page-writeback.c 83.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148 149 150 151 152 153
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
154

155 156
#ifdef CONFIG_CGROUP_WRITEBACK

157 158 159 160
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

161
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 163 164 165 166

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
167 168 169 170 171

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
172 173 174 175 176 177

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

178 179 180 181 182
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
183 184 185 186 187
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

217 218
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
219
#define GDTC_INIT_NO_WB
220 221 222 223 224 225
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
226 227 228 229 230 231

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

232 233 234 235 236
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
237 238 239 240 241
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

242 243 244 245 246 247 248 249 250
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

269 270 271 272 273 274 275 276 277 278 279 280
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 282 283 284 285 286
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	nr_pages -= min(nr_pages, zone->totalreserve_pages);
287

288 289
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290 291 292 293

	return nr_pages;
}

294 295 296 297 298 299 300
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
301
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
302

303
		x += zone_dirtyable_memory(z);
304
	}
305 306 307 308 309 310 311 312 313 314 315 316
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

317 318 319 320 321 322 323 324 325 326 327 328 329
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
330
 * global_dirtyable_memory - number of globally dirtyable pages
331
 *
332 333
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
334
 */
335
static unsigned long global_dirtyable_memory(void)
336 337 338
{
	unsigned long x;

339
	x = global_page_state(NR_FREE_PAGES);
340 341 342 343 344 345
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	x -= min(x, totalreserve_pages);
346

347 348
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
349

350 351 352 353 354 355
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

356 357 358
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
359
 *
360 361 362 363
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
364 365
 * real-time tasks.
 */
366
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
367
{
368 369 370 371 372 373 374 375
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
	unsigned long ratio = vm_dirty_ratio;
	unsigned long bg_ratio = dirty_background_ratio;
	unsigned long thresh;
	unsigned long bg_thresh;
376 377
	struct task_struct *tsk;

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
		 * globally available memory.
		 */
		if (bytes)
			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
				    global_avail, 100UL);
		if (bg_bytes)
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
				       global_avail, 100UL);
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
398
	else
399
		thresh = (ratio * available_memory) / 100;
400

401 402
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
403
	else
404
		bg_thresh = (bg_ratio * available_memory) / 100;
405

406 407
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
408 409
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
410 411
		bg_thresh += bg_thresh / 4;
		thresh += thresh / 4;
412
	}
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
438 439
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

481
int dirty_background_ratio_handler(struct ctl_table *table, int write,
482
		void __user *buffer, size_t *lenp,
483 484 485 486
		loff_t *ppos)
{
	int ret;

487
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
488 489 490 491 492 493
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
494
		void __user *buffer, size_t *lenp,
495 496 497 498
		loff_t *ppos)
{
	int ret;

499
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
500 501 502 503 504
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
505
int dirty_ratio_handler(struct ctl_table *table, int write,
506
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
507 508 509
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
510 511
	int ret;

512
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
513
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
514
		writeback_set_ratelimit();
515 516 517 518 519 520
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
521
		void __user *buffer, size_t *lenp,
522 523
		loff_t *ppos)
{
524
	unsigned long old_bytes = vm_dirty_bytes;
525 526
	int ret;

527
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
528
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
529
		writeback_set_ratelimit();
530
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
531 532 533 534
	}
	return ret;
}

535 536 537 538 539 540 541 542 543
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

544 545 546
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
547
{
548 549
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
550
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
551
	if (!unlikely(dom->period_time)) {
552 553 554 555 556 557
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
558 559
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
560
	}
P
Peter Zijlstra 已提交
561 562
}

563 564 565 566 567
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
568
{
T
Tejun Heo 已提交
569
	struct wb_domain *cgdom;
570

571 572 573
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
574 575 576 577 578

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
579 580
}

581
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
582
{
583 584 585
	unsigned long flags;

	local_irq_save(flags);
586
	__wb_writeout_inc(wb);
587
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
588
}
589
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
590

591 592 593 594 595 596
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
597 598
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
599 600
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
601 602
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
603
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
604
		mod_timer(&dom->period_timer, dom->period_time);
605 606 607 608 609
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
610
		dom->period_time = 0;
611 612 613
	}
}

