c_can.c 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * CAN bus driver for Bosch C_CAN controller
 *
 * Copyright (C) 2010 ST Microelectronics
 * Bhupesh Sharma <bhupesh.sharma@st.com>
 *
 * Borrowed heavily from the C_CAN driver originally written by:
 * Copyright (C) 2007
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
 *
 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
 * written by:
 * Copyright
 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
 *
 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
 * Bosch C_CAN user manual can be obtained from:
 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
 * users_manual_c_can.pdf
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
37
#include <linux/pm_runtime.h>
38 39 40 41

#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
42
#include <linux/can/led.h>
43 44 45

#include "c_can.h"

46 47 48 49
/* Number of interface registers */
#define IF_ENUM_REG_LEN		11
#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)

50 51 52
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR		BIT(8)

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* control register */
#define CONTROL_TEST		BIT(7)
#define CONTROL_CCE		BIT(6)
#define CONTROL_DISABLE_AR	BIT(5)
#define CONTROL_ENABLE_AR	(0 << 5)
#define CONTROL_EIE		BIT(3)
#define CONTROL_SIE		BIT(2)
#define CONTROL_IE		BIT(1)
#define CONTROL_INIT		BIT(0)

/* test register */
#define TEST_RX			BIT(7)
#define TEST_TX1		BIT(6)
#define TEST_TX2		BIT(5)
#define TEST_LBACK		BIT(4)
#define TEST_SILENT		BIT(3)
#define TEST_BASIC		BIT(2)

/* status register */
72
#define STATUS_PDA		BIT(10)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
#define STATUS_BOFF		BIT(7)
#define STATUS_EWARN		BIT(6)
#define STATUS_EPASS		BIT(5)
#define STATUS_RXOK		BIT(4)
#define STATUS_TXOK		BIT(3)

/* error counter register */
#define ERR_CNT_TEC_MASK	0xff
#define ERR_CNT_TEC_SHIFT	0
#define ERR_CNT_REC_SHIFT	8
#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT	15
#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)

/* bit-timing register */
#define BTR_BRP_MASK		0x3f
#define BTR_BRP_SHIFT		0
#define BTR_SJW_SHIFT		6
#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT		8
#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT		12
#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)

/* brp extension register */
#define BRP_EXT_BRPE_MASK	0x0f
#define BRP_EXT_BRPE_SHIFT	0

/* IFx command request */
#define IF_COMR_BUSY		BIT(15)

/* IFx command mask */
#define IF_COMM_WR		BIT(7)
#define IF_COMM_MASK		BIT(6)
#define IF_COMM_ARB		BIT(5)
#define IF_COMM_CONTROL		BIT(4)
#define IF_COMM_CLR_INT_PND	BIT(3)
#define IF_COMM_TXRQST		BIT(2)
111
#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
112 113 114 115 116 117
#define IF_COMM_DATAA		BIT(1)
#define IF_COMM_DATAB		BIT(0)
#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
				IF_COMM_CONTROL | IF_COMM_TXRQST | \
				IF_COMM_DATAA | IF_COMM_DATAB)

118 119 120 121 122 123
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
				 IF_COMM_DATAA | IF_COMM_DATAB)

/* For the high buffers we clear the interrupt bit and newdat */
124
#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* IFx arbitration */
#define IF_ARB_MSGVAL		BIT(15)
#define IF_ARB_MSGXTD		BIT(14)
#define IF_ARB_TRANSMIT		BIT(13)

/* IFx message control */
#define IF_MCONT_NEWDAT		BIT(15)
#define IF_MCONT_MSGLST		BIT(14)
#define IF_MCONT_INTPND		BIT(13)
#define IF_MCONT_UMASK		BIT(12)
#define IF_MCONT_TXIE		BIT(11)
#define IF_MCONT_RXIE		BIT(10)
#define IF_MCONT_RMTEN		BIT(9)
#define IF_MCONT_TXRQST		BIT(8)
#define IF_MCONT_EOB		BIT(7)
#define IF_MCONT_DLC_MASK	0xf

/*
T
Thomas Gleixner 已提交
144
 * Use IF1 for RX and IF2 for TX
145
 */
T
Thomas Gleixner 已提交
146 147
#define IF_RX			0
#define IF_TX			1
148 149 150 151 152 153 154 155 156 157 158

/* status interrupt */
#define STATUS_INTERRUPT	0x8000

/* global interrupt masks */
#define ENABLE_ALL_INTERRUPTS	1
#define DISABLE_ALL_INTERRUPTS	0

