rt.c 45.2 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

89
#ifdef CONFIG_RT_GROUP_SCHED
90 91 92 93
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
94 95 96

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

97 98
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
99 100 101
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
102 103 104 105 106 107 108 109 110 111 112 113 114
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

200 201
#else /* CONFIG_RT_GROUP_SCHED */

202 203
#define rt_entity_is_task(rt_se) (1)

204 205 206 207 208
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

209 210 211 212 213 214 215 216 217 218 219 220 221
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

222 223 224 225 226 227
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
228 229
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
230
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
231

232
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
233
{
234
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
235
}
I
Ingo Molnar 已提交
236

S
Steven Rostedt 已提交
237 238
static inline void rt_set_overload(struct rq *rq)
{
239 240 241
	if (!rq->online)
		return;

242
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
243 244 245 246 247 248 249 250
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
251
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
252
}
I
Ingo Molnar 已提交
253

S
Steven Rostedt 已提交
254 255
static inline void rt_clear_overload(struct rq *rq)
{
256 257 258
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
259
	/* the order here really doesn't matter */
260
	atomic_dec(&rq->rd->rto_count);
261
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
262
}
263

264
static void update_rt_migration(struct rt_rq *rt_rq)
265
{
266
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
267 268 269
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
270
		}
271 272 273
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
274
	}
275
}
S
Steven Rostedt 已提交
276

277 278
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
279 280
	struct task_struct *p;

281 282 283
	if (!rt_entity_is_task(rt_se))
		return;

284
	p = rt_task_of(rt_se);
285 286 287
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
288
	if (p->nr_cpus_allowed > 1)
289 290 291 292 293 294 295
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
296 297
	struct task_struct *p;

298 299 300
	if (!rt_entity_is_task(rt_se))
		return;

301
	p = rt_task_of(rt_se);
302 303 304
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
305
	if (p->nr_cpus_allowed > 1)
306 307 308 309 310
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

311 312 313 314 315
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

316 317 318 319 320
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
321 322 323 324

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
325 326 327 328 329 330
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

331 332 333 334 335 336 337
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
338 339
}

340 341
#else

342
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
343
{
P
Peter Zijlstra 已提交
344 345
}

346 347 348 349
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

350
static inline
351 352 353 354
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

355
static inline
356 357 358
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
359

S
Steven Rostedt 已提交
360 361
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
362 363 364 365 366
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

367
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
368

P
Peter Zijlstra 已提交
369
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
370 371
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
372
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
373

P
Peter Zijlstra 已提交
374 375 376 377 378 379
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
380 381
}

C
Cheng Xu 已提交
382 383
typedef struct task_group *rt_rq_iter_t;

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
401

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

410
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
411 412
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
413
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
414
{
415
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
416 417
	struct sched_rt_entity *rt_se;

418 419 420
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
421

422 423
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
424
			enqueue_rt_entity(rt_se, false);
425
		if (rt_rq->highest_prio.curr < curr->prio)
426
			resched_task(curr);
P
Peter Zijlstra 已提交
427 428 429
	}
}

P
Peter Zijlstra 已提交
430
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
431
{
432
	struct sched_rt_entity *rt_se;
433
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
434

435
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
436 437 438 439 440

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

458
#ifdef CONFIG_SMP
459
static inline const struct cpumask *sched_rt_period_mask(void)
460
{
N
Nathan Zimmer 已提交
461
	return this_rq()->rd->span;
462
}
P
Peter Zijlstra 已提交
463
#else
464
static inline const struct cpumask *sched_rt_period_mask(void)
465
{
466
	return cpu_online_mask;
467 468
}
#endif
P
Peter Zijlstra 已提交
469

470 471
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
472
{
473 474
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
475

P
Peter Zijlstra 已提交
476 477 478 479 480
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

481
#else /* !CONFIG_RT_GROUP_SCHED */
482 483 484

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
485 486 487 488 489 490
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
491 492
}

C
Cheng Xu 已提交
493 494 495 496 497
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
498 499 500 501 502 503 504 505
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
506
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
507
{
508 509
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
510 511
}

