rt.c 45.3 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

89
#ifdef CONFIG_RT_GROUP_SCHED
90 91 92 93
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
94 95 96

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

97 98
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
99 100 101
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
102 103 104 105 106 107 108 109 110 111 112 113 114
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

200 201
#else /* CONFIG_RT_GROUP_SCHED */

202 203
#define rt_entity_is_task(rt_se) (1)

204 205 206 207 208
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

209 210 211 212 213 214 215 216 217 218 219 220 221
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

222 223 224 225 226 227
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
228 229
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
230
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
231

232
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
233
{
234
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
235
}
I
Ingo Molnar 已提交
236

S
Steven Rostedt 已提交
237 238
static inline void rt_set_overload(struct rq *rq)
{
239 240 241
	if (!rq->online)
		return;

242
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
243 244 245 246 247 248 249 250
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
251
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
252
}
I
Ingo Molnar 已提交
253

S
Steven Rostedt 已提交
254 255
static inline void rt_clear_overload(struct rq *rq)
{
256 257 258
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
259
	/* the order here really doesn't matter */
260
	atomic_dec(&rq->rd->rto_count);
261
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
262
}
263

264
static void update_rt_migration(struct rt_rq *rt_rq)
265
{
266
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
267 268 269
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
270
		}
271 272 273
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
274
	}
275
}
S
Steven Rostedt 已提交
276

277 278
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
279 280
	struct task_struct *p;

281 282 283
	if (!rt_entity_is_task(rt_se))
		return;

284
	p = rt_task_of(rt_se);
285 286 287
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
288
	if (p->nr_cpus_allowed > 1)
289 290 291 292 293 294 295
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
296 297
	struct task_struct *p;

298 299 300
	if (!rt_entity_is_task(rt_se))
		return;

301
	p = rt_task_of(rt_se);
302 303 304
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
305
	if (p->nr_cpus_allowed > 1)
306 307 308 309 310
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

311 312 313 314 315
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

316 317 318 319 320
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
321 322 323 324

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
325 326 327 328 329 330
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

331 332 333 334 335 336 337
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
338 339
}

340 341
#else

342
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
343
{
P
Peter Zijlstra 已提交
344 345
}

346 347 348 349
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

350
static inline
351 352 353 354
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

355
static inline
356 357 358
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
359

S
Steven Rostedt 已提交
360 361
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
362 363 364 365 366
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

367
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
368

P
Peter Zijlstra 已提交
369
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
370 371
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
372
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
373

P
Peter Zijlstra 已提交
374 375 376 377 378 379
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
380 381
}

C
Cheng Xu 已提交
382 383
typedef struct task_group *rt_rq_iter_t;

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
401

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

410
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
411 412
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
413
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
414
{
415
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
416 417
	struct sched_rt_entity *rt_se;

418 419 420
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
421

422 423
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
424
			enqueue_rt_entity(rt_se, false);
425
		if (rt_rq->highest_prio.curr < curr->prio)
426
			resched_task(curr);
P
Peter Zijlstra 已提交
427 428 429
	}
}

P
Peter Zijlstra 已提交
430
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
431
{
432
	struct sched_rt_entity *rt_se;
433
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
434

435
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
436 437 438 439 440

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

458
#ifdef CONFIG_SMP
459
static inline const struct cpumask *sched_rt_period_mask(void)
460
{
N
Nathan Zimmer 已提交
461
	return this_rq()->rd->span;
462
}
P
Peter Zijlstra 已提交
463
#else
464
static inline const struct cpumask *sched_rt_period_mask(void)
465
{
466
	return cpu_online_mask;
467 468
}
#endif
P
Peter Zijlstra 已提交
469

470 471
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
472
{
473 474
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
475

P
Peter Zijlstra 已提交
476 477 478 479 480
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

481
#else /* !CONFIG_RT_GROUP_SCHED */
482 483 484

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
485 486 487 488 489 490
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
491 492
}

C
Cheng Xu 已提交
493 494 495 496 497
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
498 499 500 501 502 503 504 505
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
506
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
507
{
508 509
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
510 511
}

P
Peter Zijlstra 已提交
512
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
513 514 515
{
}