/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE	6

159 160 161
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS		1000

162 163 164 165 166 167 168 169 170 171 172 173 174
/* napi related */
#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM

/* c_can lec values */
enum c_can_lec_type {
	LEC_NO_ERROR = 0,
	LEC_STUFF_ERROR,
	LEC_FORM_ERROR,
	LEC_ACK_ERROR,
	LEC_BIT1_ERROR,
	LEC_BIT0_ERROR,
	LEC_CRC_ERROR,
	LEC_UNUSED,
T
Thomas Gleixner 已提交
175
	LEC_MASK = LEC_UNUSED,
176 177 178 179 180 181 182 183 184 185 186 187 188
};

/*
 * c_can error types:
 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 */
enum c_can_bus_error_types {
	C_CAN_NO_ERROR = 0,
	C_CAN_BUS_OFF,
	C_CAN_ERROR_WARNING,
	C_CAN_ERROR_PASSIVE,
};

189
static const struct can_bittiming_const c_can_bittiming_const = {
190 191 192 193 194 195 196 197 198 199 200
	.name = KBUILD_MODNAME,
	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
	.tseg1_max = 16,
	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
	.tseg2_max = 8,
	.sjw_max = 4,
	.brp_min = 1,
	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
	.brp_inc = 1,
};

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_enable(priv->device);
}

static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_disable(priv->device);
}

static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_get_sync(priv->device);
}

static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
	if (priv->device)
		pm_runtime_put_sync(priv->device);
}

225 226 227 228 229 230
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
	if (priv->raminit)
		priv->raminit(priv, enable);
}

231 232 233 234 235 236
static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
{
	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
			C_CAN_MSG_OBJ_TX_FIRST;
}

237
static inline int get_tx_echo_msg_obj(int txecho)
238
{
239
	return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
240 241
}

242
static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
243
{
244 245
	u32 val = priv->read_reg(priv, index);
	val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
246 247 248 249 250 251 252
	return val;
}

static void c_can_enable_all_interrupts(struct c_can_priv *priv,
						int enable)
{
	unsigned int cntrl_save = priv->read_reg(priv,
253
						C_CAN_CTRL_REG);
254 255 256 257 258 259

	if (enable)
		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
	else
		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);

260
	priv->write_reg(priv, C_CAN_CTRL_REG, cntrl_save);
261 262 263 264 265 266 267
}

static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
{
	int count = MIN_TIMEOUT_VALUE;

	while (count && priv->read_reg(priv,
268
				C_CAN_IFACE(COMREQ_REG, iface)) &
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
				IF_COMR_BUSY) {
		count--;
		udelay(1);
	}

	if (!count)
		return 1;

	return 0;
}

static inline void c_can_object_get(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
291
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
292
			IFX_WRITE_LOW_16BIT(mask));
293
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object get\n");
}

static inline void c_can_object_put(struct net_device *dev,
					int iface, int objno, int mask)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/*
	 * As per specs, after writting the message object number in the
	 * IF command request register the transfer b/w interface
	 * register and message RAM must be complete in 6 CAN-CLK
	 * period.
	 */
311
	priv->write_reg(priv, C_CAN_IFACE(COMMSK_REG, iface),
312
			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
313
	priv->write_reg(priv, C_CAN_IFACE(COMREQ_REG, iface),
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
			IFX_WRITE_LOW_16BIT(objno));

	if (c_can_msg_obj_is_busy(priv, iface))
		netdev_err(dev, "timed out in object put\n");
}

static void c_can_write_msg_object(struct net_device *dev,
			int iface, struct can_frame *frame, int objno)
{
	int i;
	u16 flags = 0;
	unsigned int id;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(frame->can_id & CAN_RTR_FLAG))
		flags |= IF_ARB_TRANSMIT;

	if (frame->can_id & CAN_EFF_FLAG) {
		id = frame->can_id & CAN_EFF_MASK;
		flags |= IF_ARB_MSGXTD;
	} else
		id = ((frame->can_id & CAN_SFF_MASK) << 18);

	flags |= IF_ARB_MSGVAL;

339
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
340
				IFX_WRITE_LOW_16BIT(id));
341
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), flags |
342 343 344
				IFX_WRITE_HIGH_16BIT(id));

	for (i = 0; i < frame->can_dlc; i += 2) {
345
		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
346 347 348 349
				frame->data[i] | (frame->data[i + 1] << 8));
	}

	/* enable interrupt for this message object */
350
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface),
351 352 353 354 355 356
			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
			frame->can_dlc);
	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
}

static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
357
						       int iface)
358 359 360
{
	int i;