T
Tejun Heo 已提交
614 615 616
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
617 618 619

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
620 621 622
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
623 624 625

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
626 627 628
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
629 630 631 632 633 634 635 636
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

637
/*
638 639 640
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
641 642 643 644 645 646 647
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

648
	spin_lock_bh(&bdi_lock);
649
	if (min_ratio > bdi->max_ratio) {
650
		ret = -EINVAL;
651 652 653 654 655 656 657 658 659
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
660
	spin_unlock_bh(&bdi_lock);
661 662 663 664 665 666 667 668 669 670 671

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

672
	spin_lock_bh(&bdi_lock);
673 674 675 676
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
677
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
678
	}
679
	spin_unlock_bh(&bdi_lock);
680 681 682

	return ret;
}
683
EXPORT_SYMBOL(bdi_set_max_ratio);
684

W
Wu Fengguang 已提交
685 686 687 688 689 690
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

691 692
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
693
{
694
	return max(thresh, dom->dirty_limit);
695 696
}

697 698 699 700 701 702
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
703 704
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
705 706 707
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
708

709
	mdtc->avail = filepages + min(headroom, other_clean);
710 711
}

712
/**
713 714
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
715
 *
716
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
717
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
718 719 720 721 722 723
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
724
 * more (rather than completely block them) when the wb dirty pages go high.
725
 *
726
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
727 728 729
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
730
 * The wb's share of dirty limit will be adapting to its throughput and
731 732
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
733
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
734
{
735
	struct wb_domain *dom = dtc_dom(dtc);
736
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
737
	u64 wb_thresh;
738
	long numerator, denominator;
739
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
740

741
	/*
T
Tejun Heo 已提交
742
	 * Calculate this BDI's share of the thresh ratio.
743
	 */
744
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
745
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
746

T
Tejun Heo 已提交
747 748 749
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
750

751
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
752

T
Tejun Heo 已提交
753 754 755
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
756

T
Tejun Heo 已提交
757
	return wb_thresh;
L
Linus Torvalds 已提交
758 759
}

760 761 762 763 764
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
765 766
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
781
static long long pos_ratio_polynom(unsigned long setpoint,
782 783 784 785 786 787
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

788
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
789
		      (limit - setpoint) | 1);
790 791 792 793 794 795 796 797
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
798 799 800 801 802
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
803
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
804 805 806 807 808 809 810 811 812
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
813 814
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
839
 * (o) wb control line
W
Wu Fengguang 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
865
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
866
 *
867
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
868 869
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
870 871
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
872
 */
873
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
874
{
875
	struct bdi_writeback *wb = dtc->wb;
876
	unsigned long write_bw = wb->avg_write_bandwidth;
877
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
878
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
879
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
880 881
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
882
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
883 884 885 886
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

887 888
	dtc->pos_ratio = 0;

889
	if (unlikely(dtc->dirty >= limit))
890
		return;
W
Wu Fengguang 已提交
891 892 893 894

	/*
	 * global setpoint
	 *
895 896 897
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
898
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
899 900 901 902

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
903 904
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
905 906 907 908
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
909
	 *
910
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
911
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
912 913
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
914
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
915
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
916
	 * about ~6K pages (as the average of background and throttle wb
917
	 * limits). The 3rd order polynomial will provide positive feedback if
918
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
919
	 *
920
	 * Note, that we cannot use global counters in these calculations
921
	 * because we want to throttle process writing to a strictlimit wb
922 923
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
924
	 */
925
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
926
		long long wb_pos_ratio;
927

928 929 930 931 932
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
933

934
		if (dtc->wb_dirty >= wb_thresh)
935
			return;
936

937 938
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
939

940
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
941
			return;
942

943
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
944
						 wb_thresh);
945 946

		/*
947 948
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
949
		 * state ("dirty") is not limiting factor and we have to
950
		 * make decision based on wb counters. But there is an
951 952
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
953
		 * wb's) while given strictlimit wb is below limit.
954
		 *
955
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
956
		 * but it would look too non-natural for the case of all
957
		 * activity in the system coming from a single strictlimit wb
958 959 960 961
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
962
		 * (when globally we are at freerun and wb is well below wb
963 964 965 966
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
967 968
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
969
	}
W
Wu Fengguang 已提交
970 971 972