P
Peter Zijlstra 已提交
516 517 518 519
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
520

521
static inline const struct cpumask *sched_rt_period_mask(void)
522
{
523
	return cpu_online_mask;
524 525 526 527 528 529 530 531
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
532 533 534 535 536
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

537
#endif /* CONFIG_RT_GROUP_SCHED */
538

P
Peter Zijlstra 已提交
539
#ifdef CONFIG_SMP
540 541 542
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
543
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
544 545
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
546
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
547 548 549
	int i, weight, more = 0;
	u64 rt_period;

550
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
551

552
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
553
	rt_period = ktime_to_ns(rt_b->rt_period);
554
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
555 556 557 558 559 560
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

561
		raw_spin_lock(&iter->rt_runtime_lock);
562 563 564 565 566
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
567 568 569
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

570 571 572 573
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
574 575
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
576
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
577 578 579 580 581 582
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
583
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
584 585 586
				break;
			}
		}
P
Peter Zijlstra 已提交
587
next:
588
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
589
	}
590
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
591 592 593

	return more;
}
P
Peter Zijlstra 已提交
594

595 596 597
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
598 599 600
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
601
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
602 603 604 605 606
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
607
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
608 609 610 611
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

612 613
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
614 615 616 617 618
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
619 620 621
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
622
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
623

624 625 626 627 628
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
629 630
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

631 632 633
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
634
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
635 636 637
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

638 639 640
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
641
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
642 643
				continue;

644
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
645 646 647 648 649 650 651 652
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
653
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
654 655 656 657 658

			if (!want)
				break;
		}

659
		raw_spin_lock(&rt_rq->rt_runtime_lock);
660 661 662 663
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
664 665
		BUG_ON(want);
balanced:
666 667 668 669
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
670
		rt_rq->rt_runtime = RUNTIME_INF;
671
		rt_rq->rt_throttled = 0;
672 673
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
674 675 676 677 678
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
679
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
680 681 682 683 684
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

685 686 687
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
688
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
689 690
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

691 692
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
693 694
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
695
		rt_rq->rt_throttled = 0;
696 697
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
698 699 700
	}
}

701 702 703 704
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

705 706 707
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

708
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
709
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
710
		more = do_balance_runtime(rt_rq);
711
		raw_spin_lock(&rt_rq->rt_runtime_lock);
712 713 714 715
	}

	return more;
}
716
#else /* !CONFIG_SMP */
717 718 719 720
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
721
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
722

723 724
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
725
	int i, idle = 1, throttled = 0;
726
	const struct cpumask *span;
727 728

	span = sched_rt_period_mask();
729 730 731 732 733 734 735 736 737 738 739 740 741
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
742
	for_each_cpu(i, span) {
743 744 745 746
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

747
		raw_spin_lock(&rq->lock);
748 749 750
		if (rt_rq->rt_time) {
			u64 runtime;

751
			raw_spin_lock(&rt_rq->rt_runtime_lock);
752 753 754 755 756 757 758
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
759 760 761 762 763 764 765

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
766 767 768
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
769
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
770
		} else if (rt_rq->rt_nr_running) {
771
			idle = 0;
772 773 774
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
775 776
		if (rt_rq->rt_throttled)
			throttled = 1;
777 778 779

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
780
		raw_spin_unlock(&rq->lock);
781 782
	}

783 784 785
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

786 787
	return idle;
}
P
Peter Zijlstra 已提交
788

P
Peter Zijlstra 已提交
789 790
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
791
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
792 793 794
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
795
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
796 797 798 799 800
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
801
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
802
{
P
Peter Zijlstra 已提交
803
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
804 805

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
806
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
807

808
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
809 810
		return 0;

811 812 813 814
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
815

P
Peter Zijlstra 已提交
816
	if (rt_rq->rt_time > runtime) {
817 818 819 820 821 822 823
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
824 825
			static bool once = false;

826
			rt_rq->rt_throttled = 1;
827 828 829 830 831

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
832 833 834 835 836 837 838 839 840
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
841
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
842
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
843 844
			return 1;
		}
P
Peter Zijlstra 已提交
845 846 847 848 849
	}

	return 0;
}

I
Ingo Molnar 已提交
850 851 852 853
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
854
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
855 856
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
857 858
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
859 860
	u64 delta_exec;

