rt.c 46.7 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

89
#ifdef CONFIG_RT_GROUP_SCHED
90 91 92 93
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
94 95 96

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

97 98
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
99 100 101
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
102 103 104 105 106 107 108 109 110 111 112 113 114
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

200 201
#else /* CONFIG_RT_GROUP_SCHED */

202 203
#define rt_entity_is_task(rt_se) (1)

204 205 206 207 208
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

209 210 211 212 213 214 215 216 217 218 219 220 221
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

222 223 224 225 226 227
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
228 229
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
230
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
231

232 233
static int pull_rt_task(struct rq *this_rq);

P
Peter Zijlstra 已提交
234 235 236 237 238 239
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	return rq->rt.highest_prio.curr > prev->prio;
}

240
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
241
{
242
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
243
}
I
Ingo Molnar 已提交
244

S
Steven Rostedt 已提交
245 246
static inline void rt_set_overload(struct rq *rq)
{
247 248 249
	if (!rq->online)
		return;

250
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
251 252 253 254 255 256
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
P
Peter Zijlstra 已提交
257 258
	 *
	 * Matched by the barrier in pull_rt_task().
S
Steven Rostedt 已提交
259
	 */
P
Peter Zijlstra 已提交
260
	smp_wmb();
261
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
262
}
I
Ingo Molnar 已提交
263

S
Steven Rostedt 已提交
264 265
static inline void rt_clear_overload(struct rq *rq)
{
266 267 268
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
269
	/* the order here really doesn't matter */
270
	atomic_dec(&rq->rd->rto_count);
271
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
272
}
273

274
static void update_rt_migration(struct rt_rq *rt_rq)
275
{
276
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
277 278 279
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
280
		}
281 282 283
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
284
	}
285
}
S
Steven Rostedt 已提交
286

287 288
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
289 290
	struct task_struct *p;

291 292 293
	if (!rt_entity_is_task(rt_se))
		return;

294
	p = rt_task_of(rt_se);
295 296 297
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
298
	if (p->nr_cpus_allowed > 1)
299 300 301 302 303 304 305
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
306 307
	struct task_struct *p;

308 309 310
	if (!rt_entity_is_task(rt_se))
		return;

311
	p = rt_task_of(rt_se);
312 313 314
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
315
	if (p->nr_cpus_allowed > 1)
316 317 318 319 320
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

321 322 323 324 325
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

P
Peter Zijlstra 已提交
326 327 328 329 330 331 332 333 334
static inline void set_post_schedule(struct rq *rq)
{
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
}

335 336 337 338 339
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
340 341 342 343

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
344 345 346 347 348 349
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

350 351 352 353 354 355 356
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
357 358
}

359 360
#else

361
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
362
{
P
Peter Zijlstra 已提交
363 364
}

365 366 367 368
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

369
static inline
370 371 372 373
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

374
static inline
375 376 377
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
378

P
Peter Zijlstra 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

static inline int pull_rt_task(struct rq *this_rq)
{
	return 0;
}

static inline void set_post_schedule(struct rq *rq)
{
}
S
Steven Rostedt 已提交
392 393
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
394 395 396 397 398
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

399
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
400

P
Peter Zijlstra 已提交
401
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
402 403
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
404
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
405

P
Peter Zijlstra 已提交
406 407 408 409 410 411
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
412 413
}

C
Cheng Xu 已提交
414 415
typedef struct task_group *rt_rq_iter_t;

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
433

P
Peter Zijlstra 已提交
434 435 436 437 438 439 440 441
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

442
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
443 444
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
445
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
446
{
447
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
448 449
	struct sched_rt_entity *rt_se;

450 451 452
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
453

454 455
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
456
			enqueue_rt_entity(rt_se, false);
457
		if (rt_rq->highest_prio.curr < curr->prio)
458
			resched_task(curr);
P
Peter Zijlstra 已提交
459 460 461
	}
}

P
Peter Zijlstra 已提交
462
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
463
{
464
	struct sched_rt_entity *rt_se;
465
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
466

467
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
468 469 470 471 472

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

490
#ifdef CONFIG_SMP
491
static inline const struct cpumask *sched_rt_period_mask(void)
492
{
N
Nathan Zimmer 已提交
493
	return this_rq()->rd->span;
494
}
P
Peter Zijlstra 已提交
495
#else
496
static inline const struct cpumask *sched_rt_period_mask(void)
497
{
498
	return cpu_online_mask;
499 500
}
#endif
P
Peter Zijlstra 已提交
501