361 362
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
363 364
}

365 366
static int c_can_handle_lost_msg_obj(struct net_device *dev,
				     int iface, int objno, u32 ctrl)
367 368
{
	struct net_device_stats *stats = &dev->stats;
369
	struct c_can_priv *priv = netdev_priv(dev);
370
	struct can_frame *frame;
371
	struct sk_buff *skb;
372

373 374
	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
T
Thomas Gleixner 已提交
375
	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
376

377 378 379
	stats->rx_errors++;
	stats->rx_over_errors++;

380 381 382
	/* create an error msg */
	skb = alloc_can_err_skb(dev, &frame);
	if (unlikely(!skb))
383
		return 0;
384 385 386 387 388

	frame->can_id |= CAN_ERR_CRTL;
	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

	netif_receive_skb(skb);
389
	return 1;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
{
	u16 flags, data;
	int i;
	unsigned int val;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct sk_buff *skb;
	struct can_frame *frame;

	skb = alloc_can_skb(dev, &frame);
	if (!skb) {
		stats->rx_dropped++;
		return -ENOMEM;
	}

	frame->can_dlc = get_can_dlc(ctrl & 0x0F);

410 411
	flags =	priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface));
	val = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface)) |
412 413 414 415 416 417 418 419 420 421 422 423
		(flags << 16);

	if (flags & IF_ARB_MSGXTD)
		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
	else
		frame->can_id = (val >> 18) & CAN_SFF_MASK;

	if (flags & IF_ARB_TRANSMIT)
		frame->can_id |= CAN_RTR_FLAG;
	else {
		for (i = 0; i < frame->can_dlc; i += 2) {
			data = priv->read_reg(priv,
424
				C_CAN_IFACE(DATA1_REG, iface) + i / 2);
425 426 427 428 429 430 431
			frame->data[i] = data;
			frame->data[i + 1] = data >> 8;
		}
	}

	stats->rx_packets++;
	stats->rx_bytes += frame->can_dlc;
432 433

	netif_receive_skb(skb);
434 435 436 437 438 439 440 441 442
	return 0;
}

static void c_can_setup_receive_object(struct net_device *dev, int iface,
					int objno, unsigned int mask,
					unsigned int id, unsigned int mcont)
{
	struct c_can_priv *priv = netdev_priv(dev);

443
	priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface),
444
			IFX_WRITE_LOW_16BIT(mask));
445 446 447 448

	/* According to C_CAN documentation, the reserved bit
	 * in IFx_MASK2 register is fixed 1
	 */
449
	priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface),
450
			IFX_WRITE_HIGH_16BIT(mask) | BIT(13));
451

452
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface),
453
			IFX_WRITE_LOW_16BIT(id));
454
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface),
455 456
			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));

457
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
458 459 460
	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
461
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
462 463 464 465 466 467
}

static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
{
	struct c_can_priv *priv = netdev_priv(dev);

468 469 470
	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
471 472 473 474

	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);

	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
475
			c_can_read_reg32(priv, C_CAN_MSGVAL1_REG));
476 477 478 479
}

static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
{
480
	int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

	/*
	 * as transmission request register's bit n-1 corresponds to
	 * message object n, we need to handle the same properly.
	 */
	if (val & (1 << (objno - 1)))
		return 1;

	return 0;
}

static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
					struct net_device *dev)
{
	u32 msg_obj_no;
	struct c_can_priv *priv = netdev_priv(dev);
	struct can_frame *frame = (struct can_frame *)skb->data;

	if (can_dropped_invalid_skb(dev, skb))
		return NETDEV_TX_OK;

502
	spin_lock_bh(&priv->xmit_lock);
503 504 505
	msg_obj_no = get_tx_next_msg_obj(priv);

	/* prepare message object for transmission */
T
Thomas Gleixner 已提交
506
	c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
T
Thomas Gleixner 已提交
507
	priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
508 509 510 511 512 513 514 515 516 517
	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);

	/*
	 * we have to stop the queue in case of a wrap around or
	 * if the next TX message object is still in use
	 */
	priv->tx_next++;
	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
		netif_stop_queue(dev);
518
	spin_unlock_bh(&priv->xmit_lock);
519 520 521 522

	return NETDEV_TX_OK;
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static int c_can_wait_for_ctrl_init(struct net_device *dev,
				    struct c_can_priv *priv, u32 init)
{
	int retry = 0;