	/*
	 * We have computed basic pos_ratio above based on global situation. If
973
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
974 975 976 977
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
978
	 * wb setpoint
W
Wu Fengguang 已提交
979
	 *
980
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
981
	 *
982
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
983
	 *                     := --------------------------
984
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
985
	 *
986
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
987
	 *
988 989 990
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
991
	 *
992
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
993
	 * regularly within range
994
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
995 996 997
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
998
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
999
	 * own size, so move the slope over accordingly and choose a slope that
1000
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
1001
	 */
1002 1003
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
1004
	/*
1005
	 * It's very possible that wb_thresh is close to 0 not because the
1006 1007 1008 1009 1010
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1011
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1012
	/*
1013 1014
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1015
	 */
1016
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1017
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1018
	/*
1019 1020
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1021
	 *
1022 1023 1024
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1025
	 */
1026
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1027
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1028

1029 1030
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1031
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1032 1033 1034
	} else
		pos_ratio /= 4;

1035
	/*
1036
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1037 1038 1039
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1040
	x_intercept = wb_thresh / 2;
1041 1042 1043 1044
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1045
		else
1046 1047 1048
			pos_ratio *= 8;
	}

1049
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1050 1051
}

1052 1053 1054
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1055 1056
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1057 1058
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1059 1060 1061 1062 1063 1064 1065 1066
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1067 1068 1069
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1070
	 */
1071
	bw = written - min(written, wb->written_stamp);
1072 1073 1074 1075 1076 1077
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1078
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1091 1092 1093 1094 1095 1096 1097
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1098 1099
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1100 1101
}

1102
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1103
{
1104
	struct wb_domain *dom = dtc_dom(dtc);
1105
	unsigned long thresh = dtc->thresh;
1106
	unsigned long limit = dom->dirty_limit;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1119
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1120
	 */
1121
	thresh = max(thresh, dtc->dirty);
1122 1123 1124 1125 1126 1127
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1128
	dom->dirty_limit = limit;
1129 1130
}

1131
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1132 1133
				    unsigned long now)
{
1134
	struct wb_domain *dom = dtc_dom(dtc);
1135 1136 1137 1138

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1139
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1140 1141
		return;

1142 1143
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1144
		update_dirty_limit(dtc);
1145
		dom->dirty_limit_tstamp = now;
1146
	}
1147
	spin_unlock(&dom->lock);
1148 1149
}

W
Wu Fengguang 已提交
1150
/*
1151
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1152
 *
1153
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1154 1155
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1156
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1157 1158
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1159
{
1160 1161 1162
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1163
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1164
	unsigned long setpoint = (freerun + limit) / 2;
1165 1166
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1167 1168 1169
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1170 1171
	unsigned long step;
	unsigned long x;
1172
	unsigned long shift;
W
Wu Fengguang 已提交
1173 1174 1175 1176 1177

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1178
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1179 1180 1181 1182 1183

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1184
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1185 1186 1187 1188
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1189
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1219 1220 1221 1222 1223
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1224

1225 1226 1227
	/*
	 * We could safely do this and return immediately:
	 *
1228
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1229 1230
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1231
	 * code makes use of task_ratelimit to filter out singular points and
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1254
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1255 1256 1257 1258 1259
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1260 1261

	/*
1262
	 * For strictlimit case, calculations above were based on wb counters
1263
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1264
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1265 1266
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1267
	 *
1268 1269
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1270
	 * of backing device.
1271
	 */
1272
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1273 1274 1275
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1276
		else
1277
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1278 1279
	}

1280
	if (dirty < setpoint) {
1281
		x = min3(wb->balanced_dirty_ratelimit,
1282
			 balanced_dirty_ratelimit, task_ratelimit);
1283 1284 1285
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1286
		x = max3(wb->balanced_dirty_ratelimit,
1287
			 balanced_dirty_ratelimit, task_ratelimit);
1288 1289 1290 1291 1292 1293 1294 1295 1296
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
1297 1298 1299 1300 1301
	shift = dirty_ratelimit / (2 * step + 1);
	if (shift < BITS_PER_LONG)
		step = DIV_ROUND_UP(step >> shift, 8);
	else
		step = 0;
1302 1303 1304 1305 1306 1307