P
Peter Zijlstra 已提交
861
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
862 863
		return;

864
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
865 866
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
867

868 869
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
870 871

	curr->se.sum_exec_runtime += delta_exec;
872 873
	account_group_exec_runtime(curr, delta_exec);

874
	curr->se.exec_start = rq_clock_task(rq);
875
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
876

877 878
	sched_rt_avg_update(rq, delta_exec);

879 880 881
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
882 883 884
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

885
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
886
			raw_spin_lock(&rt_rq->rt_runtime_lock);
887 888 889
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
890
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
891
		}
D
Dhaval Giani 已提交
892
	}
I
Ingo Molnar 已提交
893 894
}

895
#if defined CONFIG_SMP
896

897 898
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
899
{
G
Gregory Haskins 已提交
900
	struct rq *rq = rq_of_rt_rq(rt_rq);
901

902 903
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
904
}
905

906 907 908 909
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
910

911 912
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
913 914
}

915 916
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
917
static inline
918 919 920 921 922
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
923

924
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
941
	if (rt_rq->rt_nr_running) {
942

943
		WARN_ON(prio < prev_prio);
944

945
		/*
946 947
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
948
		 */
949
		if (prio == prev_prio) {
950 951 952
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
953
				sched_find_first_bit(array->bitmap);
954 955
		}

956
	} else
957
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
958

959 960
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
961

962 963 964 965 966 967
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
968

969
#ifdef CONFIG_RT_GROUP_SCHED
970 971 972 973 974 975 976 977 978 979 980 981 982 983

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
984 985 986 987
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1026 1027
}

1028
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1029
{
P
Peter Zijlstra 已提交
1030 1031 1032
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1033
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1034

1035 1036 1037 1038 1039 1040 1041
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1042
		return;
1043

1044 1045 1046 1047
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1048
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1049

P
Peter Zijlstra 已提交
1050 1051 1052
	inc_rt_tasks(rt_se, rt_rq);
}

1053
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1069
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1070
{
1071
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1072

1073 1074 1075 1076 1077 1078 1079
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1080 1081 1082 1083
			__dequeue_rt_entity(rt_se);
	}
}

1084
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1085 1086 1087
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1088
		__enqueue_rt_entity(rt_se, head);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1099
			__enqueue_rt_entity(rt_se, false);
1100
	}
I
Ingo Molnar 已提交
1101 1102 1103 1104 1105
}

/*
 * Adding/removing a task to/from a priority array:
 */
1106
static void
1107
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1108 1109 1110
{
	struct sched_rt_entity *rt_se = &p->rt;

1111
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1112 1113
		rt_se->timeout = 0;

1114
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1115

1116
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1117
		enqueue_pushable_task(rq, p);
1118 1119

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1120 1121
}

1122
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1123
{
P
Peter Zijlstra 已提交
1124
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1125

1126
	update_curr_rt(rq);
1127
	dequeue_rt_entity(rt_se);
1128

1129
	dequeue_pushable_task(rq, p);
1130 1131

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1132 1133 1134
}

/*
1135 1136
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1137
 */
1138 1139
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1140
{
1141
	if (on_rt_rq(rt_se)) {
1142 1143 1144 1145 1146 1147 1148
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1149
	}
P
Peter Zijlstra 已提交
1150 1151
}

1152
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1153
{
P
Peter Zijlstra 已提交
1154 1155
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1156

P
Peter Zijlstra 已提交
1157 1158
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1159
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1160
	}
I
Ingo Molnar 已提交
1161 1162
}

P
Peter Zijlstra 已提交
1163
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1164
{
1165
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1166 1167
}

1168
#ifdef CONFIG_SMP
1169 1170
static int find_lowest_rq(struct task_struct *task);

1171
static int
1172
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1173
{
1174 1175 1176 1177 1178
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1179

1180
	if (p->nr_cpus_allowed == 1)
1181 1182
		goto out;