P
Peter Zijlstra 已提交
512
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
513 514 515
{
}

P
Peter Zijlstra 已提交
516 517 518 519
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
520

521
static inline const struct cpumask *sched_rt_period_mask(void)
522
{
523
	return cpu_online_mask;
524 525 526 527 528 529 530 531
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
532 533 534 535 536
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

537
#endif /* CONFIG_RT_GROUP_SCHED */
538

P
Peter Zijlstra 已提交
539
#ifdef CONFIG_SMP
540 541 542
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
543
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
544 545
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
546
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
547 548 549
	int i, weight, more = 0;
	u64 rt_period;

550
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
551

552
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
553
	rt_period = ktime_to_ns(rt_b->rt_period);
554
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
555 556 557 558 559 560
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

561
		raw_spin_lock(&iter->rt_runtime_lock);
562 563 564 565 566
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
567 568 569
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

570 571 572 573
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
574 575
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
576
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
577 578 579 580 581 582
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
583
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
584 585 586
				break;
			}
		}
P
Peter Zijlstra 已提交
587
next:
588
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
589
	}
590
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
591 592 593

	return more;
}
P
Peter Zijlstra 已提交
594

595 596 597
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
598 599 600
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
601
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
602 603 604 605 606
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
607
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
608 609 610 611
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

612 613
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
614 615 616 617 618
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
619 620 621
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
622
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
623

624 625 626 627 628
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
629 630
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

631 632 633
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
634
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
635 636 637
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

638 639 640
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
641
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
642 643
				continue;

644
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
645 646 647 648 649 650 651 652
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
653
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
654 655 656 657 658

			if (!want)
				break;
		}

659
		raw_spin_lock(&rt_rq->rt_runtime_lock);
660 661 662 663
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
664 665
		BUG_ON(want);
balanced:
666 667 668 669
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
670
		rt_rq->rt_runtime = RUNTIME_INF;
671
		rt_rq->rt_throttled = 0;
672 673
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
674 675 676 677 678
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
679
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
680 681 682 683 684
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

685 686 687
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
688
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
689 690
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

691 692
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
693 694
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
695
		rt_rq->rt_throttled = 0;
696 697
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
698 699 700
	}
}

701 702 703 704
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

705 706 707
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

708
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
709
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
710
		more = do_balance_runtime(rt_rq);
711
		raw_spin_lock(&rt_rq->rt_runtime_lock);
712 713 714 715
	}

	return more;
}
716
#else /* !CONFIG_SMP */
717 718 719 720
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
721
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
722

723 724
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
725
	int i, idle = 1, throttled = 0;
726
	const struct cpumask *span;
727 728

	span = sched_rt_period_mask();
729 730 731 732 733 734 735 736 737 738 739 740 741
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
742
	for_each_cpu(i, span) {
743 744 745 746
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

747
		raw_spin_lock(&rq->lock);
748 749 750
		if (rt_rq->rt_time) {
			u64 runtime;

751
			raw_spin_lock(&rt_rq->rt_runtime_lock);
752 753 754 755 756 757 758
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
759 760 761 762 763 764 765

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
766 767 768
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
769
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
770
		} else if (rt_rq->rt_nr_running) {
771
			idle = 0;
772 773 774
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
775 776
		if (rt_rq->rt_throttled)
			throttled = 1;
777 778 779

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
780
		raw_spin_unlock(&rq->lock);
781 782
	}

783 784 785
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

786 787
	return idle;
}
P
Peter Zijlstra 已提交
788

P
Peter Zijlstra 已提交
789 790
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
791
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
792 793 794
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
795
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
796 797 798 799 800
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
801
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
802
{
P
Peter Zijlstra 已提交
803
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
804 805

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
806
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
807

808
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
809 810
		return 0;

811 812 813 814
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
815

P
Peter Zijlstra 已提交
816
	if (rt_rq->rt_time > runtime) {
817 818 819 820 821 822 823
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
824 825
			static bool once = false;