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1308 1309
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1310

1311
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1312 1313
}

1314 1315
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1316 1317
				  unsigned long start_time,
				  bool update_ratelimit)
1318
{
1319
	struct bdi_writeback *wb = gdtc->wb;
1320
	unsigned long now = jiffies;
1321
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1322
	unsigned long dirtied;
1323 1324
	unsigned long written;

1325 1326
	lockdep_assert_held(&wb->list_lock);

1327 1328 1329 1330 1331 1332
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1333 1334
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1335 1336 1337 1338 1339

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1340
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1341 1342
		goto snapshot;

1343
	if (update_ratelimit) {
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1355
	}
1356
	wb_update_write_bandwidth(wb, elapsed, written);
1357 1358

snapshot:
1359 1360 1361
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1362 1363
}

1364
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1365
{
1366 1367
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1368
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1369 1370
}

1371
/*
1372
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1388
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1389
				  unsigned long wb_dirty)
1390
{
1391
	unsigned long bw = wb->avg_write_bandwidth;
1392
	unsigned long t;
1393

1394 1395 1396 1397 1398 1399 1400
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1401
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1402 1403
	t++;

1404
	return min_t(unsigned long, t, MAX_PAUSE);
1405 1406
}

1407 1408 1409 1410 1411
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1412
{
1413 1414
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1415 1416 1417
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1418

1419 1420
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1421 1422 1423 1424 1425

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1426
	 * (N * 10ms) on 2^N concurrent tasks.
1427 1428
	 */
	if (hi > lo)
1429
		t += (hi - lo) * (10 * HZ) / 1024;
1430 1431

	/*
1432 1433 1434 1435 1436 1437 1438 1439
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1440
	 *
1441 1442 1443 1444 1445 1446 1447
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1448
	 */
1449 1450
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1451 1452

	/*
1453 1454 1455 1456 1457 1458
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1459
	 */
1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1469 1470 1471 1472 1473
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1474

1475
	*nr_dirtied_pause = pages;
1476
	/*
1477
	 * The minimal pause time will normally be half the target pause time.
1478
	 */
1479
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1480 1481
}

1482
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1483
{
1484
	struct bdi_writeback *wb = dtc->wb;
1485
	unsigned long wb_reclaimable;
1486 1487

	/*
1488
	 * wb_thresh is not treated as some limiting factor as
1489
	 * dirty_thresh, due to reasons
1490
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1491
	 * - in a system with HDD and USB key, the USB key may somehow
1492 1493
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1494
	 *   In this case we don't want to hard throttle the USB key
1495 1496
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1497
	 *   wb_position_ratio() will let the dirtier task progress
1498
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1499
	 */
1500
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1501 1502
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1514
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1515
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1516
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1517
	} else {
1518
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1519
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1520 1521 1522
	}
}

L
Linus Torvalds 已提交
1523 1524 1525
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1526
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1527 1528
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1529
 */
1530
static void balance_dirty_pages(struct address_space *mapping,
1531
				struct bdi_writeback *wb,
1532
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1533
{
1534
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1535
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1536
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1537 1538 1539
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1540
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1541
	long period;
1542 1543 1544 1545
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1546
	bool dirty_exceeded = false;
1547
	unsigned long task_ratelimit;
1548
	unsigned long dirty_ratelimit;
1549
	struct backing_dev_info *bdi = wb->bdi;
1550
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1551
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1552 1553

	for (;;) {
1554
		unsigned long now = jiffies;
1555
		unsigned long dirty, thresh, bg_thresh;
1556 1557 1558
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1559

1560 1561 1562 1563 1564 1565
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1566 1567
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1568
		gdtc->avail = global_dirtyable_memory();
1569
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1570

1571
		domain_dirty_limits(gdtc);
1572

1573
		if (unlikely(strictlimit)) {
1574
			wb_dirty_limits(gdtc);
1575

1576 1577
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1578
			bg_thresh = gdtc->wb_bg_thresh;
1579
		} else {
1580 1581 1582
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1583 1584
		}