502 503
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
504
{
505 506
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
507

P
Peter Zijlstra 已提交
508 509 510 511 512
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

513
#else /* !CONFIG_RT_GROUP_SCHED */
514 515 516

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
517 518 519 520 521 522
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
523 524
}

C
Cheng Xu 已提交
525 526 527 528 529
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
530 531 532 533 534 535 536 537
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
538
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
539
{
540 541
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
542 543
}

P
Peter Zijlstra 已提交
544
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
545 546 547
{
}

P
Peter Zijlstra 已提交
548 549 550 551
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
552

553
static inline const struct cpumask *sched_rt_period_mask(void)
554
{
555
	return cpu_online_mask;
556 557 558 559 560 561 562 563
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
564 565 566 567 568
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

569
#endif /* CONFIG_RT_GROUP_SCHED */
570

571 572 573 574 575 576 577 578
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

	return (hrtimer_active(&rt_b->rt_period_timer) ||
		rt_rq->rt_time < rt_b->rt_runtime);
}

P
Peter Zijlstra 已提交
579
#ifdef CONFIG_SMP
580 581 582
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
583
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
584 585
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
586
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
587 588 589
	int i, weight, more = 0;
	u64 rt_period;

590
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
591

592
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
593
	rt_period = ktime_to_ns(rt_b->rt_period);
594
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
595 596 597 598 599 600
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

601
		raw_spin_lock(&iter->rt_runtime_lock);
602 603 604 605 606
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
607 608 609
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

610 611 612 613
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
614 615
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
616
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
617 618 619 620 621 622
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
623
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
624 625 626
				break;
			}
		}
P
Peter Zijlstra 已提交
627
next:
628
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
629
	}
630
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
631 632 633

	return more;
}
P
Peter Zijlstra 已提交
634

635 636 637
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
638 639 640
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
641
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
642 643 644 645 646
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
647
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
648 649 650 651
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

652 653
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
654 655 656 657 658
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
659 660 661
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
662
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
663

664 665 666 667 668
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
669 670
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

671 672 673
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
674
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
675 676 677
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

678 679 680
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
681
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
682 683
				continue;

684
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
685 686 687 688 689 690 691 692
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
693
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
694 695 696 697 698

			if (!want)
				break;
		}

699
		raw_spin_lock(&rt_rq->rt_runtime_lock);
700 701 702 703
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
704 705
		BUG_ON(want);
balanced:
706 707 708 709
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
710
		rt_rq->rt_runtime = RUNTIME_INF;
711
		rt_rq->rt_throttled = 0;
712 713
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
714 715 716 717 718
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
719
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
720 721 722 723 724
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

725 726 727
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
728
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
729 730
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

731 732
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
733 734
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
735
		rt_rq->rt_throttled = 0;
736 737
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
738 739 740
	}
}

741 742 743 744
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

745 746 747
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

748
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
749
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
750
		more = do_balance_runtime(rt_rq);
751
		raw_spin_lock(&rt_rq->rt_runtime_lock);
752 753 754 755
	}

	return more;
}
756
#else /* !CONFIG_SMP */
757 758 759 760
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
761
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
762

763 764
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
765
	int i, idle = 1, throttled = 0;
766
	const struct cpumask *span;
767 768

	span = sched_rt_period_mask();
769 770 771 772 773 774 775 776 777 778 779 780 781
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
782
	for_each_cpu(i, span) {
783 784 785 786
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

787
		raw_spin_lock(&rq->lock);
788 789 790
		if (rt_rq->rt_time) {
			u64 runtime;

791
			raw_spin_lock(&rt_rq->rt_runtime_lock);
792 793 794 795 796 797 798
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
799 800 801 802 803 804 805

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
806 807 808
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
809
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
810
		} else if (rt_rq->rt_nr_running) {
811
			idle = 0;
812 813 814
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
815 816
		if (rt_rq->rt_throttled)
			throttled = 1;
817 818 819

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
820
		raw_spin_unlock(&rq->lock);
821 822
	}

823 824 825
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

826 827
	return idle;
}
P
Peter Zijlstra 已提交
828

P
Peter Zijlstra 已提交
829 830
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
831
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
832 833 834
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
835
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
836 837 838 839 840
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
841
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
842
{
P
Peter Zijlstra 已提交
843
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
844 845

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
846
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
847

848
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
849 850
		return 0;

851 852 853 854
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
855

P
Peter Zijlstra 已提交
856
	if (rt_rq->rt_time > runtime) {
857 858 859 860 861 862 863
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
864 865
			static bool once = false;