826
			rt_rq->rt_throttled = 1;
827 828 829 830 831

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
832 833 834 835 836 837 838 839 840
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
841
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
842
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
843 844
			return 1;
		}
P
Peter Zijlstra 已提交
845 846 847 848 849
	}

	return 0;
}

I
Ingo Molnar 已提交
850 851 852 853
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
854
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
855 856
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
857 858
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
859 860
	u64 delta_exec;

P
Peter Zijlstra 已提交
861
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
862 863
		return;

864
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
865 866
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
867

868 869
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
870 871

	curr->se.sum_exec_runtime += delta_exec;
872 873
	account_group_exec_runtime(curr, delta_exec);

874
	curr->se.exec_start = rq_clock_task(rq);
875
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
876

877 878
	sched_rt_avg_update(rq, delta_exec);

879 880 881
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
882 883 884
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

885
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
886
			raw_spin_lock(&rt_rq->rt_runtime_lock);
887 888 889
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
890
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
891
		}
D
Dhaval Giani 已提交
892
	}
I
Ingo Molnar 已提交
893 894
}

895
#if defined CONFIG_SMP
896

897 898
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
899
{
G
Gregory Haskins 已提交
900
	struct rq *rq = rq_of_rt_rq(rt_rq);
901

902 903
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
904
}
905

906 907 908 909
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
910

911 912
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
913 914
}

915 916
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
917
static inline
918 919 920 921 922
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
923

924
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
941
	if (rt_rq->rt_nr_running) {
942

943
		WARN_ON(prio < prev_prio);
944

945
		/*
946 947
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
948
		 */
949
		if (prio == prev_prio) {
950 951 952
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
953
				sched_find_first_bit(array->bitmap);
954 955
		}

956
	} else
957
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
958

959 960
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
961

962 963 964 965 966 967
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
968

969
#ifdef CONFIG_RT_GROUP_SCHED
970 971 972 973 974 975 976 977 978 979 980 981 982 983

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
984 985 986 987
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1026 1027
}

1028
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1029
{
P
Peter Zijlstra 已提交
1030 1031 1032
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1033
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1034

1035 1036 1037 1038 1039 1040 1041
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1042
		return;
1043

1044 1045 1046 1047
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1048
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1049

P
Peter Zijlstra 已提交
1050 1051 1052
	inc_rt_tasks(rt_se, rt_rq);
}

1053
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1069
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1070
{
1071
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1072

1073 1074 1075 1076 1077 1078 1079
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1080 1081 1082 1083
			__dequeue_rt_entity(rt_se);
	}
}

1084
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1085 1086 1087
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1088
		__enqueue_rt_entity(rt_se, head);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1099
			__enqueue_rt_entity(rt_se, false);
1100
	}
I
Ingo Molnar 已提交
1101 1102 1103 1104 1105
}

/*
 * Adding/removing a task to/from a priority array:
 */
1106
static void
1107
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1108 1109 1110
{
	struct sched_rt_entity *rt_se = &p->rt;

1111
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1112 1113
		rt_se->timeout = 0;

1114
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1115

1116
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1117
		enqueue_pushable_task(rq, p);
1118 1119

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1120 1121
}

1122
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1123
{
P
Peter Zijlstra 已提交
1124
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1125

1126
	update_curr_rt(rq);
1127
	dequeue_rt_entity(rt_se);
1128

1129
	dequeue_pushable_task(rq, p);
1130 1131

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1132 1133 1134
}

/*
1135 1136
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1137
 */
1138 1139
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1140
{
1141
	if (on_rt_rq(rt_se)) {
1142 1143 1144 1145 1146 1147 1148
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1149
	}
P
Peter Zijlstra 已提交
1150 1151
}

1152
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1153
{
P
Peter Zijlstra 已提交
1154 1155
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1156

P
Peter Zijlstra 已提交
1157 1158
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1159
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1160
	}
I
Ingo Molnar 已提交
1161 1162
}

P
Peter Zijlstra 已提交
1163
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1164
{
1165
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1166 1167
}

1168
#ifdef CONFIG_SMP
1169 1170
static int find_lowest_rq(struct task_struct *task);

1171
static int
1172
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1173
{
1174 1175 1176 1177 1178
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1179

1180
	if (p->nr_cpus_allowed == 1)
1181 1182
		goto out;