	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
		udelay(10);
		if (retry++ > 1000) {
			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
			return -EIO;
		}
	}
	return 0;
}

538 539 540 541 542 543 544
static int c_can_set_bittiming(struct net_device *dev)
{
	unsigned int reg_btr, reg_brpe, ctrl_save;
	u8 brp, brpe, sjw, tseg1, tseg2;
	u32 ten_bit_brp;
	struct c_can_priv *priv = netdev_priv(dev);
	const struct can_bittiming *bt = &priv->can.bittiming;
545
	int res;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

	/* c_can provides a 6-bit brp and 4-bit brpe fields */
	ten_bit_brp = bt->brp - 1;
	brp = ten_bit_brp & BTR_BRP_MASK;
	brpe = ten_bit_brp >> 6;

	sjw = bt->sjw - 1;
	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
	tseg2 = bt->phase_seg2 - 1;
	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
			(tseg2 << BTR_TSEG2_SHIFT);
	reg_brpe = brpe & BRP_EXT_BRPE_MASK;

	netdev_info(dev,
		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);

562
	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
563 564 565 566 567 568
	ctrl_save &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
	if (res)
		return res;

569 570 571
	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
572

573
	return c_can_wait_for_ctrl_init(dev, priv, 0);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
}

/*
 * Configure C_CAN message objects for Tx and Rx purposes:
 * C_CAN provides a total of 32 message objects that can be configured
 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 * See user guide document for further details on configuring message
 * objects.
 */
static void c_can_configure_msg_objects(struct net_device *dev)
{
	int i;

	/* first invalidate all message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
T
Thomas Gleixner 已提交
591
		c_can_inval_msg_object(dev, IF_RX, i);
592 593 594

	/* setup receive message objects */
	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
T
Thomas Gleixner 已提交
595
		c_can_setup_receive_object(dev, IF_RX, i, 0, 0,
596
					   IF_MCONT_RXIE | IF_MCONT_UMASK);
597

T
Thomas Gleixner 已提交
598
	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
599 600 601 602 603 604 605 606 607
			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
}

/*
 * Configure C_CAN chip:
 * - enable/disable auto-retransmission
 * - set operating mode
 * - configure message objects
 */
608
static int c_can_chip_config(struct net_device *dev)
609 610 611
{
	struct c_can_priv *priv = netdev_priv(dev);

612
	/* enable automatic retransmission */
T
Thomas Gleixner 已提交
613
	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
614

615 616
	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
617
		/* loopback + silent mode : useful for hot self-test */
T
Thomas Gleixner 已提交
618 619
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
620 621
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
		/* loopback mode : useful for self-test function */
T
Thomas Gleixner 已提交
622
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
623
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
624 625
	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
		/* silent mode : bus-monitoring mode */
T
Thomas Gleixner 已提交
626
		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
627
		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
T
Thomas Gleixner 已提交
628
	}
629 630 631 632 633

	/* configure message objects */
	c_can_configure_msg_objects(dev);

	/* set a `lec` value so that we can check for updates later */
634
	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
635 636

	/* set bittiming params */
637
	return c_can_set_bittiming(dev);
638 639
}

640
static int c_can_start(struct net_device *dev)
641 642
{
	struct c_can_priv *priv = netdev_priv(dev);
643
	int err;
644 645

	/* basic c_can configuration */
646 647 648
	err = c_can_chip_config(dev);
	if (err)
		return err;
649

650 651 652 653
	/* Setup the command for new messages */
	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;

654 655
	priv->can.state = CAN_STATE_ERROR_ACTIVE;

656
	/* reset tx helper pointers and the rx mask */
657
	priv->tx_next = priv->tx_echo = 0;
658
	priv->rxmasked = 0;
659

660
	return 0;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
}

static void c_can_stop(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	/* disable all interrupts */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);

	/* set the state as STOPPED */
	priv->can.state = CAN_STATE_STOPPED;
}

static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
T
Thomas Gleixner 已提交
676
	struct c_can_priv *priv = netdev_priv(dev);
677 678
	int err;

679 680
	switch (mode) {
	case CAN_MODE_START:
681 682 683
		err = c_can_start(dev);
		if (err)
			return err;
684
		netif_wake_queue(dev);
T
Thomas Gleixner 已提交
685 686
		/* enable status change, error and module interrupts */
		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
687 688 689 690 691 692 693 694
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

695 696
static int __c_can_get_berr_counter(const struct net_device *dev,
				    struct can_berr_counter *bec)
697 698 699 700
{
	unsigned int reg_err_counter;
	struct c_can_priv *priv = netdev_priv(dev);