1183 1184 1185 1186
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1187 1188 1189 1190 1191
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1192
	/*
1193
	 * If the current task on @p's runqueue is an RT task, then
1194 1195 1196 1197
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1198 1199 1200 1201 1202 1203 1204 1205 1206
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1207 1208 1209 1210 1211 1212
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1213
	 */
1214
	if (curr && unlikely(rt_task(curr)) &&
1215
	    (curr->nr_cpus_allowed < 2 ||
1216
	     curr->prio <= p->prio) &&
1217
	    (p->nr_cpus_allowed > 1)) {
1218
		int target = find_lowest_rq(p);
1219

1220 1221
		if (target != -1)
			cpu = target;
1222
	}
1223
	rcu_read_unlock();
1224

1225
out:
1226
	return cpu;
1227
}
1228 1229 1230

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1231
	if (rq->curr->nr_cpus_allowed == 1)
1232 1233
		return;

1234
	if (p->nr_cpus_allowed != 1
1235 1236
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1237

1238 1239
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1250 1251
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1252 1253 1254
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1255
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1256
{
1257
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1258
		resched_task(rq->curr);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1275
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1276
		check_preempt_equal_prio(rq, p);
1277
#endif
I
Ingo Molnar 已提交
1278 1279
}

P
Peter Zijlstra 已提交
1280 1281
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1282
{
P
Peter Zijlstra 已提交
1283 1284
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1285 1286 1287 1288
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1289
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1290 1291

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1292
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1293

P
Peter Zijlstra 已提交
1294 1295
	return next;
}
I
Ingo Molnar 已提交
1296

1297
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1298 1299 1300 1301
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1302

P
Peter Zijlstra 已提交
1303 1304
	rt_rq = &rq->rt;

1305
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1306 1307
		return NULL;

P
Peter Zijlstra 已提交
1308
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1309 1310 1311 1312
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1313
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1314 1315 1316 1317
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1318
	p->se.exec_start = rq_clock_task(rq);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1331
#ifdef CONFIG_SMP
1332 1333 1334 1335 1336
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1337
#endif
1338

P
Peter Zijlstra 已提交
1339
	return p;
I
Ingo Molnar 已提交
1340 1341
}

1342
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1343
{
1344
	update_curr_rt(rq);
1345 1346 1347 1348 1349

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1350
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1351
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1352 1353
}

1354
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1355

S
Steven Rostedt 已提交
1356 1357 1358
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1359 1360 1361
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1362
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1363 1364 1365 1366
		return 1;
	return 0;
}

1367 1368 1369 1370 1371
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1372
{
1373 1374
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1375

1376 1377
	if (!has_pushable_tasks(rq))
		return NULL;
1378

1379 1380 1381
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1382 1383
	}

1384
	return NULL;
S
Steven Rostedt 已提交
1385 1386
}

1387
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1388

G
Gregory Haskins 已提交
1389 1390 1391
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1392
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1393 1394
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1395

1396 1397 1398 1399
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1400
	if (task->nr_cpus_allowed == 1)
1401
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1402

1403 1404
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1414
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1415 1416 1417 1418 1419 1420
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1421 1422
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1423

1424
	rcu_read_lock();
R
Rusty Russell 已提交
1425 1426 1427
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1428

R
Rusty Russell 已提交
1429 1430 1431 1432 1433
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1434 1435
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1436
				return this_cpu;
1437
			}
R
Rusty Russell 已提交
1438 1439 1440

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1441 1442
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1443
				return best_cpu;
1444
			}
G
Gregory Haskins 已提交
1445 1446
		}
	}
1447
	rcu_read_unlock();
G
Gregory Haskins 已提交
1448 1449 1450 1451 1452 1453

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1454 1455 1456 1457 1458 1459 1460
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1461 1462 1463
}

/* Will lock the rq it finds */
1464
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1465 1466 1467
{
	struct rq *lowest_rq = NULL;
	int tries;
1468
	int cpu;
S
Steven Rostedt 已提交
1469

1470 1471 1472
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1473
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1474 1475
			break;

