rt.c 46.5 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "sched.h"

#include <linux/slab.h>

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

87
#ifdef CONFIG_RT_GROUP_SCHED
88 89 90 91
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
92 93 94

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

95 96
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
97 98 99
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
100 101 102 103 104 105 106 107 108 109 110 111 112
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

198 199
#else /* CONFIG_RT_GROUP_SCHED */

200 201
#define rt_entity_is_task(rt_se) (1)

202 203 204 205 206
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

207 208 209 210 211 212 213 214 215 216 217 218 219
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

220 221 222 223 224 225
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
226 227
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
228
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
229

230
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
231
{
232
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
233
}
I
Ingo Molnar 已提交
234

S
Steven Rostedt 已提交
235 236
static inline void rt_set_overload(struct rq *rq)
{
237 238 239
	if (!rq->online)
		return;

240
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
241 242 243 244 245 246 247 248
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
249
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
250
}
I
Ingo Molnar 已提交
251

S
Steven Rostedt 已提交
252 253
static inline void rt_clear_overload(struct rq *rq)
{
254 255 256
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
257
	/* the order here really doesn't matter */
258
	atomic_dec(&rq->rd->rto_count);
259
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
260
}
261

262
static void update_rt_migration(struct rt_rq *rt_rq)
263
{
264
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 266 267
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
268
		}
269 270 271
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
272
	}
273
}
S
Steven Rostedt 已提交
274

275 276
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
277 278
	struct task_struct *p;

279 280 281
	if (!rt_entity_is_task(rt_se))
		return;

282
	p = rt_task_of(rt_se);
283 284 285
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
286
	if (p->nr_cpus_allowed > 1)
287 288 289 290 291 292 293
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
294 295
	struct task_struct *p;

296 297 298
	if (!rt_entity_is_task(rt_se))
		return;

299
	p = rt_task_of(rt_se);
300 301 302
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
303
	if (p->nr_cpus_allowed > 1)
304 305 306 307 308
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

309 310 311 312 313
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

314 315 316 317 318
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 320 321 322

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
323 324 325 326 327 328
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

329 330 331 332 333 334 335
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
336 337
}

338 339
#else

340
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
341
{
P
Peter Zijlstra 已提交
342 343
}

344 345 346 347
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

348
static inline
349 350 351 352
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

353
static inline
354 355 356
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
357

S
Steven Rostedt 已提交
358 359
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
360 361 362 363 364
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

365
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
368 369
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
370
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
371

P
Peter Zijlstra 已提交
372 373 374 375 376 377
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
378 379
}

C
Cheng Xu 已提交
380 381
typedef struct task_group *rt_rq_iter_t;

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
399

400 401 402 403 404 405 406 407 408 409 410
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
411
#define for_each_leaf_rt_rq(rt_rq, rq) \
412
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
413 414 415 416 417 418 419 420 421

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

422
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
423 424
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
425
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
426
{
427
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
428 429
	struct sched_rt_entity *rt_se;

430 431 432
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
433

434 435
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
436
			enqueue_rt_entity(rt_se, false);
437
		if (rt_rq->highest_prio.curr < curr->prio)
438
			resched_task(curr);
P
Peter Zijlstra 已提交
439 440 441
	}
}

P
Peter Zijlstra 已提交
442
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
443
{
444
	struct sched_rt_entity *rt_se;
445
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
446

447
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
448 449 450 451 452

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

470
#ifdef CONFIG_SMP
471
static inline const struct cpumask *sched_rt_period_mask(void)
472 473 474
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
475
#else
476
static inline const struct cpumask *sched_rt_period_mask(void)
477
{
478
	return cpu_online_mask;
479 480
}
#endif
P
Peter Zijlstra 已提交
481

482 483
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
484
{
485 486
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
487

P
Peter Zijlstra 已提交
488 489 490 491 492
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

493
#else /* !CONFIG_RT_GROUP_SCHED */
494 495 496

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
497 498 499 500 501 502
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
503 504
}

C
Cheng Xu 已提交
505 506 507 508 509
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

510 511 512 513 514 515 516 517
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
518 519 520 521 522 523 524 525 526 527 528
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
529
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
530
{
531 532
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
533 534
}

P
Peter Zijlstra 已提交
535
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
536 537 538
{
}

