431

432
	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
433 434 435 436
}

static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
{
437
	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

	/*
	 * as transmission request register's bit n-1 corresponds to
	 * message object n, we need to handle the same properly.
	 */
	if (val & (1 << (objno - 1)))
		return 1;

	return 0;
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
					struct net_device *dev)
{
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct can_frame *frame = (struct can_frame *)skb->data;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

459
	spin_lock_bh(&priv->xmit_lock);
460 461 462
	msg_obj_no = get_tx_next_msg_obj(priv);

	/* prepare message object for transmission */
T
Thomas Gleixner 已提交
463
	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
T
Thomas Gleixner 已提交
464
	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
465 466 467 468 469 470 471 472 473 474
	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);

	/*
	 * we have to stop the queue in case of a wrap around or
	 * if the next TX message object is still in use
	 */
	priv->tx_next++;
	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
		netif_stop_queue(dev);
475
	spin_unlock_bh(&priv->xmit_lock);
476 477 478 479

	return NETDEV_TX_OK;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static int c_can_wait_for_ctrl_init(struct net_device *dev,
				    struct c_can_priv *priv, u32 init)
{
	int retry = 0;

	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
		udelay(10);
		if (retry++ > 1000) {
			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
			return -EIO;
		}
	}
	return 0;
}

495 496 497 498 499 500 501
static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
502
	int res;
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

519
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
520 521 522 523 524 525
	ctrl_save &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
	if (res)
		return res;

526 527 528
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
529

530
	return c_can_wait_for_ctrl_init(dev, priv, 0);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
T
Thomas Gleixner 已提交
548
		c_can_inval_msg_object(dev, IF_RX, i);
549 550 551

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
552
		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
553

T
Thomas Gleixner 已提交
554
	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
555
				   IF_MCONT_RCV_EOB);
556 557 558 559 560 561 562 563
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
564
static int c_can_chip_config(struct net_device *dev)
565 566 567
{
	struct c_can_priv *priv = netdev_priv(dev);

568
	/* enable automatic retransmission */
T
Thomas Gleixner 已提交
569
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
570

571 572
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
573
		/* loopback + silent mode : useful for hot self-test */
T
Thomas Gleixner 已提交
574 575
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
576 577
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
T
Thomas Gleixner 已提交
578
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
579
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
580 581
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
T
Thomas Gleixner 已提交
582
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
583
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
T
Thomas Gleixner 已提交
584
	}
585 586 587 588 589

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
590
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
591 592

	/* set bittiming params */
593
	return c_can_set_bittiming(dev);
594 595
}

596
static int c_can_start(struct net_device *dev)
597 598
{
	struct c_can_priv *priv = netdev_priv(dev);
599
	int err;
600 601

	/* basic c_can configuration */
602 603 604
	err = c_can_chip_config(dev);
	if (err)
		return err;
605

606 607 608 609
	/* Setup the command for new messages */
	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;

610 611
	priv->can.state = CAN_STATE_ERROR_ACTIVE;

612
	/* reset tx helper pointers and the rx mask */
613
	priv->tx_next = priv->tx_echo = 0;
614
	priv->rxmasked = 0;
615

616
	return 0;
617 618 619 620 621 622
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

623
	c_can_irq_control(priv, false);
624 625 626 627 628
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
T
Thomas Gleixner 已提交
629
	struct c_can_priv *priv = netdev_priv(dev);
630 631
	int err;

632 633
	switch (mode) {
	case CAN_MODE_START:
634 635 636
		err = c_can_start(dev);
		if (err)
			return err;
637
		netif_wake_queue(dev);
638
		c_can_irq_control(priv, true);
639 640 641 642 643 644 645 646
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

647 648
static int __c_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
649 650 651 652
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

653
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
654 655 656 657
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

658 659 660 661 662 663 664 665 666 667 668
	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_get_sync(priv);
	err = __c_can_get_berr_counter(dev, bec);
669 670
	c_can_pm_runtime_put_sync(priv);

671
	return err;
672 673 674 675 676 677 678 679 680
}

/*
 * priv->tx_echo holds the number of the oldest can_frame put for
 * transmission into the hardware, but not yet ACKed by the CAN tx
 * complete IRQ.
 *
 * We iterate from priv->tx_echo to priv->tx_next and check if the
 * packet has been transmitted, echo it back to the CAN framework.
681
 * If we discover a not yet transmitted packet, stop looking for more.
682 683 684 685 686
 */
static void c_can_do_tx(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
687
	u32 val, obj, pkts = 0, bytes = 0;
688

689 690 691
	spin_lock_bh(&priv->xmit_lock);

	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
692
		obj = get_tx_echo_msg_obj(priv->tx_echo);
693
		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
694 695

		if (val & (1 << (obj - 1)))
696
			break;
697 698 699 700 701

		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
		pkts++;
		c_can_inval_msg_object(dev, IF_TX, obj);
702 703 704 705 706 707
	}