701
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
702 703 704 705
	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
				ERR_CNT_REC_SHIFT;
	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;

706 707 708 709 710 711 712 713 714 715 716
	return 0;
}

static int c_can_get_berr_counter(const struct net_device *dev,
				  struct can_berr_counter *bec)
{
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_get_sync(priv);
	err = __c_can_get_berr_counter(dev, bec);
717 718
	c_can_pm_runtime_put_sync(priv);

719
	return err;
720 721 722 723 724 725 726 727 728
}

/*
 * priv->tx_echo holds the number of the oldest can_frame put for
 * transmission into the hardware, but not yet ACKed by the CAN tx
 * complete IRQ.
 *
 * We iterate from priv->tx_echo to priv->tx_next and check if the
 * packet has been transmitted, echo it back to the CAN framework.
729
 * If we discover a not yet transmitted packet, stop looking for more.
730 731 732 733 734
 */
static void c_can_do_tx(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
735
	u32 val, obj, pkts = 0, bytes = 0;
736

737 738 739
	spin_lock_bh(&priv->xmit_lock);

	for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
740
		obj = get_tx_echo_msg_obj(priv->tx_echo);
741
		val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
742 743

		if (val & (1 << (obj - 1)))
744
			break;
745 746 747 748 749

		can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
		bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
		pkts++;
		c_can_inval_msg_object(dev, IF_TX, obj);
750 751 752 753 754 755
	}

	/* restart queue if wrap-up or if queue stalled on last pkt */
	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
		netif_wake_queue(dev);
756 757

	spin_unlock_bh(&priv->xmit_lock);
758 759 760 761 762 763

	if (pkts) {
		stats->tx_bytes += bytes;
		stats->tx_packets += pkts;
		can_led_event(dev, CAN_LED_EVENT_TX);
	}
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
/*
 * If we have a gap in the pending bits, that means we either
 * raced with the hardware or failed to readout all upper
 * objects in the last run due to quota limit.
 */
static u32 c_can_adjust_pending(u32 pend)
{
	u32 weight, lasts;

	if (pend == RECEIVE_OBJECT_BITS)
		return pend;

	/*
	 * If the last set bit is larger than the number of pending
	 * bits we have a gap.
	 */
	weight = hweight32(pend);
	lasts = fls(pend);

	/* If the bits are linear, nothing to do */
	if (lasts == weight)
		return pend;

	/*
	 * Find the first set bit after the gap. We walk backwards
	 * from the last set bit.
	 */
	for (lasts--; pend & (1 << (lasts - 1)); lasts--);

	return pend & ~((1 << lasts) - 1);
}

798 799
static inline void c_can_rx_object_get(struct net_device *dev,
				       struct c_can_priv *priv, u32 obj)
800 801 802 803 804 805
{
#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	if (obj < C_CAN_MSG_RX_LOW_LAST)
		c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
	else
#endif
806
		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
807 808 809 810 811 812 813 814 815 816 817 818 819 820
}

static inline void c_can_rx_finalize(struct net_device *dev,
				     struct c_can_priv *priv, u32 obj)
{
#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	if (obj < C_CAN_MSG_RX_LOW_LAST)
		priv->rxmasked |= BIT(obj - 1);
	else if (obj == C_CAN_MSG_RX_LOW_LAST) {
		priv->rxmasked = 0;
		/* activate all lower message objects */
		c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
	}
#endif
821 822
	if (priv->type != BOSCH_D_CAN)
		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
823 824
}

825 826 827
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
			      u32 pend, int quota)
{
828
	u32 pkts = 0, ctrl, obj;
829 830 831 832

	while ((obj = ffs(pend)) && quota > 0) {
		pend &= ~BIT(obj - 1);

833
		c_can_rx_object_get(dev, priv, obj);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));

		if (ctrl & IF_MCONT_MSGLST) {
			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);

			pkts += n;
			quota -= n;
			continue;
		}

		/*
		 * This really should not happen, but this covers some
		 * odd HW behaviour. Do not remove that unless you
		 * want to brick your machine.
		 */
		if (!(ctrl & IF_MCONT_NEWDAT))
			continue;

		/* read the data from the message object */
		c_can_read_msg_object(dev, IF_RX, ctrl);

855
		c_can_rx_finalize(dev, priv, obj);
856 857 858 859 860 861

		pkts++;
		quota--;
	}

	return pkts;
862 863
}

864 865 866 867 868 869 870 871 872 873
static inline u32 c_can_get_pending(struct c_can_priv *priv)
{
	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);