P
Peter Zijlstra 已提交
539 540 541 542
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
543

544
static inline const struct cpumask *sched_rt_period_mask(void)
545
{
546
	return cpu_online_mask;
547 548 549 550 551 552 553 554
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
555 556 557 558 559
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

560
#endif /* CONFIG_RT_GROUP_SCHED */
561

P
Peter Zijlstra 已提交
562
#ifdef CONFIG_SMP
563 564 565
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
566
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
567 568 569 570 571 572
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

573
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
574

575
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
576
	rt_period = ktime_to_ns(rt_b->rt_period);
577
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
578 579 580 581 582 583
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

584
		raw_spin_lock(&iter->rt_runtime_lock);
585 586 587 588 589
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
590 591 592
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

593 594 595 596
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
597 598
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
599
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
600 601 602 603 604 605
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
606
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
607 608 609
				break;
			}
		}
P
Peter Zijlstra 已提交
610
next:
611
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
612
	}
613
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
614 615 616

	return more;
}
P
Peter Zijlstra 已提交
617

618 619 620
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
621 622 623
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
624
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
625 626 627 628 629
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
630
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
631 632 633 634
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

635 636
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
637 638 639 640 641
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
642 643 644
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
645
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
646

647 648 649 650 651
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
652 653
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

654 655 656
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
657
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
658 659 660
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

661 662 663
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
664
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
665 666
				continue;

667
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
668 669 670 671 672 673 674 675
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
676
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
677 678 679 680 681

			if (!want)
				break;
		}

682
		raw_spin_lock(&rt_rq->rt_runtime_lock);
683 684 685 686
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
687 688
		BUG_ON(want);
balanced:
689 690 691 692
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
693
		rt_rq->rt_runtime = RUNTIME_INF;
694 695
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
696 697 698 699 700 701 702
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

703
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
704
	__disable_runtime(rq);
705
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
706 707 708 709
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
710
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
711 712 713 714 715
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

716 717 718
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
719
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
720 721
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

722 723
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
724 725
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
726
		rt_rq->rt_throttled = 0;
727 728
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

736
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
737
	__enable_runtime(rq);
738
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		disable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		enable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}

763 764 765 766
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

767 768 769
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

770
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
771
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
772
		more = do_balance_runtime(rt_rq);
773
		raw_spin_lock(&rt_rq->rt_runtime_lock);
774 775 776 777
	}

	return more;
}
778
#else /* !CONFIG_SMP */
779 780 781 782
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
783
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
784

785 786
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
787
	int i, idle = 1, throttled = 0;
788
	const struct cpumask *span;
789 790

	span = sched_rt_period_mask();
791
	for_each_cpu(i, span) {
792 793 794 795
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

796
		raw_spin_lock(&rq->lock);
797 798 799
		if (rt_rq->rt_time) {
			u64 runtime;

800
			raw_spin_lock(&rt_rq->rt_runtime_lock);
801 802 803 804 805 806 807
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
808 809 810 811 812 813 814

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
815 816 817
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
818
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
819
		} else if (rt_rq->rt_nr_running) {
820
			idle = 0;
821 822 823
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
824 825
		if (rt_rq->rt_throttled)
			throttled = 1;
826 827 828

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
829
		raw_spin_unlock(&rq->lock);
830 831
	}

832 833 834
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

835 836
	return idle;
}
P
Peter Zijlstra 已提交
837

P
Peter Zijlstra 已提交
838 839
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
840
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
841 842 843
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
844
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
845 846 847 848 849
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
850
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
851
{
P
Peter Zijlstra 已提交
852
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
853 854

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
855
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
856

857
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
858 859
		return 0;

860 861 862 863
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
864

P
Peter Zijlstra 已提交
865
	if (rt_rq->rt_time > runtime) {
866 867 868 869 870 871 872
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
873 874
			static bool once = false;

875
			rt_rq->rt_throttled = 1;
876 877 878 879 880

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
881 882 883 884 885 886 887 888 889
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
890
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
891
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
892 893
			return 1;
		}
P
Peter Zijlstra 已提交
894 895 896 897 898
	}

	return 0;
}

I
Ingo Molnar 已提交
899 900 901 902
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
903
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
904 905
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
906 907
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
908 909
	u64 delta_exec;