1585
		if (mdtc) {
1586
			unsigned long filepages, headroom, writeback;
1587 1588 1589 1590 1591

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1592 1593
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1594
			mdtc->dirty += writeback;
1595
			mdtc_calc_avail(mdtc, filepages, headroom);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1609 1610
		}

1611 1612 1613
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1614
		 * when the wb limits are ramping up in case of !strictlimit.
1615
		 *
1616 1617
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1618
		 * up are the price we consciously pay for strictlimit-ing.
1619 1620 1621
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1622
		 */
1623 1624 1625 1626 1627 1628
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1629 1630
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1631 1632 1633
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1634
			break;
1635
		}
1636

1637
		if (unlikely(!writeback_in_progress(wb)))
1638
			wb_start_background_writeback(wb);
1639

1640 1641 1642 1643
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1644
		if (!strictlimit)
1645
			wb_dirty_limits(gdtc);
1646

1647 1648
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1649 1650

		wb_position_ratio(gdtc);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1670

1671 1672
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1673

1674 1675 1676
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1677
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1678 1679
			spin_unlock(&wb->list_lock);
		}
1680

1681
		/* throttle according to the chosen dtc */
1682
		dirty_ratelimit = wb->dirty_ratelimit;
1683
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1684
							RATELIMIT_CALC_SHIFT;
1685
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1686 1687 1688
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1689

1690
		if (unlikely(task_ratelimit == 0)) {
1691
			period = max_pause;
1692
			pause = max_pause;
1693
			goto pause;
P
Peter Zijlstra 已提交
1694
		}
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1706
		if (pause < min_pause) {
1707
			trace_balance_dirty_pages(wb,
1708 1709 1710 1711 1712
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1713 1714 1715
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1716
						  period,
1717
						  min(pause, 0L),
1718
						  start_time);
1719 1720 1721 1722 1723 1724
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1725 1726
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1727
			break;
P
Peter Zijlstra 已提交
1728
		}
1729 1730 1731 1732 1733
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1734 1735

pause:
1736
		trace_balance_dirty_pages(wb,
1737 1738 1739 1740 1741
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1742 1743 1744
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1745
					  period,
1746 1747
					  pause,
					  start_time);
1748
		__set_current_state(TASK_KILLABLE);
1749
		io_schedule_timeout(pause);
1750

1751 1752
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1753
		current->nr_dirtied_pause = nr_dirtied_pause;
1754

1755
		/*
1756 1757
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1758
		 */
1759
		if (task_ratelimit)
1760
			break;
1761

1762 1763
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1764
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1765 1766 1767 1768
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1769
		 * more page. However wb_dirty has accounting errors.  So use
1770
		 * the larger and more IO friendly wb_stat_error.
1771
		 */
1772
		if (sdtc->wb_dirty <= wb_stat_error(wb))
1773 1774
			break;

1775 1776
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1777 1778
	}

1779 1780
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1781

1782
	if (writeback_in_progress(wb))
1783
		return;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1793 1794 1795
	if (laptop_mode)
		return;

1796
	if (nr_reclaimable > gdtc->bg_thresh)
1797
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1798 1799
}

1800
static DEFINE_PER_CPU(int, bdp_ratelimits);
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1818
/**
1819
 * balance_dirty_pages_ratelimited - balance dirty memory state
1820
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1831
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1832
{
1833 1834 1835
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1836 1837
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1838

1839 1840 1841
	if (!bdi_cap_account_dirty(bdi))
		return;

1842 1843 1844 1845 1846
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1847
	ratelimit = current->nr_dirtied_pause;
1848
	if (wb->dirty_exceeded)
1849 1850 1851
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1852
	/*
1853 1854 1855 1856
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1857
	 */
1858
	p =  this_cpu_ptr(&bdp_ratelimits);
1859
	if (unlikely(current->nr_dirtied >= ratelimit))
1860
		*p = 0;
1861 1862 1863
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1864
	}
1865 1866 1867 1868 1869
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1870
	p = this_cpu_ptr(&dirty_throttle_leaks);
1871
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1872
		unsigned long nr_pages_dirtied;
1873 1874 1875
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1876
	}
1877
	preempt_enable();
1878 1879

	if (unlikely(current->nr_dirtied >= ratelimit))
1880 1881 1882
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1883
}
1884
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1895
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1896
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1897
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1898 1899
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1900