1183 1184 1185 1186
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1187 1188 1189 1190 1191
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1192
	/*
1193
	 * If the current task on @p's runqueue is an RT task, then
1194 1195 1196 1197
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1198 1199 1200 1201 1202 1203 1204 1205 1206
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1207 1208 1209 1210 1211 1212
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1213
	 */
1214
	if (curr && unlikely(rt_task(curr)) &&
1215
	    (curr->nr_cpus_allowed < 2 ||
1216
	     curr->prio <= p->prio)) {
1217
		int target = find_lowest_rq(p);
1218

1219 1220
		if (target != -1)
			cpu = target;
1221
	}
1222
	rcu_read_unlock();
1223

1224
out:
1225
	return cpu;
1226
}
1227 1228 1229

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1230
	if (rq->curr->nr_cpus_allowed == 1)
1231 1232
		return;

1233
	if (p->nr_cpus_allowed != 1
1234 1235
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1236

1237 1238
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1249 1250
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1251 1252 1253
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1254
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1255
{
1256
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1257
		resched_task(rq->curr);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1274
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1275
		check_preempt_equal_prio(rq, p);
1276
#endif
I
Ingo Molnar 已提交
1277 1278
}

P
Peter Zijlstra 已提交
1279 1280
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1281
{
P
Peter Zijlstra 已提交
1282 1283
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1284 1285 1286 1287
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1288
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1289 1290

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1291
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1292

P
Peter Zijlstra 已提交
1293 1294
	return next;
}
I
Ingo Molnar 已提交
1295

1296
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1297 1298 1299 1300
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1301

P
Peter Zijlstra 已提交
1302 1303
	rt_rq = &rq->rt;

1304
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1305 1306
		return NULL;

P
Peter Zijlstra 已提交
1307
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1308 1309 1310 1311
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1312
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1313 1314 1315 1316
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1317
	p->se.exec_start = rq_clock_task(rq);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1330
#ifdef CONFIG_SMP
1331 1332 1333 1334 1335
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1336
#endif
1337

P
Peter Zijlstra 已提交
1338
	return p;
I
Ingo Molnar 已提交
1339 1340
}

1341
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1342
{
1343
	update_curr_rt(rq);
1344 1345 1346 1347 1348

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1349
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1350
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1351 1352
}

1353
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1354

S
Steven Rostedt 已提交
1355 1356 1357
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1358 1359 1360
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1361
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1362 1363 1364 1365
		return 1;
	return 0;
}

1366 1367 1368 1369 1370
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1371
{
1372 1373
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1374

1375 1376
	if (!has_pushable_tasks(rq))
		return NULL;
1377

1378 1379 1380
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1381 1382
	}

1383
	return NULL;
S
Steven Rostedt 已提交
1384 1385
}

1386
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1387

G
Gregory Haskins 已提交
1388 1389 1390
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1391
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1392 1393
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1394

1395 1396 1397 1398
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1399
	if (task->nr_cpus_allowed == 1)
1400
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1401

1402 1403
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1413
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1414 1415 1416 1417 1418 1419
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1420 1421
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1422

1423
	rcu_read_lock();
R
Rusty Russell 已提交
1424 1425 1426
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1427

R
Rusty Russell 已提交
1428 1429 1430 1431 1432
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1433 1434
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1435
				return this_cpu;
1436
			}
R
Rusty Russell 已提交
1437 1438 1439

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1440 1441
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1442
				return best_cpu;
1443
			}
G
Gregory Haskins 已提交
1444 1445
		}
	}
1446
	rcu_read_unlock();
G
Gregory Haskins 已提交
1447 1448 1449 1450 1451 1452

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1453 1454 1455 1456 1457 1458 1459
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1460 1461 1462
}

/* Will lock the rq it finds */
1463
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1464 1465 1466
{
	struct rq *lowest_rq = NULL;
	int tries;
1467
	int cpu;
S
Steven Rostedt 已提交
1468

1469 1470 1471
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1472
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1473 1474
			break;