	/* restart queue if wrap-up or if queue stalled on last pkt */
	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
		netif_wake_queue(dev);
708 709

	spin_unlock_bh(&priv->xmit_lock);
710 711 712 713 714 715

	if (pkts) {
		stats->tx_bytes += bytes;
		stats->tx_packets += pkts;
		can_led_event(dev, CAN_LED_EVENT_TX);
	}
716 717
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/*
 * If we have a gap in the pending bits, that means we either
 * raced with the hardware or failed to readout all upper
 * objects in the last run due to quota limit.
 */
static u32 c_can_adjust_pending(u32 pend)
{
	u32 weight, lasts;

	if (pend == RECEIVE_OBJECT_BITS)
		return pend;

	/*
	 * If the last set bit is larger than the number of pending
	 * bits we have a gap.
	 */
	weight = hweight32(pend);
	lasts = fls(pend);

	/* If the bits are linear, nothing to do */
	if (lasts == weight)
		return pend;

	/*
	 * Find the first set bit after the gap. We walk backwards
	 * from the last set bit.
	 */
	for (lasts--; pend & (1 << (lasts - 1)); lasts--);

	return pend & ~((1 << lasts) - 1);
}

750 751
static inline void c_can_rx_object_get(struct net_device *dev,
				       struct c_can_priv *priv, u32 obj)
752 753 754 755 756 757
{
#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	if (obj < C_CAN_MSG_RX_LOW_LAST)
		c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
	else
#endif
758
		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

static inline void c_can_rx_finalize(struct net_device *dev,
				     struct c_can_priv *priv, u32 obj)
{
#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	if (obj < C_CAN_MSG_RX_LOW_LAST)
		priv->rxmasked |= BIT(obj - 1);
	else if (obj == C_CAN_MSG_RX_LOW_LAST) {
		priv->rxmasked = 0;
		/* activate all lower message objects */
		c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
	}
#endif
773 774
	if (priv->type != BOSCH_D_CAN)
		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
775 776
}

777 778 779
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
			      u32 pend, int quota)
{
780
	u32 pkts = 0, ctrl, obj;
781 782 783 784

	while ((obj = ffs(pend)) && quota > 0) {
		pend &= ~BIT(obj - 1);

785
		c_can_rx_object_get(dev, priv, obj);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));

		if (ctrl & IF_MCONT_MSGLST) {
			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);

			pkts += n;
			quota -= n;
			continue;
		}

		/*
		 * This really should not happen, but this covers some
		 * odd HW behaviour. Do not remove that unless you
		 * want to brick your machine.
		 */
		if (!(ctrl & IF_MCONT_NEWDAT))
			continue;

		/* read the data from the message object */
		c_can_read_msg_object(dev, IF_RX, ctrl);

807
		c_can_rx_finalize(dev, priv, obj);
808 809 810 811 812 813

		pkts++;
		quota--;
	}

	return pkts;
814 815
}

816 817 818 819 820 821 822 823 824 825
static inline u32 c_can_get_pending(struct c_can_priv *priv)
{
	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);

#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	pend &= ~priv->rxmasked;
#endif
	return pend;
}

826 827 828 829 830 831 832 833 834
/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
835 836
 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
 *
837 838 839 840 841 842 843 844 845 846 847 848
 * To ensure in-order frame reception we use the following
 * approach while re-activating a message object to receive further
 * frames:
 * - if the current message object number is lower than
 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 *   the INTPND bit.
 * - if the current message object number is equal to
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 *   receive message objects.
 * - if the current message object number is greater than
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 *   only this message object.
849 850 851 852 853 854 855 856
 *
 * This can cause packet loss!
 *
 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
 *
 * We clear the newdat bit right away.
 *
 * This can result in packet reordering when the readout is slow.
857 858 859 860
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct c_can_priv *priv = netdev_priv(dev);
861
	u32 pkts = 0, pend = 0, toread, n;
862 863 864 865 866 867 868 869

	/*
	 * It is faster to read only one 16bit register. This is only possible
	 * for a maximum number of 16 objects.
	 */
	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
			"Implementation does not support more message objects than 16");

870 871
	while (quota > 0) {
		if (!pend) {
872
			pend = c_can_get_pending(priv);
873
			if (!pend)
874
				break;
875 876 877 878
			/*
			 * If the pending field has a gap, handle the
			 * bits above the gap first.
			 */
879
			toread = c_can_adjust_pending(pend);
880
		} else {
881
			toread = pend;
882
		}
883
		/* Remove the bits from pend */
884 885 886 887 888
		pend &= ~toread;
		/* Read the objects */
		n = c_can_read_objects(dev, priv, toread, quota);
		pkts += n;
		quota -= n;
889 890
	}

891 892 893
	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

894
	return pkts;
895 896 897 898 899 900 901 902 903 904 905 906 907
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

L
Lucas De Marchi 已提交
928
	/* propagate the error condition to the CAN stack */
929 930 931 932
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

933
	__c_can_get_berr_counter(dev, &bec);
934
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
971
	netif_receive_skb(skb);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