866
			rt_rq->rt_throttled = 1;
867 868 869 870 871

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
872 873 874 875 876 877 878 879 880
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
881
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
882
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
883 884
			return 1;
		}
P
Peter Zijlstra 已提交
885 886 887 888 889
	}

	return 0;
}

I
Ingo Molnar 已提交
890 891 892 893
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
894
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
895 896
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
897 898
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
899 900
	u64 delta_exec;

P
Peter Zijlstra 已提交
901
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
902 903
		return;

904
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
905 906
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
907

908 909
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
910 911

	curr->se.sum_exec_runtime += delta_exec;
912 913
	account_group_exec_runtime(curr, delta_exec);

914
	curr->se.exec_start = rq_clock_task(rq);
915
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
916

917 918
	sched_rt_avg_update(rq, delta_exec);

919 920 921
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
922 923 924
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

925
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
926
			raw_spin_lock(&rt_rq->rt_runtime_lock);
927 928 929
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
930
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
931
		}
D
Dhaval Giani 已提交
932
	}
I
Ingo Molnar 已提交
933 934
}

935
#if defined CONFIG_SMP
936

937 938
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
939
{
G
Gregory Haskins 已提交
940
	struct rq *rq = rq_of_rt_rq(rt_rq);
941

942 943 944 945 946 947 948
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
949 950
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
951
}
952

953 954 955 956
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
957

958 959 960 961 962 963 964
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
965 966
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
967 968
}

969 970
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
971
static inline
972 973 974 975 976
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
977

978
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
995
	if (rt_rq->rt_nr_running) {
996

997
		WARN_ON(prio < prev_prio);
998

999
		/*
1000 1001
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
1002
		 */
1003
		if (prio == prev_prio) {
1004 1005 1006
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1007
				sched_find_first_bit(array->bitmap);
1008 1009
		}

1010
	} else
1011
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1012

1013 1014
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1015

1016 1017 1018 1019 1020 1021
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1022

1023
#ifdef CONFIG_RT_GROUP_SCHED
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1038 1039 1040 1041
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1080 1081
}

1082
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1083
{
P
Peter Zijlstra 已提交
1084 1085 1086
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1087
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1088

1089 1090 1091 1092 1093 1094 1095
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1096
		return;
1097

1098 1099 1100 1101
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1102
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1103

P
Peter Zijlstra 已提交
1104 1105 1106
	inc_rt_tasks(rt_se, rt_rq);
}

1107
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1123
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1124
{
1125
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1126

1127 1128 1129 1130 1131 1132 1133
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1134 1135 1136 1137
			__dequeue_rt_entity(rt_se);
	}
}

1138
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1139 1140 1141
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1142
		__enqueue_rt_entity(rt_se, head);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1153
			__enqueue_rt_entity(rt_se, false);
1154
	}
I
Ingo Molnar 已提交
1155 1156 1157 1158 1159
}

/*
 * Adding/removing a task to/from a priority array:
 */
1160
static void
1161
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1162 1163 1164
{
	struct sched_rt_entity *rt_se = &p->rt;

1165
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1166 1167
		rt_se->timeout = 0;

1168
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1169

1170
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1171
		enqueue_pushable_task(rq, p);
1172 1173

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1174 1175
}

1176
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1177
{
P
Peter Zijlstra 已提交
1178
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1179

1180
	update_curr_rt(rq);
1181
	dequeue_rt_entity(rt_se);
1182

1183
	dequeue_pushable_task(rq, p);
1184 1185

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1186 1187 1188
}

/*
1189 1190
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1191
 */
1192 1193
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1194
{
1195
	if (on_rt_rq(rt_se)) {
1196 1197 1198 1199 1200 1201 1202
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1203
	}
P
Peter Zijlstra 已提交
1204 1205
}

1206
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1207
{
P
Peter Zijlstra 已提交
1208 1209
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1210

P
Peter Zijlstra 已提交
1211 1212
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1213
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1214
	}
I
Ingo Molnar 已提交
1215 1216
}

P
Peter Zijlstra 已提交
1217
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1218
{
1219
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1220 1221
}

1222
#ifdef CONFIG_SMP
1223 1224
static int find_lowest_rq(struct task_struct *task);

1225
static int
1226
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1227
{
1228 1229
	struct task_struct *curr;
	struct rq *rq;
1230

1231
	if (p->nr_cpus_allowed == 1)
1232 1233
		goto out;