1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
		      global_page_state(NR_UNSTABLE_NFS);
	domain_dirty_limits(gdtc);
1909

1910
	if (gdtc->dirty > gdtc->bg_thresh)
1911 1912
		return true;

1913 1914
	if (wb_stat(wb, WB_RECLAIMABLE) >
	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1915 1916
		return true;

1917
	if (mdtc) {
1918
		unsigned long filepages, headroom, writeback;
1919

1920 1921 1922
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1923 1924 1925 1926 1927
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

1928 1929
		if (wb_stat(wb, WB_RECLAIMABLE) >
		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1930 1931 1932
			return true;
	}

1933 1934 1935
	return false;
}

1936
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1937
{
1938 1939
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1940 1941

        for ( ; ; ) {
1942
		global_dirty_limits(&background_thresh, &dirty_thresh);
1943
		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948 1949 1950

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1951 1952 1953
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1954
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1955 1956 1957 1958 1959 1960 1961 1962

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967 1968
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1969
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1970
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1971
{
1972
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1973 1974 1975
	return 0;
}

1976
#ifdef CONFIG_BLOCK
1977
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1978
{
1979 1980 1981
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1982
	struct bdi_writeback *wb;
L
Linus Torvalds 已提交
1983

1984 1985 1986 1987
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1988 1989 1990
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

1991
	rcu_read_lock();
1992
	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1993 1994 1995
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
1996
	rcu_read_unlock();
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002 2003
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
2004
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
2005
{
2006
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2016 2017 2018 2019 2020 2021 2022 2023
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2024
}
2025
#endif
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2035
 * thresholds.
L
Linus Torvalds 已提交
2036 2037
 */

2038
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2039
{
2040
	struct wb_domain *dom = &global_wb_domain;
2041 2042
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2043

2044
	global_dirty_limits(&background_thresh, &dirty_thresh);
2045
	dom->dirty_limit = dirty_thresh;
2046
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2047 2048 2049 2050
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2051
static int
2052 2053
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
2054
{
2055 2056 2057 2058 2059 2060 2061 2062 2063

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
2064 2065
}

2066
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2088 2089 2090
 */
void __init page_writeback_init(void)
{
2091 2092
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2093
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
2094 2095 2096
	register_cpu_notifier(&ratelimit_nb);
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2117
#define WRITEBACK_TAG_BATCH 4096
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
2128 2129
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2130 2131 2132
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2133
/**
2134
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135 2136
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137 2138
 * @writepage: function called for each page
 * @data: data passed to writepage function
2139
 *
2140
 * If a page is already under I/O, write_cache_pages() skips it, even
2141 2142 2143 2144 2145 2146
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2147 2148 2149 2150 2151 2152 2153
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2154
 */
2155 2156 2157
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2158 2159 2160 2161 2162
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2163
	pgoff_t uninitialized_var(writeback_index);
2164 2165
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2166
	pgoff_t done_index;
N
Nick Piggin 已提交
2167
	int cycled;
2168
	int range_whole = 0;
2169
	int tag;
2170 2171 2172

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2173 2174 2175 2176 2177 2178
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2179 2180 2181 2182 2183 2184
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2185
		cycled = 1; /* ignore range_cyclic tests */
2186
	}
2187
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188 2189 2190
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2191
retry:
2192
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193
		tag_pages_for_writeback(mapping, index, end);
2194
	done_index = index;
N
Nick Piggin 已提交
2195 2196 2197
	while (!done && (index <= end)) {
		int i;

2198
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2199 2200 2201
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2202 2203 2204 2205 2206

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2207 2208 2209 2210 2211
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2212
			 */
2213 2214 2215 2216 2217 2218 2219 2220 2221
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2222
			done_index = page->index;
2223

2224 2225
			lock_page(page);

N
Nick Piggin 已提交
2226 2227 2228 2229 2230 2231 2232 2233
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2234
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2235
continue_unlock:
2236 2237 2238 2239
				unlock_page(page);
				continue;
			}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2251