P
Peter Zijlstra 已提交
910
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
911 912
		return;

913
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
914 915
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
916

917 918
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
919 920

	curr->se.sum_exec_runtime += delta_exec;
921 922
	account_group_exec_runtime(curr, delta_exec);

923
	curr->se.exec_start = rq->clock_task;
924
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
925

926 927
	sched_rt_avg_update(rq, delta_exec);

928 929 930
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
931 932 933
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

934
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
935
			raw_spin_lock(&rt_rq->rt_runtime_lock);
936 937 938
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
939
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
940
		}
D
Dhaval Giani 已提交
941
	}
I
Ingo Molnar 已提交
942 943
}

944
#if defined CONFIG_SMP
945

946 947
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
948
{
G
Gregory Haskins 已提交
949
	struct rq *rq = rq_of_rt_rq(rt_rq);
950

951 952
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
953
}
954

955 956 957 958
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
959

960 961
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
962 963
}

964 965
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
966
static inline
967 968 969 970 971
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
972

973
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
990
	if (rt_rq->rt_nr_running) {
991

992
		WARN_ON(prio < prev_prio);
993

994
		/*
995 996
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
997
		 */
998
		if (prio == prev_prio) {
999 1000 1001
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1002
				sched_find_first_bit(array->bitmap);
1003 1004
		}

1005
	} else
1006
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1007

1008 1009
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1010

1011 1012 1013 1014 1015 1016
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1017

1018
#ifdef CONFIG_RT_GROUP_SCHED
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1033 1034 1035 1036
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1075 1076
}

1077
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1078
{
P
Peter Zijlstra 已提交
1079 1080 1081
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1082
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1083

1084 1085 1086 1087 1088 1089 1090
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1091
		return;
1092

1093 1094 1095
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

1096 1097 1098 1099
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1100
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1101

P
Peter Zijlstra 已提交
1102 1103 1104
	inc_rt_tasks(rt_se, rt_rq);
}

1105
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
1115 1116
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
1117 1118 1119 1120 1121 1122
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1123
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1124
{
1125
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1126

1127 1128 1129 1130 1131 1132 1133
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1134 1135 1136 1137
			__dequeue_rt_entity(rt_se);
	}
}

1138
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1139 1140 1141
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1142
		__enqueue_rt_entity(rt_se, head);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1153
			__enqueue_rt_entity(rt_se, false);
1154
	}
I
Ingo Molnar 已提交
1155 1156 1157 1158 1159
}

/*
 * Adding/removing a task to/from a priority array:
 */
1160
static void
1161
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1162 1163 1164
{
	struct sched_rt_entity *rt_se = &p->rt;

1165
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1166 1167
		rt_se->timeout = 0;

1168
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1169

1170
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1171
		enqueue_pushable_task(rq, p);
1172 1173

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1174 1175
}

1176
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1177
{
P
Peter Zijlstra 已提交
1178
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1179

1180
	update_curr_rt(rq);
1181
	dequeue_rt_entity(rt_se);
1182

1183
	dequeue_pushable_task(rq, p);
1184 1185

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1186 1187 1188
}

/*
1189 1190
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1191
 */
1192 1193
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1194
{
1195
	if (on_rt_rq(rt_se)) {
1196 1197 1198 1199 1200 1201 1202
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1203
	}
P
Peter Zijlstra 已提交
1204 1205
}

1206
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1207
{
P
Peter Zijlstra 已提交
1208 1209
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1210

P
Peter Zijlstra 已提交
1211 1212
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1213
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1214
	}
I
Ingo Molnar 已提交
1215 1216
}

P
Peter Zijlstra 已提交
1217
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1218
{
1219
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1220 1221
}

1222
#ifdef CONFIG_SMP
1223 1224
static int find_lowest_rq(struct task_struct *task);

1225
static int
1226
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1227
{
1228 1229 1230 1231 1232
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1233

1234
	if (p->nr_cpus_allowed == 1)
1235 1236
		goto out;