1234 1235 1236 1237
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1238 1239 1240 1241 1242
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1243
	/*
1244
	 * If the current task on @p's runqueue is an RT task, then
1245 1246 1247 1248
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1249 1250 1251 1252 1253 1254 1255 1256 1257
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1258 1259 1260 1261 1262 1263
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1264
	 */
1265
	if (curr && unlikely(rt_task(curr)) &&
1266
	    (curr->nr_cpus_allowed < 2 ||
1267
	     curr->prio <= p->prio)) {
1268
		int target = find_lowest_rq(p);
1269

1270 1271
		if (target != -1)
			cpu = target;
1272
	}
1273
	rcu_read_unlock();
1274

1275
out:
1276
	return cpu;
1277
}
1278 1279 1280

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1281
	if (rq->curr->nr_cpus_allowed == 1)
1282 1283
		return;

1284
	if (p->nr_cpus_allowed != 1
1285 1286
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1287

1288 1289
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1300 1301
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1302 1303 1304
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1305
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1306
{
1307
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1308
		resched_task(rq->curr);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1325
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1326
		check_preempt_equal_prio(rq, p);
1327
#endif
I
Ingo Molnar 已提交
1328 1329
}

P
Peter Zijlstra 已提交
1330 1331
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1332
{
P
Peter Zijlstra 已提交
1333 1334
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1335 1336 1337 1338
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1339
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1340 1341

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1342
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1343

P
Peter Zijlstra 已提交
1344 1345
	return next;
}
I
Ingo Molnar 已提交
1346

1347
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1348 1349 1350
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
1351
	struct rt_rq *rt_rq  = &rq->rt;
P
Peter Zijlstra 已提交
1352 1353 1354

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1355
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1356 1357 1358 1359
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1360
	p->se.exec_start = rq_clock_task(rq);
1361 1362 1363 1364

	return p;
}

1365 1366
static struct task_struct *
pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1367
{
1368 1369 1370
	struct task_struct *p;
	struct rt_rq *rt_rq = &rq->rt;

1371
	if (need_pull_rt_task(rq, prev)) {
1372
		pull_rt_task(rq);
1373 1374 1375 1376 1377 1378 1379 1380
		/*
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
		 * means a dl task can slip in, in which case we need to
		 * re-start task selection.
		 */
		if (unlikely(rq->dl.dl_nr_running))
			return RETRY_TASK;
	}
1381

1382 1383 1384 1385 1386 1387 1388
	/*
	 * We may dequeue prev's rt_rq in put_prev_task().
	 * So, we update time before rt_nr_running check.
	 */
	if (prev->sched_class == &rt_sched_class)
		update_curr_rt(rq);

1389 1390 1391 1392 1393 1394
	if (!rt_rq->rt_nr_running)
		return NULL;

	if (rt_rq_throttled(rt_rq))
		return NULL;

1395
	put_prev_task(rq, prev);
1396 1397

	p = _pick_next_task_rt(rq);
1398 1399 1400 1401 1402

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

P
Peter Zijlstra 已提交
1403
	set_post_schedule(rq);
1404

P
Peter Zijlstra 已提交
1405
	return p;
I
Ingo Molnar 已提交
1406 1407
}

1408
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1409
{
1410
	update_curr_rt(rq);
1411 1412 1413 1414 1415

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1416
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1417
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1418 1419
}

1420
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1421

S
Steven Rostedt 已提交
1422 1423 1424
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1425 1426 1427
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1428
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1429 1430 1431 1432
		return 1;
	return 0;
}

1433 1434 1435 1436 1437
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1438
{
1439 1440
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1441

1442 1443
	if (!has_pushable_tasks(rq))
		return NULL;
1444

1445 1446 1447
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1448 1449
	}

1450
	return NULL;
S
Steven Rostedt 已提交
1451 1452
}

1453
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1454

G
Gregory Haskins 已提交
1455 1456 1457
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1458
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1459 1460
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1461

1462 1463 1464 1465
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1466
	if (task->nr_cpus_allowed == 1)
1467
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1468

1469 1470
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1480
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1481 1482 1483 1484 1485 1486
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1487 1488
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1489

1490
	rcu_read_lock();
R
Rusty Russell 已提交
1491 1492 1493
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1494

R
Rusty Russell 已提交
1495 1496 1497 1498 1499
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1500 1501
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1502
				return this_cpu;
1503
			}
R
Rusty Russell 已提交
1504 1505 1506