1476 1477
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1478
		/* if the prio of this runqueue changed, try again */
1479
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1480 1481 1482 1483 1484 1485
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1486
			if (unlikely(task_rq(task) != rq ||
1487
				     !cpumask_test_cpu(lowest_rq->cpu,
1488
						       tsk_cpus_allowed(task)) ||
1489
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1490
				     !task->on_rq)) {
1491

1492
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1493 1494 1495 1496 1497 1498
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1499
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1500 1501 1502
			break;

		/* try again */
1503
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1504 1505 1506 1507 1508 1509
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1522
	BUG_ON(p->nr_cpus_allowed <= 1);
1523

P
Peter Zijlstra 已提交
1524
	BUG_ON(!p->on_rq);
1525 1526 1527 1528 1529
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1530 1531 1532 1533 1534
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1535
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1536 1537 1538
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1539
	int ret = 0;
S
Steven Rostedt 已提交
1540

G
Gregory Haskins 已提交
1541 1542 1543
	if (!rq->rt.overloaded)
		return 0;

1544
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1545 1546 1547
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1548
retry:
1549
	if (unlikely(next_task == rq->curr)) {
1550
		WARN_ON(1);
S
Steven Rostedt 已提交
1551
		return 0;
1552
	}
S
Steven Rostedt 已提交
1553 1554 1555 1556 1557 1558

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1559 1560
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1561 1562 1563
		return 0;
	}

1564
	/* We might release rq lock */
S
Steven Rostedt 已提交
1565 1566 1567
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1568
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1569 1570 1571
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1572
		 * find_lock_lowest_rq releases rq->lock
1573 1574 1575 1576 1577
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1578
		 */
1579
		task = pick_next_pushable_task(rq);
1580 1581
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1582 1583 1584 1585
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1586 1587
			 */
			goto out;
S
Steven Rostedt 已提交
1588
		}
1589

1590 1591 1592 1593
		if (!task)
			/* No more tasks, just exit */
			goto out;

1594
		/*
1595
		 * Something has shifted, try again.
1596
		 */
1597 1598 1599
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1600 1601
	}

1602
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1603 1604
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1605
	ret = 1;
S
Steven Rostedt 已提交
1606 1607 1608

	resched_task(lowest_rq->curr);

1609
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1610 1611 1612 1613

out:
	put_task_struct(next_task);

1614
	return ret;
S
Steven Rostedt 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1624 1625
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1626
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1627
	struct task_struct *p;
1628 1629
	struct rq *src_rq;

1630
	if (likely(!rt_overloaded(this_rq)))
1631 1632
		return 0;

1633
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1634 1635 1636 1637
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1650 1651 1652
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1653
		 * alter this_rq
1654
		 */
1655
		double_lock_balance(this_rq, src_rq);
1656 1657

		/*
1658 1659
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1660
		 */
1661
		p = pick_highest_pushable_task(src_rq, this_cpu);
1662 1663 1664 1665 1666

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1667
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1668
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1669
			WARN_ON(!p->on_rq);
1670 1671 1672 1673 1674 1675 1676

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1677
			 * current task on the run queue
1678
			 */
1679
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1680
				goto skip;
1681 1682 1683 1684 1685 1686 1687 1688 1689

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1690
			 * in another runqueue. (low likelihood
1691 1692 1693
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1694
skip:
1695
		double_unlock_balance(this_rq, src_rq);
1696 1697 1698 1699 1700
	}

	return ret;
}

1701
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1702 1703
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1704
	if (rq->rt.highest_prio.curr > prev->prio)
1705 1706 1707
		pull_rt_task(rq);
}

1708
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1709
{
1710
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1711 1712
}

1713 1714 1715 1716
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1717
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1718
{
1719
	if (!task_running(rq, p) &&
1720
	    !test_tsk_need_resched(rq->curr) &&
1721
	    has_pushable_tasks(rq) &&
1722
	    p->nr_cpus_allowed > 1 &&
1723
	    rt_task(rq->curr) &&
1724
	    (rq->curr->nr_cpus_allowed < 2 ||
1725
	     rq->curr->prio <= p->prio))
1726 1727 1728
		push_rt_tasks(rq);
}