#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
	pend &= ~priv->rxmasked;
#endif
	return pend;
}

874 875 876 877 878 879 880 881 882
/*
 * theory of operation:
 *
 * c_can core saves a received CAN message into the first free message
 * object it finds free (starting with the lowest). Bits NEWDAT and
 * INTPND are set for this message object indicating that a new message
 * has arrived. To work-around this issue, we keep two groups of message
 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 *
883 884
 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
 *
885 886 887 888 889 890 891 892 893 894 895 896
 * To ensure in-order frame reception we use the following
 * approach while re-activating a message object to receive further
 * frames:
 * - if the current message object number is lower than
 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 *   the INTPND bit.
 * - if the current message object number is equal to
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 *   receive message objects.
 * - if the current message object number is greater than
 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 *   only this message object.
897 898 899 900 901 902 903 904
 *
 * This can cause packet loss!
 *
 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
 *
 * We clear the newdat bit right away.
 *
 * This can result in packet reordering when the readout is slow.
905 906 907 908
 */
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
	struct c_can_priv *priv = netdev_priv(dev);
909
	u32 pkts = 0, pend = 0, toread, n;
910 911 912 913 914 915 916 917

	/*
	 * It is faster to read only one 16bit register. This is only possible
	 * for a maximum number of 16 objects.
	 */
	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
			"Implementation does not support more message objects than 16");

918 919
	while (quota > 0) {
		if (!pend) {
920
			pend = c_can_get_pending(priv);
921
			if (!pend)
922
				break;
923 924 925 926
			/*
			 * If the pending field has a gap, handle the
			 * bits above the gap first.
			 */
927
			toread = c_can_adjust_pending(pend);
928
		} else {
929
			toread = pend;
930
		}
931
		/* Remove the bits from pend */
932 933 934 935 936
		pend &= ~toread;
		/* Read the objects */
		n = c_can_read_objects(dev, priv, toread, quota);
		pkts += n;
		quota -= n;
937 938
	}

939 940 941
	if (pkts)
		can_led_event(dev, CAN_LED_EVENT_RX);

942
	return pkts;
943 944 945 946 947 948 949 950 951 952 953 954 955
}

static int c_can_handle_state_change(struct net_device *dev,
				enum c_can_bus_error_types error_type)
{
	unsigned int reg_err_counter;
	unsigned int rx_err_passive;
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;
	struct can_berr_counter bec;

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		priv->can.can_stats.error_warning++;
		priv->can.state = CAN_STATE_ERROR_WARNING;
		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		priv->can.can_stats.error_passive++;
		priv->can.state = CAN_STATE_ERROR_PASSIVE;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		priv->can.state = CAN_STATE_BUS_OFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

L
Lucas De Marchi 已提交
976
	/* propagate the error condition to the CAN stack */
977 978 979 980
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

981
	__c_can_get_berr_counter(dev, &bec);
982
	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
				ERR_CNT_RP_SHIFT;

	switch (error_type) {
	case C_CAN_ERROR_WARNING:
		/* error warning state */
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = (bec.txerr > bec.rxerr) ?
			CAN_ERR_CRTL_TX_WARNING :
			CAN_ERR_CRTL_RX_WARNING;
		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;

		break;
	case C_CAN_ERROR_PASSIVE:
		/* error passive state */
		cf->can_id |= CAN_ERR_CRTL;
		if (rx_err_passive)
			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
		if (bec.txerr > 127)
			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;

		cf->data[6] = bec.txerr;
		cf->data[7] = bec.rxerr;
		break;
	case C_CAN_BUS_OFF:
		/* bus-off state */
		cf->can_id |= CAN_ERR_BUSOFF;
		can_bus_off(dev);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
1019
	netif_receive_skb(skb);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	return 1;
}

static int c_can_handle_bus_err(struct net_device *dev,
				enum c_can_lec_type lec_type)
{
	struct c_can_priv *priv = netdev_priv(dev);
	struct net_device_stats *stats = &dev->stats;
	struct can_frame *cf;
	struct sk_buff *skb;

	/*
	 * early exit if no lec update or no error.
	 * no lec update means that no CAN bus event has been detected
	 * since CPU wrote 0x7 value to status reg.
	 */
	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
		return 0;

T
Thomas Gleixner 已提交
1040 1041 1042
	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
		return 0;

1043 1044 1045 1046
	/* common for all type of bus errors */
	priv->can.can_stats.bus_error++;
	stats->rx_errors++;