1475 1476
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1477
		/* if the prio of this runqueue changed, try again */
1478
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1479 1480 1481 1482 1483 1484
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1485
			if (unlikely(task_rq(task) != rq ||
1486
				     !cpumask_test_cpu(lowest_rq->cpu,
1487
						       tsk_cpus_allowed(task)) ||
1488
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1489
				     !task->on_rq)) {
1490

1491
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1492 1493 1494 1495 1496 1497
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1498
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1499 1500 1501
			break;

		/* try again */
1502
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1503 1504 1505 1506 1507 1508
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1521
	BUG_ON(p->nr_cpus_allowed <= 1);
1522

P
Peter Zijlstra 已提交
1523
	BUG_ON(!p->on_rq);
1524 1525 1526 1527 1528
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1529 1530 1531 1532 1533
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1534
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1535 1536 1537
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1538
	int ret = 0;
S
Steven Rostedt 已提交
1539

G
Gregory Haskins 已提交
1540 1541 1542
	if (!rq->rt.overloaded)
		return 0;

1543
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1544 1545 1546
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1547
retry:
1548
	if (unlikely(next_task == rq->curr)) {
1549
		WARN_ON(1);
S
Steven Rostedt 已提交
1550
		return 0;
1551
	}
S
Steven Rostedt 已提交
1552 1553 1554 1555 1556 1557

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1558 1559
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1560 1561 1562
		return 0;
	}

1563
	/* We might release rq lock */
S
Steven Rostedt 已提交
1564 1565 1566
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1567
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1568 1569 1570
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1571
		 * find_lock_lowest_rq releases rq->lock
1572 1573 1574 1575 1576
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1577
		 */
1578
		task = pick_next_pushable_task(rq);
1579 1580
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1581 1582 1583 1584
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1585 1586
			 */
			goto out;
S
Steven Rostedt 已提交
1587
		}
1588

1589 1590 1591 1592
		if (!task)
			/* No more tasks, just exit */
			goto out;

1593
		/*
1594
		 * Something has shifted, try again.
1595
		 */
1596 1597 1598
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1599 1600
	}

1601
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1602 1603
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1604
	ret = 1;
S
Steven Rostedt 已提交
1605 1606 1607

	resched_task(lowest_rq->curr);

1608
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1609 1610 1611 1612

out:
	put_task_struct(next_task);

1613
	return ret;
S
Steven Rostedt 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1623 1624
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1625
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1626
	struct task_struct *p;
1627 1628
	struct rq *src_rq;

1629
	if (likely(!rt_overloaded(this_rq)))
1630 1631
		return 0;

1632
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1633 1634 1635 1636
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1649 1650 1651
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1652
		 * alter this_rq
1653
		 */
1654
		double_lock_balance(this_rq, src_rq);
1655 1656

		/*
1657 1658
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1659
		 */
1660
		p = pick_highest_pushable_task(src_rq, this_cpu);
1661 1662 1663 1664 1665

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1666
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1667
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1668
			WARN_ON(!p->on_rq);
1669 1670 1671 1672 1673 1674 1675

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1676
			 * current task on the run queue
1677
			 */
1678
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1679
				goto skip;
1680 1681 1682 1683 1684 1685 1686 1687 1688

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1689
			 * in another runqueue. (low likelihood
1690 1691 1692
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1693
skip:
1694
		double_unlock_balance(this_rq, src_rq);
1695 1696 1697 1698 1699
	}

	return ret;
}

1700
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1701 1702
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1703
	if (rq->rt.highest_prio.curr > prev->prio)
1704 1705 1706
		pull_rt_task(rq);
}

1707
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1708
{
1709
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1710 1711
}

1712 1713 1714 1715
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1716
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1717
{
1718
	if (!task_running(rq, p) &&
1719
	    !test_tsk_need_resched(rq->curr) &&
1720
	    has_pushable_tasks(rq) &&
1721
	    p->nr_cpus_allowed > 1 &&
1722
	    rt_task(rq->curr) &&
1723
	    (rq->curr->nr_cpus_allowed < 2 ||
1724
	     rq->curr->prio <= p->prio))
1725 1726 1727
		push_rt_tasks(rq);
}