1729
static void set_cpus_allowed_rt(struct task_struct *p,
1730
				const struct cpumask *new_mask)
1731
{
1732 1733
	struct rq *rq;
	int weight;
1734 1735 1736

	BUG_ON(!rt_task(p));

1737 1738
	if (!p->on_rq)
		return;
1739

1740
	weight = cpumask_weight(new_mask);
1741

1742 1743 1744 1745
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1746
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1747
		return;
1748

1749
	rq = task_rq(p);
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1763
	}
1764 1765

	update_rt_migration(&rq->rt);
1766
}
1767

1768
/* Assumes rq->lock is held */
1769
static void rq_online_rt(struct rq *rq)
1770 1771 1772
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1773

P
Peter Zijlstra 已提交
1774 1775
	__enable_runtime(rq);

1776
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1777 1778 1779
}

/* Assumes rq->lock is held */
1780
static void rq_offline_rt(struct rq *rq)
1781 1782 1783
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1784

P
Peter Zijlstra 已提交
1785 1786
	__disable_runtime(rq);

1787
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1788
}
1789 1790 1791 1792 1793

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1794
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1795 1796 1797 1798 1799 1800 1801 1802
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1803 1804 1805 1806 1807
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1808
}
1809

1810
void init_sched_rt_class(void)
1811 1812 1813
{
	unsigned int i;

1814
	for_each_possible_cpu(i) {
1815
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1816
					GFP_KERNEL, cpu_to_node(i));
1817
	}
1818
}
1819 1820 1821 1822 1823 1824 1825
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1826
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1837
	if (p->on_rq && rq->curr != p) {
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1853 1854
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1855
{
P
Peter Zijlstra 已提交
1856
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1857 1858 1859
		return;

	if (rq->curr == p) {
1860 1861 1862 1863 1864 1865 1866 1867 1868
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1869 1870 1871
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1872
		 */
1873
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1874 1875 1876 1877 1878
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1879
#endif /* CONFIG_SMP */
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1891 1892 1893 1894
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1895 1896 1897
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1898 1899 1900 1901

	if (soft != RLIM_INFINITY) {
		unsigned long next;

1902 1903 1904 1905 1906
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

1907
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1908
		if (p->rt.timeout > next)
1909
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1910 1911
	}
}
I
Ingo Molnar 已提交
1912

P
Peter Zijlstra 已提交
1913
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1914
{
1915 1916
	struct sched_rt_entity *rt_se = &p->rt;

1917 1918
	update_curr_rt(rq);

1919 1920
	watchdog(rq, p);

I
Ingo Molnar 已提交
1921 1922 1923 1924 1925 1926 1927
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1928
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1929 1930
		return;

1931
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
1932

1933
	/*
1934 1935
	 * Requeue to the end of queue if we (and all of our ancestors) are the
	 * only element on the queue
1936
	 */
1937 1938 1939 1940 1941 1942
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
1943
	}
I
Ingo Molnar 已提交
1944 1945
}

1946 1947 1948 1949
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1950
	p->se.exec_start = rq_clock_task(rq);
1951 1952 1953

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1954 1955
}

1956
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1957 1958 1959 1960 1961
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
1962
		return sched_rr_timeslice;
1963 1964 1965 1966
	else
		return 0;
}

1967
const struct sched_class rt_sched_class = {
1968
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1978
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1979 1980
	.select_task_rq		= select_task_rq_rt,

1981
	.set_cpus_allowed       = set_cpus_allowed_rt,
1982 1983
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1984 1985
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1986
	.task_woken		= task_woken_rt,
1987
	.switched_from		= switched_from_rt,
1988
#endif
I
Ingo Molnar 已提交
1989

1990
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1991
	.task_tick		= task_tick_rt,
1992

1993 1994
	.get_rr_interval	= get_rr_interval_rt,

1995 1996
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1997
};
1998 1999 2000 2001

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2002
void print_rt_stats(struct seq_file *m, int cpu)
2003
{
C
Cheng Xu 已提交
2004
	rt_rq_iter_t iter;
2005 2006 2007
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2008
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2009 2010 2011
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2012
#endif /* CONFIG_SCHED_DEBUG */