1237 1238 1239 1240
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1241 1242 1243 1244 1245
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1246
	/*
1247
	 * If the current task on @p's runqueue is an RT task, then
1248 1249 1250 1251
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1252 1253 1254 1255 1256 1257 1258 1259 1260
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1261 1262 1263 1264 1265 1266
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1267
	 */
1268
	if (curr && unlikely(rt_task(curr)) &&
1269
	    (curr->nr_cpus_allowed < 2 ||
1270
	     curr->prio <= p->prio) &&
1271
	    (p->nr_cpus_allowed > 1)) {
1272
		int target = find_lowest_rq(p);
1273

1274 1275
		if (target != -1)
			cpu = target;
1276
	}
1277
	rcu_read_unlock();
1278

1279
out:
1280
	return cpu;
1281
}
1282 1283 1284

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1285
	if (rq->curr->nr_cpus_allowed == 1)
1286 1287
		return;

1288
	if (p->nr_cpus_allowed != 1
1289 1290
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1291

1292 1293
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1304 1305
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1306 1307 1308
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1309
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1310
{
1311
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1312
		resched_task(rq->curr);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1329
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1330
		check_preempt_equal_prio(rq, p);
1331
#endif
I
Ingo Molnar 已提交
1332 1333
}

P
Peter Zijlstra 已提交
1334 1335
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1336
{
P
Peter Zijlstra 已提交
1337 1338
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1339 1340 1341 1342
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1343
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1344 1345

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1346
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1347

P
Peter Zijlstra 已提交
1348 1349
	return next;
}
I
Ingo Molnar 已提交
1350

1351
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1352 1353 1354 1355
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1356

P
Peter Zijlstra 已提交
1357 1358
	rt_rq = &rq->rt;

1359
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1360 1361
		return NULL;

P
Peter Zijlstra 已提交
1362
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1363 1364 1365 1366
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1367
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1368 1369 1370 1371
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1372
	p->se.exec_start = rq->clock_task;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1385
#ifdef CONFIG_SMP
1386 1387 1388 1389 1390
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1391
#endif
1392

P
Peter Zijlstra 已提交
1393
	return p;
I
Ingo Molnar 已提交
1394 1395
}

1396
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1397
{
1398
	update_curr_rt(rq);
1399 1400 1401 1402 1403

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1404
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1405
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1406 1407
}

1408
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1409

S
Steven Rostedt 已提交
1410 1411 1412
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1413 1414 1415
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1416
	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1417
	    (p->nr_cpus_allowed > 1))
1418 1419 1420 1421
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1422
/* Return the second highest RT task, NULL otherwise */
1423
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1424
{
P
Peter Zijlstra 已提交
1425 1426 1427 1428
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1429 1430
	int idx;

P
Peter Zijlstra 已提交
1431 1432 1433
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1434
next_idx:
P
Peter Zijlstra 已提交
1435 1436
		if (idx >= MAX_RT_PRIO)
			continue;
1437
		if (next && next->prio <= idx)
P
Peter Zijlstra 已提交
1438 1439
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1440 1441 1442 1443 1444 1445
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1455 1456
	}

S
Steven Rostedt 已提交
1457 1458 1459
	return next;
}

1460
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1461

G
Gregory Haskins 已提交
1462 1463 1464
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1465
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1466 1467
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1468

1469 1470 1471 1472
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1473
	if (task->nr_cpus_allowed == 1)
1474
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1475

1476 1477
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1487
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1488 1489 1490 1491 1492 1493
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1494 1495
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1496

1497
	rcu_read_lock();
R
Rusty Russell 已提交
1498 1499 1500
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1501

R
Rusty Russell 已提交
1502 1503 1504 1505 1506
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1507 1508
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1509
				return this_cpu;
1510
			}
R
Rusty Russell 已提交
1511 1512 1513

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1514 1515
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1516
				return best_cpu;
1517
			}
G
Gregory Haskins 已提交
1518 1519
		}
	}
1520
	rcu_read_unlock();
G
Gregory Haskins 已提交
1521 1522 1523 1524 1525 1526

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1527 1528 1529 1530 1531 1532 1533
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1534 1535 1536
}

/* Will lock the rq it finds */
1537
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1538 1539 1540
{
	struct rq *lowest_rq = NULL;
	int tries;
1541
	int cpu;
S
Steven Rostedt 已提交
1542

1543 1544 1545
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1546
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1547 1548
			break;