L
Lucas De Marchi 已提交
1047
	/* propagate the error condition to the CAN stack */
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	skb = alloc_can_err_skb(dev, &cf);
	if (unlikely(!skb))
		return 0;

	/*
	 * check for 'last error code' which tells us the
	 * type of the last error to occur on the CAN bus
	 */
	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
	cf->data[2] |= CAN_ERR_PROT_UNSPEC;

	switch (lec_type) {
	case LEC_STUFF_ERROR:
		netdev_dbg(dev, "stuff error\n");
		cf->data[2] |= CAN_ERR_PROT_STUFF;
		break;
	case LEC_FORM_ERROR:
		netdev_dbg(dev, "form error\n");
		cf->data[2] |= CAN_ERR_PROT_FORM;
		break;
	case LEC_ACK_ERROR:
		netdev_dbg(dev, "ack error\n");
1070
		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
				CAN_ERR_PROT_LOC_ACK_DEL);
		break;
	case LEC_BIT1_ERROR:
		netdev_dbg(dev, "bit1 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT1;
		break;
	case LEC_BIT0_ERROR:
		netdev_dbg(dev, "bit0 error\n");
		cf->data[2] |= CAN_ERR_PROT_BIT0;
		break;
	case LEC_CRC_ERROR:
		netdev_dbg(dev, "CRC error\n");
1083
		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
1084 1085 1086 1087 1088 1089 1090 1091
				CAN_ERR_PROT_LOC_CRC_DEL);
		break;
	default:
		break;
	}

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
1092
	netif_receive_skb(skb);
1093 1094 1095 1096 1097 1098 1099
	return 1;
}

static int c_can_poll(struct napi_struct *napi, int quota)
{
	struct net_device *dev = napi->dev;
	struct c_can_priv *priv = netdev_priv(dev);
1100 1101
	u16 curr, last = priv->last_status;
	int work_done = 0;
1102

1103 1104 1105 1106
	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
	/* Ack status on C_CAN. D_CAN is self clearing */
	if (priv->type != BOSCH_D_CAN)
		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1107

1108 1109 1110 1111 1112
	/* handle state changes */
	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
		netdev_dbg(dev, "entered error warning state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
	}
1113

1114 1115 1116 1117
	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
		netdev_dbg(dev, "entered error passive state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
	}
1118

1119 1120 1121 1122
	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
		netdev_dbg(dev, "entered bus off state\n");
		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
		goto end;
1123 1124
	}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	/* handle bus recovery events */
	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
		netdev_dbg(dev, "left bus off state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}
	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
		netdev_dbg(dev, "left error passive state\n");
		priv->can.state = CAN_STATE_ERROR_ACTIVE;
	}

	/* handle lec errors on the bus */
	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);

	/* Handle Tx/Rx events. We do this unconditionally */
	work_done += c_can_do_rx_poll(dev, (quota - work_done));
	c_can_do_tx(dev);

1142 1143 1144
end:
	if (work_done < quota) {
		napi_complete(napi);
1145 1146 1147
		/* enable all IRQs if we are not in bus off state */
		if (priv->can.state != CAN_STATE_BUS_OFF)
			c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	}

	return work_done;
}

static irqreturn_t c_can_isr(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct c_can_priv *priv = netdev_priv(dev);

1158
	if (!priv->read_reg(priv, C_CAN_INT_REG))
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		return IRQ_NONE;

	/* disable all interrupts and schedule the NAPI */
	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
	napi_schedule(&priv->napi);

	return IRQ_HANDLED;
}

static int c_can_open(struct net_device *dev)
{
	int err;
	struct c_can_priv *priv = netdev_priv(dev);

1173
	c_can_pm_runtime_get_sync(priv);
1174
	c_can_reset_ram(priv, true);
1175

1176 1177 1178 1179
	/* open the can device */
	err = open_candev(dev);
	if (err) {
		netdev_err(dev, "failed to open can device\n");
1180
		goto exit_open_fail;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	}

	/* register interrupt handler */
	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
				dev);
	if (err < 0) {
		netdev_err(dev, "failed to request interrupt\n");
		goto exit_irq_fail;
	}

1191 1192 1193 1194
	/* start the c_can controller */
	err = c_can_start(dev);
	if (err)
		goto exit_start_fail;
1195

1196 1197
	can_led_event(dev, CAN_LED_EVENT_OPEN);