2252 2253
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2254
				goto continue_unlock;
2255

2256
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257
			ret = (*writepage)(page, wbc, data);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2272
					done_index = page->index + 1;
2273 2274 2275
					done = 1;
					break;
				}
2276
			}
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2288
			}
2289 2290 2291 2292
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2293
	if (!cycled && !done) {
2294
		/*
N
Nick Piggin 已提交
2295
		 * range_cyclic:
2296 2297 2298
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2299
		cycled = 1;
2300
		index = 0;
N
Nick Piggin 已提交
2301
		end = writeback_index - 1;
2302 2303
		goto retry;
	}
2304 2305
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2306

2307 2308
	return ret;
}
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2335 2336 2337
	struct blk_plug plug;
	int ret;

2338 2339 2340 2341
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2342 2343 2344 2345
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2346
}
2347 2348 2349

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2350 2351
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2352 2353
	int ret;

L
Linus Torvalds 已提交
2354 2355 2356
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2357
		ret = mapping->a_ops->writepages(mapping, wbc);
2358 2359 2360
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2361 2362 2363 2364
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2365 2366
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2402 2403 2404 2405 2406 2407
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2408
		return !TestSetPageDirty(page);
2409 2410 2411
	return 0;
}

2412 2413
/*
 * Helper function for set_page_dirty family.
2414
 *
2415
 * Caller must hold lock_page_memcg().
2416
 *
2417 2418
 * NOTE: This relies on being atomic wrt interrupts.
 */
J
Johannes Weiner 已提交
2419
void account_page_dirtied(struct page *page, struct address_space *mapping)
2420
{
2421 2422
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2423 2424
	trace_writeback_dirty_page(page, mapping);

2425
	if (mapping_cap_account_dirty(mapping)) {
2426
		struct bdi_writeback *wb;
2427

2428 2429
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2430

J
Johannes Weiner 已提交
2431
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2432
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2433
		__inc_zone_page_state(page, NR_DIRTIED);
2434 2435
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2436
		task_io_account_write(PAGE_CACHE_SIZE);
2437 2438
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2439 2440
	}
}
M
Michael Rubin 已提交
2441
EXPORT_SYMBOL(account_page_dirtied);
2442

2443 2444 2445
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2446
 * Caller must hold lock_page_memcg().
2447
 */
2448
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
2449
			  struct bdi_writeback *wb)
2450 2451
{
	if (mapping_cap_account_dirty(mapping)) {
J
Johannes Weiner 已提交
2452
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2453
		dec_zone_page_state(page, NR_FILE_DIRTY);
2454
		dec_wb_stat(wb, WB_RECLAIMABLE);
2455 2456 2457 2458
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2459 2460 2461 2462 2463 2464 2465 2466
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2467 2468 2469
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2470 2471 2472
 */
int __set_page_dirty_nobuffers(struct page *page)
{
J
Johannes Weiner 已提交
2473
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2474 2475
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2476
		unsigned long flags;
L
Linus Torvalds 已提交
2477

2478
		if (!mapping) {
J
Johannes Weiner 已提交
2479
			unlock_page_memcg(page);
2480
			return 1;
2481
		}
2482

2483
		spin_lock_irqsave(&mapping->tree_lock, flags);
2484 2485
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
J
Johannes Weiner 已提交
2486
		account_page_dirtied(page, mapping);
2487 2488
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2489
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
J
Johannes Weiner 已提交
2490
		unlock_page_memcg(page);
2491

2492 2493 2494
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2495
		}
2496
		return 1;
L
Linus Torvalds 已提交
2497
	}
J
Johannes Weiner 已提交
2498
	unlock_page_memcg(page);
2499
	return 0;
L
Linus Torvalds 已提交
2500 2501 2502
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2513

2514
	if (mapping && mapping_cap_account_dirty(mapping)) {
2515 2516 2517
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2518

2519
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2520 2521
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2522
		dec_wb_stat(wb, WB_DIRTIED);
2523
		unlocked_inode_to_wb_end(inode, locked);
2524 2525 2526 2527
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2535 2536
	int ret;