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1507 1508
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1509
				return best_cpu;
1510
			}
G
Gregory Haskins 已提交
1511 1512
		}
	}
1513
	rcu_read_unlock();
G
Gregory Haskins 已提交
1514 1515 1516 1517 1518 1519

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1520 1521 1522 1523 1524 1525 1526
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1527 1528 1529
}

/* Will lock the rq it finds */
1530
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1531 1532 1533
{
	struct rq *lowest_rq = NULL;
	int tries;
1534
	int cpu;
S
Steven Rostedt 已提交
1535

1536 1537 1538
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1539
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1540 1541
			break;

1542 1543
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1544
		/* if the prio of this runqueue changed, try again */
1545
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1546 1547 1548 1549 1550 1551
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1552
			if (unlikely(task_rq(task) != rq ||
1553
				     !cpumask_test_cpu(lowest_rq->cpu,
1554
						       tsk_cpus_allowed(task)) ||
1555
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1556
				     !task->on_rq)) {
1557

1558
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1559 1560 1561 1562 1563 1564
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1565
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1566 1567 1568
			break;

		/* try again */
1569
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1570 1571 1572 1573 1574 1575
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1588
	BUG_ON(p->nr_cpus_allowed <= 1);
1589

P
Peter Zijlstra 已提交
1590
	BUG_ON(!p->on_rq);
1591 1592 1593 1594 1595
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1596 1597 1598 1599 1600
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1601
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1602 1603 1604
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1605
	int ret = 0;
S
Steven Rostedt 已提交
1606

G
Gregory Haskins 已提交
1607 1608 1609
	if (!rq->rt.overloaded)
		return 0;

1610
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1611 1612 1613
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1614
retry:
1615
	if (unlikely(next_task == rq->curr)) {
1616
		WARN_ON(1);
S
Steven Rostedt 已提交
1617
		return 0;
1618
	}
S
Steven Rostedt 已提交
1619 1620 1621 1622 1623 1624

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1625 1626
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1627 1628 1629
		return 0;
	}

1630
	/* We might release rq lock */
S
Steven Rostedt 已提交
1631 1632 1633
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1634
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1635 1636 1637
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1638
		 * find_lock_lowest_rq releases rq->lock
1639 1640 1641 1642 1643
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1644
		 */
1645
		task = pick_next_pushable_task(rq);
1646 1647
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1648 1649 1650 1651
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1652 1653
			 */
			goto out;
S
Steven Rostedt 已提交
1654
		}
1655

1656 1657 1658 1659
		if (!task)
			/* No more tasks, just exit */
			goto out;

1660
		/*
1661
		 * Something has shifted, try again.
1662
		 */
1663 1664 1665
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1666 1667
	}

1668
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1669 1670
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1671
	ret = 1;
S
Steven Rostedt 已提交
1672 1673 1674

	resched_task(lowest_rq->curr);

1675
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1676 1677 1678 1679

out:
	put_task_struct(next_task);

1680
	return ret;
S
Steven Rostedt 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1690 1691
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1692
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1693
	struct task_struct *p;
1694 1695
	struct rq *src_rq;

1696
	if (likely(!rt_overloaded(this_rq)))
1697 1698
		return 0;

P
Peter Zijlstra 已提交
1699 1700 1701 1702 1703 1704
	/*
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the rto_mask bit.
	 */
	smp_rmb();

1705
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1706 1707 1708 1709
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1722 1723 1724
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1725
		 * alter this_rq
1726
		 */
1727
		double_lock_balance(this_rq, src_rq);
1728 1729

		/*
1730 1731
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1732
		 */
1733
		p = pick_highest_pushable_task(src_rq, this_cpu);
1734 1735 1736 1737 1738

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1739
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1740
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1741
			WARN_ON(!p->on_rq);
1742 1743 1744 1745 1746 1747 1748

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1749
			 * current task on the run queue
1750
			 */
1751
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1752
				goto skip;
1753 1754 1755 1756 1757 1758 1759 1760 1761

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1762
			 * in another runqueue. (low likelihood
1763 1764 1765
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1766
skip:
1767
		double_unlock_balance(this_rq, src_rq);
1768 1769 1770 1771 1772
	}

	return ret;
}

1773
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1774
{
1775
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1776 1777
}