T
Thomas Gleixner 已提交
992 993 994
	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		return 0;

995 996 997 998
	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;

L
Lucas De Marchi 已提交
999
	/* propagate the error condition to the CAN stack */
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
1022
		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
1035
		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1036 1037 1038 1039 1040 1041 1042 1043
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
1044
	netif_receive_skb(skb);
1045 1046 1047 1048 1049 1050 1051
	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);
1052 1053
	u16 curr, last = priv->last_status;
	int work_done = 0;
1054

1055 1056 1057 1058
	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
	/* Ack status on C_CAN. D_CAN is self clearing */
	if (priv->type != BOSCH_D_CAN)
		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1059

1060 1061 1062 1063 1064
	/* handle state changes */
	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
		netdev_dbg(dev, "entered error warning state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
	}
1065

1066 1067 1068 1069
	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
		netdev_dbg(dev, "entered error passive state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
	}
1070

1071 1072 1073 1074
	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
		netdev_dbg(dev, "entered bus off state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
		goto end;
1075 1076
	}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	/* handle bus recovery events */
	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
		netdev_dbg(dev, "left bus off state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}
	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
		netdev_dbg(dev, "left error passive state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}

	/* handle lec errors on the bus */
	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);

	/* Handle Tx/Rx events. We do this unconditionally */
	work_done += c_can_do_rx_poll(dev, (quota - work_done));
	c_can_do_tx(dev);

1094 1095 1096
end:
	if (work_done < quota) {
		napi_complete(napi);
1097 1098
		/* enable all IRQs if we are not in bus off state */
		if (priv->can.state != CAN_STATE_BUS_OFF)
1099
			c_can_irq_control(priv, true);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1110
	if (!priv->read_reg(priv, C_CAN_INT_REG))
1111 1112 1113
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
1114
	c_can_irq_control(priv, false);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1125
	c_can_pm_runtime_get_sync(priv);
1126
	c_can_reset_ram(priv, true);
1127

1128 1129 1130 1131
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1132
		goto exit_open_fail;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1143 1144 1145 1146
	/* start the c_can controller */
	err = c_can_start(dev);
	if (err)
		goto exit_start_fail;
1147

1148 1149
	can_led_event(dev, CAN_LED_EVENT_OPEN);

1150
	napi_enable(&priv->napi);
T
Thomas Gleixner 已提交
1151
	/* enable status change, error and module interrupts */
1152
	c_can_irq_control(priv, true);
1153 1154 1155 1156
	netif_start_queue(dev);

	return 0;

1157 1158
exit_start_fail:
	free_irq(dev->irq, dev);
1159 1160
exit_irq_fail:
	close_candev(dev);
1161
exit_open_fail:
1162
	c_can_reset_ram(priv, false);
1163
	c_can_pm_runtime_put_sync(priv);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1176 1177

	c_can_reset_ram(priv, false);
1178
	c_can_pm_runtime_put_sync(priv);
1179

1180 1181
	can_led_event(dev, CAN_LED_EVENT_STOP);

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
1195
	spin_lock_init(&priv->xmit_lock);
1196 1197 1198 1199 1200 1201
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1202
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1203 1204 1205 1206 1207 1208 1209
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	/* set PDR value so the device goes to power down mode */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val |= CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);

	/* Wait for the PDA bit to get set */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

	c_can_stop(dev);

1238
	c_can_reset_ram(priv, false);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	c_can_pm_runtime_put_sync(priv);

	return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);

int c_can_power_up(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);
T
Thomas Gleixner 已提交
1250
	int ret;
1251 1252 1253 1254 1255 1256 1257

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	c_can_pm_runtime_get_sync(priv);
1258
	c_can_reset_ram(priv, true);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	/* Clear PDR and INIT bits */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val &= ~CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
	val = priv->read_reg(priv, C_CAN_CTRL_REG);
	val &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, val);

	/* Wait for the PDA bit to get clear */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

T
Thomas Gleixner 已提交
1277 1278
	ret = c_can_start(dev);
	if (!ret)
1279
		c_can_irq_control(priv, true);
T
Thomas Gleixner 已提交
1280 1281

	return ret;
1282 1283 1284 1285
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif

1286 1287
void free_c_can_dev(struct net_device *dev)
{
1288 1289 1290
	struct c_can_priv *priv = netdev_priv(dev);

	netif_napi_del(&priv->napi);
1291 1292 1293 1294 1295 1296 1297 1298
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
1299
	.ndo_change_mtu = can_change_mtu,
1300 1301 1302 1303
};

int register_c_can_dev(struct net_device *dev)
{
1304 1305 1306 1307 1308
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_enable(priv);

1309 1310 1311
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1312 1313 1314
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);
1315 1316
	else
		devm_can_led_init(dev);
1317 1318

	return err;
1319 1320 1321 1322 1323 1324 1325 1326
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	unregister_candev(dev);
1327 1328

	c_can_pm_runtime_disable(priv);
1329 1330 1331 1332 1333 1334
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");