1549 1550
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1551
		/* if the prio of this runqueue changed, try again */
1552
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1553 1554 1555 1556 1557 1558
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1559
			if (unlikely(task_rq(task) != rq ||
1560
				     !cpumask_test_cpu(lowest_rq->cpu,
1561
						       tsk_cpus_allowed(task)) ||
1562
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1563
				     !task->on_rq)) {
1564

1565
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1566 1567 1568 1569 1570 1571
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1572
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1573 1574 1575
			break;

		/* try again */
1576
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1577 1578 1579 1580 1581 1582
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1595
	BUG_ON(p->nr_cpus_allowed <= 1);
1596

P
Peter Zijlstra 已提交
1597
	BUG_ON(!p->on_rq);
1598 1599 1600 1601 1602
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1603 1604 1605 1606 1607
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1608
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1609 1610 1611
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1612
	int ret = 0;
S
Steven Rostedt 已提交
1613

G
Gregory Haskins 已提交
1614 1615 1616
	if (!rq->rt.overloaded)
		return 0;

1617
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1618 1619 1620
	if (!next_task)
		return 0;

1621 1622 1623 1624 1625
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
       if (unlikely(task_running(rq, next_task)))
               return 0;
#endif

P
Peter Zijlstra 已提交
1626
retry:
1627
	if (unlikely(next_task == rq->curr)) {
1628
		WARN_ON(1);
S
Steven Rostedt 已提交
1629
		return 0;
1630
	}
S
Steven Rostedt 已提交
1631 1632 1633 1634 1635 1636

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1637 1638
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1639 1640 1641
		return 0;
	}

1642
	/* We might release rq lock */
S
Steven Rostedt 已提交
1643 1644 1645
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1646
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1647 1648 1649
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1650
		 * find_lock_lowest_rq releases rq->lock
1651 1652 1653 1654 1655
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1656
		 */
1657
		task = pick_next_pushable_task(rq);
1658 1659
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1660 1661 1662 1663
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1664 1665
			 */
			goto out;
S
Steven Rostedt 已提交
1666
		}
1667

1668 1669 1670 1671
		if (!task)
			/* No more tasks, just exit */
			goto out;

1672
		/*
1673
		 * Something has shifted, try again.
1674
		 */
1675 1676 1677
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1678 1679
	}

1680
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1681 1682
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1683
	ret = 1;
S
Steven Rostedt 已提交
1684 1685 1686

	resched_task(lowest_rq->curr);

1687
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1688 1689 1690 1691

out:
	put_task_struct(next_task);

1692
	return ret;
S
Steven Rostedt 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1702 1703
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1704
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1705
	struct task_struct *p;
1706 1707
	struct rq *src_rq;

1708
	if (likely(!rt_overloaded(this_rq)))
1709 1710
		return 0;

1711
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1712 1713 1714 1715
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1728 1729 1730
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1731
		 * alter this_rq
1732
		 */
1733
		double_lock_balance(this_rq, src_rq);
1734 1735 1736 1737

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1738 1739
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1740 1741 1742 1743 1744 1745 1746

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1747
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1748
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1749
			WARN_ON(!p->on_rq);
1750 1751 1752 1753 1754 1755 1756

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1757
			 * current task on the run queue
1758
			 */
1759
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1760
				goto skip;
1761 1762 1763 1764 1765 1766 1767 1768 1769

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1770
			 * in another runqueue. (low likelihood
1771 1772 1773
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1774
skip:
1775
		double_unlock_balance(this_rq, src_rq);
1776 1777 1778 1779 1780
	}

	return ret;
}

1781
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1782 1783
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1784
	if (rq->rt.highest_prio.curr > prev->prio)
1785 1786 1787
		pull_rt_task(rq);
}

1788
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1789
{
1790
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1791 1792
}

1793 1794 1795 1796
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1797
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1798
{
1799
	if (!task_running(rq, p) &&
1800
	    !test_tsk_need_resched(rq->curr) &&
1801
	    has_pushable_tasks(rq) &&
1802
	    p->nr_cpus_allowed > 1 &&
1803
	    rt_task(rq->curr) &&
1804
	    (rq->curr->nr_cpus_allowed < 2 ||
1805
	     rq->curr->prio <= p->prio))
1806 1807 1808
		push_rt_tasks(rq);
}