1198
	napi_enable(&priv->napi);
T
Thomas Gleixner 已提交
1199 1200
	/* enable status change, error and module interrupts */
	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1201 1202 1203 1204
	netif_start_queue(dev);

	return 0;

1205 1206
exit_start_fail:
	free_irq(dev->irq, dev);
1207 1208
exit_irq_fail:
	close_candev(dev);
1209
exit_open_fail:
1210
	c_can_reset_ram(priv, false);
1211
	c_can_pm_runtime_put_sync(priv);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	return err;
}

static int c_can_close(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	netif_stop_queue(dev);
	napi_disable(&priv->napi);
	c_can_stop(dev);
	free_irq(dev->irq, dev);
	close_candev(dev);
1224 1225

	c_can_reset_ram(priv, false);
1226
	c_can_pm_runtime_put_sync(priv);
1227

1228 1229
	can_led_event(dev, CAN_LED_EVENT_STOP);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	return 0;
}

struct net_device *alloc_c_can_dev(void)
{
	struct net_device *dev;
	struct c_can_priv *priv;

	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
	if (!dev)
		return NULL;

	priv = netdev_priv(dev);
1243
	spin_lock_init(&priv->xmit_lock);
1244 1245 1246 1247 1248 1249
	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);

	priv->dev = dev;
	priv->can.bittiming_const = &c_can_bittiming_const;
	priv->can.do_set_mode = c_can_set_mode;
	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1250
	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1251 1252 1253 1254 1255 1256 1257
					CAN_CTRLMODE_LISTENONLY |
					CAN_CTRLMODE_BERR_REPORTING;

	return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	/* set PDR value so the device goes to power down mode */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val |= CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);

	/* Wait for the PDA bit to get set */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

	c_can_stop(dev);

1286
	c_can_reset_ram(priv, false);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	c_can_pm_runtime_put_sync(priv);

	return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);

int c_can_power_up(struct net_device *dev)
{
	u32 val;
	unsigned long time_out;
	struct c_can_priv *priv = netdev_priv(dev);
T
Thomas Gleixner 已提交
1298
	int ret;
1299 1300 1301 1302 1303 1304 1305

	if (!(dev->flags & IFF_UP))
		return 0;

	WARN_ON(priv->type != BOSCH_D_CAN);

	c_can_pm_runtime_get_sync(priv);
1306
	c_can_reset_ram(priv, true);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	/* Clear PDR and INIT bits */
	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
	val &= ~CONTROL_EX_PDR;
	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
	val = priv->read_reg(priv, C_CAN_CTRL_REG);
	val &= ~CONTROL_INIT;
	priv->write_reg(priv, C_CAN_CTRL_REG, val);

	/* Wait for the PDA bit to get clear */
	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
				time_after(time_out, jiffies))
		cpu_relax();

	if (time_after(jiffies, time_out))
		return -ETIMEDOUT;

T
Thomas Gleixner 已提交
1325 1326 1327 1328 1329
	ret = c_can_start(dev);
	if (!ret)
		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);

	return ret;
1330 1331 1332 1333
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif

1334 1335
void free_c_can_dev(struct net_device *dev)
{
1336 1337 1338
	struct c_can_priv *priv = netdev_priv(dev);

	netif_napi_del(&priv->napi);
1339 1340 1341 1342 1343 1344 1345 1346
	free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);

static const struct net_device_ops c_can_netdev_ops = {
	.ndo_open = c_can_open,
	.ndo_stop = c_can_close,
	.ndo_start_xmit = c_can_start_xmit,
1347
	.ndo_change_mtu = can_change_mtu,
1348 1349 1350 1351
};

int register_c_can_dev(struct net_device *dev)
{
1352 1353 1354 1355 1356
	struct c_can_priv *priv = netdev_priv(dev);
	int err;

	c_can_pm_runtime_enable(priv);

1357 1358 1359
	dev->flags |= IFF_ECHO;	/* we support local echo */
	dev->netdev_ops = &c_can_netdev_ops;

1360 1361 1362
	err = register_candev(dev);
	if (err)
		c_can_pm_runtime_disable(priv);
1363 1364
	else
		devm_can_led_init(dev);
1365 1366

	return err;
1367 1368 1369 1370 1371 1372 1373 1374
}
EXPORT_SYMBOL_GPL(register_c_can_dev);

void unregister_c_can_dev(struct net_device *dev)
{
	struct c_can_priv *priv = netdev_priv(dev);

	unregister_candev(dev);
1375 1376

	c_can_pm_runtime_disable(priv);
1377 1378 1379 1380 1381 1382
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);

MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");