1778 1779 1780 1781
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1782
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1783
{
1784
	if (!task_running(rq, p) &&
1785
	    !test_tsk_need_resched(rq->curr) &&
1786
	    has_pushable_tasks(rq) &&
1787
	    p->nr_cpus_allowed > 1 &&
1788
	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1789
	    (rq->curr->nr_cpus_allowed < 2 ||
1790
	     rq->curr->prio <= p->prio))
1791 1792 1793
		push_rt_tasks(rq);
}

1794
static void set_cpus_allowed_rt(struct task_struct *p,
1795
				const struct cpumask *new_mask)
1796
{
1797 1798
	struct rq *rq;
	int weight;
1799 1800 1801

	BUG_ON(!rt_task(p));

1802 1803
	if (!p->on_rq)
		return;
1804

1805
	weight = cpumask_weight(new_mask);
1806

1807 1808 1809 1810
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1811
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1812
		return;
1813

1814
	rq = task_rq(p);
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1828
	}
1829 1830

	update_rt_migration(&rq->rt);
1831
}
1832

1833
/* Assumes rq->lock is held */
1834
static void rq_online_rt(struct rq *rq)
1835 1836 1837
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1838

P
Peter Zijlstra 已提交
1839 1840
	__enable_runtime(rq);

1841
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1842 1843 1844
}

/* Assumes rq->lock is held */
1845
static void rq_offline_rt(struct rq *rq)
1846 1847 1848
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1849

P
Peter Zijlstra 已提交
1850 1851
	__disable_runtime(rq);

1852
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1853
}
1854 1855 1856 1857 1858

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1859
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1860 1861 1862 1863 1864 1865 1866 1867
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1868 1869 1870 1871 1872
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1873
}
1874

1875
void __init init_sched_rt_class(void)
1876 1877 1878
{
	unsigned int i;

1879
	for_each_possible_cpu(i) {
1880
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1881
					GFP_KERNEL, cpu_to_node(i));
1882
	}
1883
}
1884 1885 1886 1887 1888 1889 1890
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1891
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1902
	if (p->on_rq && rq->curr != p) {
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1918 1919
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1920
{
P
Peter Zijlstra 已提交
1921
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1922 1923 1924
		return;

	if (rq->curr == p) {
1925 1926 1927 1928 1929 1930 1931 1932 1933
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1934 1935 1936
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1937
		 */
1938
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1939 1940 1941 1942 1943
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1944
#endif /* CONFIG_SMP */
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1956 1957 1958 1959
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1960 1961 1962
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1963 1964 1965 1966

	if (soft != RLIM_INFINITY) {
		unsigned long next;

1967 1968 1969 1970 1971
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

1972
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1973
		if (p->rt.timeout > next)
1974
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1975 1976
	}
}
I
Ingo Molnar 已提交
1977

P
Peter Zijlstra 已提交
1978
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1979
{
1980 1981
	struct sched_rt_entity *rt_se = &p->rt;

1982 1983
	update_curr_rt(rq);

1984 1985
	watchdog(rq, p);

I
Ingo Molnar 已提交
1986 1987 1988 1989 1990 1991 1992
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1993
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1994 1995
		return;

1996
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
1997

1998
	/*
L
Li Bin 已提交
1999 2000
	 * Requeue to the end of queue if we (and all of our ancestors) are not
	 * the only element on the queue
2001
	 */
2002 2003 2004 2005 2006 2007
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
2008
	}
I
Ingo Molnar 已提交
2009 2010
}

2011 2012 2013 2014
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2015
	p->se.exec_start = rq_clock_task(rq);
2016 2017 2018

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2019 2020
}

2021
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2022 2023 2024 2025 2026
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2027
		return sched_rr_timeslice;
2028 2029 2030 2031
	else
		return 0;
}

2032
const struct sched_class rt_sched_class = {
2033
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2043
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2044 2045
	.select_task_rq		= select_task_rq_rt,

2046
	.set_cpus_allowed       = set_cpus_allowed_rt,
2047 2048
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2049
	.post_schedule		= post_schedule_rt,
2050
	.task_woken		= task_woken_rt,
2051
	.switched_from		= switched_from_rt,
2052
#endif
I
Ingo Molnar 已提交
2053

2054
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2055
	.task_tick		= task_tick_rt,
2056

2057 2058
	.get_rr_interval	= get_rr_interval_rt,

2059 2060
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2061
};
2062 2063 2064 2065

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2066
void print_rt_stats(struct seq_file *m, int cpu)
2067
{
C
Cheng Xu 已提交
2068
	rt_rq_iter_t iter;
2069 2070 2071
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2072
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2073 2074 2075
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2076
#endif /* CONFIG_SCHED_DEBUG */