1809
static void set_cpus_allowed_rt(struct task_struct *p,
1810
				const struct cpumask *new_mask)
1811
{
1812 1813
	struct rq *rq;
	int weight;
1814 1815 1816

	BUG_ON(!rt_task(p));

1817 1818
	if (!p->on_rq)
		return;
1819

1820
	weight = cpumask_weight(new_mask);
1821

1822 1823 1824 1825
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1826
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1827
		return;
1828

1829
	rq = task_rq(p);
1830

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1843
	}
1844 1845

	update_rt_migration(&rq->rt);
1846
}
1847

1848
/* Assumes rq->lock is held */
1849
static void rq_online_rt(struct rq *rq)
1850 1851 1852
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1853

P
Peter Zijlstra 已提交
1854 1855
	__enable_runtime(rq);

1856
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1857 1858 1859
}

/* Assumes rq->lock is held */
1860
static void rq_offline_rt(struct rq *rq)
1861 1862 1863
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1864

P
Peter Zijlstra 已提交
1865 1866
	__disable_runtime(rq);

1867
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1868
}
1869 1870 1871 1872 1873

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1874
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1875 1876 1877 1878 1879 1880 1881 1882
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
P
Peter Zijlstra 已提交
1883
	if (p->on_rq && !rq->rt.rt_nr_running)
1884 1885
		pull_rt_task(rq);
}
1886

1887
void init_sched_rt_class(void)
1888 1889 1890
{
	unsigned int i;

1891
	for_each_possible_cpu(i) {
1892
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1893
					GFP_KERNEL, cpu_to_node(i));
1894
	}
1895
}
1896 1897 1898 1899 1900 1901 1902
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1903
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1914
	if (p->on_rq && rq->curr != p) {
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1930 1931
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1932
{
P
Peter Zijlstra 已提交
1933
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1934 1935 1936
		return;

	if (rq->curr == p) {
1937 1938 1939 1940 1941 1942 1943 1944 1945
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1946 1947 1948
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1949
		 */
1950
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1951 1952 1953 1954 1955
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1956
#endif /* CONFIG_SMP */
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1968 1969 1970 1971
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1972 1973 1974
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1975 1976 1977 1978 1979 1980

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1981
		if (p->rt.timeout > next)
1982
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1983 1984
	}
}
I
Ingo Molnar 已提交
1985

P
Peter Zijlstra 已提交
1986
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1987
{
1988 1989
	struct sched_rt_entity *rt_se = &p->rt;

1990 1991
	update_curr_rt(rq);

1992 1993
	watchdog(rq, p);

I
Ingo Molnar 已提交
1994 1995 1996 1997 1998 1999 2000
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
2001
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
2002 2003
		return;

2004
	p->rt.time_slice = RR_TIMESLICE;
I
Ingo Molnar 已提交
2005

2006
	/*
2007 2008
	 * Requeue to the end of queue if we (and all of our ancestors) are the
	 * only element on the queue
2009
	 */
2010 2011 2012 2013 2014 2015
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
2016
	}
I
Ingo Molnar 已提交
2017 2018
}

2019 2020 2021 2022
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2023
	p->se.exec_start = rq->clock_task;
2024 2025 2026

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2027 2028
}

2029
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2030 2031 2032 2033 2034
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2035
		return RR_TIMESLICE;
2036 2037 2038 2039
	else
		return 0;
}

2040
const struct sched_class rt_sched_class = {
2041
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2051
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2052 2053
	.select_task_rq		= select_task_rq_rt,

2054
	.set_cpus_allowed       = set_cpus_allowed_rt,
2055 2056
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2057 2058
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
2059
	.task_woken		= task_woken_rt,
2060
	.switched_from		= switched_from_rt,
2061
#endif
I
Ingo Molnar 已提交
2062

2063
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2064
	.task_tick		= task_tick_rt,
2065

2066 2067
	.get_rr_interval	= get_rr_interval_rt,

2068 2069
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2070
};
2071 2072 2073 2074

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2075
void print_rt_stats(struct seq_file *m, int cpu)
2076
{
C
Cheng Xu 已提交
2077
	rt_rq_iter_t iter;
2078 2079 2080
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2081
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2082 2083 2084
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2085
#endif /* CONFIG_SCHED_DEBUG */