1728
static void set_cpus_allowed_rt(struct task_struct *p,
1729
				const struct cpumask *new_mask)
1730
{
1731 1732
	struct rq *rq;
	int weight;
1733 1734 1735

	BUG_ON(!rt_task(p));

1736 1737
	if (!p->on_rq)
		return;
1738

1739
	weight = cpumask_weight(new_mask);
1740

1741 1742 1743 1744
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1745
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1746
		return;
1747

1748
	rq = task_rq(p);
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1762
	}
1763 1764

	update_rt_migration(&rq->rt);
1765
}
1766

1767
/* Assumes rq->lock is held */
1768
static void rq_online_rt(struct rq *rq)
1769 1770 1771
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1772

P
Peter Zijlstra 已提交
1773 1774
	__enable_runtime(rq);

1775
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1776 1777 1778
}

/* Assumes rq->lock is held */
1779
static void rq_offline_rt(struct rq *rq)
1780 1781 1782
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1783

P
Peter Zijlstra 已提交
1784 1785
	__disable_runtime(rq);

1786
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1787
}
1788 1789 1790 1791 1792

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1793
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1794 1795 1796 1797 1798 1799 1800 1801
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1802 1803 1804 1805 1806
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1807
}
1808

1809
void init_sched_rt_class(void)
1810 1811 1812
{
	unsigned int i;

1813
	for_each_possible_cpu(i) {
1814
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1815
					GFP_KERNEL, cpu_to_node(i));
1816
	}
1817
}
1818 1819 1820 1821 1822 1823 1824
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1825
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1836
	if (p->on_rq && rq->curr != p) {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1852 1853
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1854
{
P
Peter Zijlstra 已提交
1855
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1856 1857 1858
		return;

	if (rq->curr == p) {
1859 1860 1861 1862 1863 1864 1865 1866 1867
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1868 1869 1870
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1871
		 */
1872
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1873 1874 1875 1876 1877
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1878
#endif /* CONFIG_SMP */
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1890 1891 1892 1893
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1894 1895 1896
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1897 1898 1899 1900

	if (soft != RLIM_INFINITY) {
		unsigned long next;

1901 1902 1903 1904 1905
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

1906
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1907
		if (p->rt.timeout > next)
1908
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1909 1910
	}
}
I
Ingo Molnar 已提交
1911

P
Peter Zijlstra 已提交
1912
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1913
{
1914 1915
	struct sched_rt_entity *rt_se = &p->rt;

1916 1917
	update_curr_rt(rq);

1918 1919
	watchdog(rq, p);

I
Ingo Molnar 已提交
1920 1921 1922 1923 1924 1925 1926
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1927
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1928 1929
		return;

1930
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
1931

1932
	/*
1933 1934
	 * Requeue to the end of queue if we (and all of our ancestors) are the
	 * only element on the queue
1935
	 */
1936 1937 1938 1939 1940 1941
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
1942
	}
I
Ingo Molnar 已提交
1943 1944
}

1945 1946 1947 1948
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1949
	p->se.exec_start = rq_clock_task(rq);
1950 1951 1952

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1953 1954
}

1955
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1956 1957 1958 1959 1960
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
1961
		return sched_rr_timeslice;
1962 1963 1964 1965
	else
		return 0;
}

1966
const struct sched_class rt_sched_class = {
1967
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1977
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1978 1979
	.select_task_rq		= select_task_rq_rt,

1980
	.set_cpus_allowed       = set_cpus_allowed_rt,
1981 1982
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1983 1984
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1985
	.task_woken		= task_woken_rt,
1986
	.switched_from		= switched_from_rt,
1987
#endif
I
Ingo Molnar 已提交
1988

1989
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1990
	.task_tick		= task_tick_rt,
1991

1992 1993
	.get_rr_interval	= get_rr_interval_rt,

1994 1995
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1996
};
1997 1998 1999 2000

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2001
void print_rt_stats(struct seq_file *m, int cpu)
2002
{
C
Cheng Xu 已提交
2003
	rt_rq_iter_t iter;
2004 2005 2006
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2007
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2008 2009 2010
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2011
#endif /* CONFIG_SCHED_DEBUG */