L
Linus Torvalds 已提交
2537
	wbc->pages_skipped++;
2538
	ret = __set_page_dirty_nobuffers(page);
2539
	account_page_redirty(page);
2540
	return ret;
L
Linus Torvalds 已提交
2541 2542 2543 2544
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2545 2546 2547 2548 2549 2550 2551
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2552 2553 2554
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2555
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2556 2557 2558 2559 2560
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2571 2572
		if (PageReclaim(page))
			ClearPageReclaim(page);
2573 2574 2575 2576 2577
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2578
	}
2579 2580 2581 2582
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2601
	lock_page(page);
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2623 2624 2625
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2626 2627 2628
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2629

J
Johannes Weiner 已提交
2630
		lock_page_memcg(page);
2631
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2632 2633

		if (TestClearPageDirty(page))
J
Johannes Weiner 已提交
2634
			account_page_cleaned(page, mapping, wb);
2635

2636
		unlocked_inode_to_wb_end(inode, locked);
J
Johannes Weiner 已提交
2637
		unlock_page_memcg(page);
2638 2639 2640
	} else {
		ClearPageDirty(page);
	}
2641 2642 2643
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2661
	int ret = 0;
L
Linus Torvalds 已提交
2662

2663 2664
	BUG_ON(!PageLocked(page));

2665
	if (mapping && mapping_cap_account_dirty(mapping)) {
2666 2667 2668 2669
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2697 2698 2699
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2700 2701 2702 2703
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2704
		 */
2705
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2706
		if (TestClearPageDirty(page)) {
J
Johannes Weiner 已提交
2707
			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2708
			dec_zone_page_state(page, NR_FILE_DIRTY);
2709
			dec_wb_stat(wb, WB_RECLAIMABLE);
2710
			ret = 1;
L
Linus Torvalds 已提交
2711
		}
2712
		unlocked_inode_to_wb_end(inode, locked);
2713
		return ret;
L
Linus Torvalds 已提交
2714
	}
2715
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2716
}
2717
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2718 2719 2720 2721

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2722
	int ret;
L
Linus Torvalds 已提交
2723

J
Johannes Weiner 已提交
2724
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2725
	if (mapping) {
2726 2727
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2728 2729
		unsigned long flags;

N
Nick Piggin 已提交
2730
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2731
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2732
		if (ret) {
L
Linus Torvalds 已提交
2733 2734 2735
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2736
			if (bdi_cap_account_writeback(bdi)) {
2737 2738 2739 2740
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2741
			}
P
Peter Zijlstra 已提交
2742
		}
N
Nick Piggin 已提交
2743
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2744 2745 2746
	} else {
		ret = TestClearPageWriteback(page);
	}
2747
	if (ret) {
J
Johannes Weiner 已提交
2748
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2749
		dec_zone_page_state(page, NR_WRITEBACK);
2750 2751
		inc_zone_page_state(page, NR_WRITTEN);
	}
J
Johannes Weiner 已提交
2752
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2753 2754 2755
	return ret;
}

2756
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2757 2758
{
	struct address_space *mapping = page_mapping(page);
2759
	int ret;
L
Linus Torvalds 已提交
2760

J
Johannes Weiner 已提交
2761
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2762
	if (mapping) {
2763 2764
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2765 2766
		unsigned long flags;

N
Nick Piggin 已提交
2767
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2768
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2769
		if (!ret) {
L
Linus Torvalds 已提交
2770 2771 2772
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2773
			if (bdi_cap_account_writeback(bdi))
2774
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2775
		}
L
Linus Torvalds 已提交
2776 2777 2778 2779
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2780 2781 2782 2783
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2784
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2785 2786 2787
	} else {
		ret = TestSetPageWriteback(page);
	}
2788
	if (!ret) {
J
Johannes Weiner 已提交
2789
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2790 2791
		inc_zone_page_state(page, NR_WRITEBACK);
	}
J
Johannes Weiner 已提交
2792
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2793 2794 2795
	return ret;

}
2796
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2797 2798

/*
N
Nick Piggin 已提交
2799
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2800 2801 2802 2803
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2804
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2805 2806
}
EXPORT_SYMBOL(mapping_tagged);
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2818 2819
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2820 2821
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);