spi-rspi.c 33.0 KB
Newer Older
1 2 3
/*
 * SH RSPI driver
 *
4
 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5
 * Copyright (C) 2014 Glider bvba
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 * Based on spi-sh.c:
 * Copyright (C) 2011 Renesas Solutions Corp.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
33 34
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
G
Geert Uytterhoeven 已提交
35
#include <linux/of_device.h>
36
#include <linux/pm_runtime.h>
37
#include <linux/sh_dma.h>
38
#include <linux/spi/spi.h>
39
#include <linux/spi/rspi.h>
40

41 42 43 44 45 46 47 48 49 50 51 52
#define RSPI_SPCR		0x00	/* Control Register */
#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
#define RSPI_SPPCR		0x02	/* Pin Control Register */
#define RSPI_SPSR		0x03	/* Status Register */
#define RSPI_SPDR		0x04	/* Data Register */
#define RSPI_SPSCR		0x08	/* Sequence Control Register */
#define RSPI_SPSSR		0x09	/* Sequence Status Register */
#define RSPI_SPBR		0x0a	/* Bit Rate Register */
#define RSPI_SPDCR		0x0b	/* Data Control Register */
#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
53
#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
54 55 56 57 58 59 60 61
#define RSPI_SPCMD0		0x10	/* Command Register 0 */
#define RSPI_SPCMD1		0x12	/* Command Register 1 */
#define RSPI_SPCMD2		0x14	/* Command Register 2 */
#define RSPI_SPCMD3		0x16	/* Command Register 3 */
#define RSPI_SPCMD4		0x18	/* Command Register 4 */
#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
62 63 64 65
#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
#define RSPI_NUM_SPCMD		8
#define RSPI_RZ_NUM_SPCMD	4
#define QSPI_NUM_SPCMD		4
66 67

/* RSPI on RZ only */
68 69
#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
70

71
/* QSPI only */
72 73 74 75 76 77
#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
78
#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
79

80 81 82 83 84 85 86 87 88 89
/* SPCR - Control Register */
#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
#define SPCR_SPE		0x40	/* Function Enable */
#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
/* RSPI on SH only */
#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
90 91 92
/* QSPI on R-Car M2 only */
#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
93 94 95 96 97 98 99 100

/* SSLP - Slave Select Polarity Register */
#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */

/* SPPCR - Pin Control Register */
#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
101
#define SPPCR_SPOM		0x04
102 103 104
#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */

105 106 107
#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */

108 109 110 111 112 113 114
/* SPSR - Status Register */
#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
#define SPSR_TEND		0x40	/* Transmit End */
#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
#define SPSR_PERF		0x08	/* Parity Error Flag */
#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
115
#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

/* SPSCR - Sequence Control Register */
#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */

/* SPSSR - Sequence Status Register */
#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */

/* SPDCR - Data Control Register */
#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
#define SPDCR_SPLWORD		SPDCR_SPLW1
#define SPDCR_SPLBYTE		SPDCR_SPLW0
#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
132
#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
133 134
#define SPDCR_SLSEL1		0x08
#define SPDCR_SLSEL0		0x04
135
#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
136 137
#define SPDCR_SPFC1		0x02
#define SPDCR_SPFC0		0x01
138
#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
139

140 141
/* SPCKD - Clock Delay Register */
#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
142

143 144
/* SSLND - Slave Select Negation Delay Register */
#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
145

146 147
/* SPND - Next-Access Delay Register */
#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
148

149 150 151 152 153
/* SPCR2 - Control Register 2 */
#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
#define SPCR2_SPPE		0x01	/* Parity Enable */
154

155 156 157 158 159 160
/* SPCMDn - Command Registers */
#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
#define SPCMD_LSBF		0x1000	/* LSB First */
#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
161
#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
162
#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
163
#define SPCMD_SPB_16BIT		0x0100
164 165 166
#define SPCMD_SPB_20BIT		0x0000
#define SPCMD_SPB_24BIT		0x0100
#define SPCMD_SPB_32BIT		0x0200
167
#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
168 169 170 171 172 173 174
#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
#define SPCMD_SPIMOD1		0x0040
#define SPCMD_SPIMOD0		0x0020
#define SPCMD_SPIMOD_SINGLE	0
#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
175 176 177 178 179 180
#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */

/* SPBFCR - Buffer Control Register */
181 182
#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
183 184
#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
185

186 187 188 189 190 191
struct rspi_data {
	void __iomem *addr;
	u32 max_speed_hz;
	struct spi_master *master;
	wait_queue_head_t wait;
	struct clk *clk;
192
	u16 spcmd;
193 194
	u8 spsr;
	u8 sppcr;
195
	int rx_irq, tx_irq;
196
	const struct spi_ops *ops;
197 198 199 200 201 202

	/* for dmaengine */
	struct dma_chan *chan_tx;
	struct dma_chan *chan_rx;

	unsigned dma_callbacked:1;
203
	unsigned byte_access:1;
204 205
};

206
static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
207 208 209 210
{
	iowrite8(data, rspi->addr + offset);
}

211
static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
212 213 214 215
{
	iowrite16(data, rspi->addr + offset);
}

216
static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
217 218 219 220
{
	iowrite32(data, rspi->addr + offset);
}

221
static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
222 223 224 225
{
	return ioread8(rspi->addr + offset);
}

226
static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
227 228 229 230
{
	return ioread16(rspi->addr + offset);
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static void rspi_write_data(const struct rspi_data *rspi, u16 data)
{
	if (rspi->byte_access)
		rspi_write8(rspi, data, RSPI_SPDR);
	else /* 16 bit */
		rspi_write16(rspi, data, RSPI_SPDR);
}

static u16 rspi_read_data(const struct rspi_data *rspi)
{
	if (rspi->byte_access)
		return rspi_read8(rspi, RSPI_SPDR);
	else /* 16 bit */
		return rspi_read16(rspi, RSPI_SPDR);
}

247 248
/* optional functions */
struct spi_ops {
249
	int (*set_config_register)(struct rspi_data *rspi, int access_size);
250 251
	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
			    struct spi_transfer *xfer);
252
	u16 mode_bits;
253
	u16 flags;
254 255 256
};

/*
257
 * functions for RSPI on legacy SH
258
 */
259
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
260
{
261 262
	int spbr;

263 264
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
265

266
	/* Sets transfer bit rate */
267 268
	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
			    2 * rspi->max_speed_hz) - 1;
269 270
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

271 272 273
	/* Disable dummy transmission, set 16-bit word access, 1 frame */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 0;
274

275 276 277 278 279 280 281 282 283
	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets parity, interrupt mask */
	rspi_write8(rspi, 0x00, RSPI_SPCR2);

	/* Sets SPCMD */
284 285
	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
286 287 288 289 290

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
291 292
}

293 294 295 296 297 298 299
/*
 * functions for RSPI on RZ
 */
static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
{
	int spbr;

300 301
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
302 303

	/* Sets transfer bit rate */
304 305
	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
			    2 * rspi->max_speed_hz) - 1;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
	rspi->byte_access = 1;

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets SPCMD */
	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
}

327 328 329
/*
 * functions for QSPI
 */
330
static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
331 332 333
{
	int spbr;

334 335
	/* Sets output mode, MOSI signal, and (optionally) loopback */
	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
336 337

	/* Sets transfer bit rate */
338
	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
339 340
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

341 342 343
	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 1;
344 345 346 347 348 349 350 351

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Data Length Setting */
	if (access_size == 8)
352
		rspi->spcmd |= SPCMD_SPB_8BIT;
353
	else if (access_size == 16)
354
		rspi->spcmd |= SPCMD_SPB_16BIT;
355
	else
356
		rspi->spcmd |= SPCMD_SPB_32BIT;
357

358
	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
359 360 361 362 363 364 365 366 367 368

	/* Resets transfer data length */
	rspi_write32(rspi, 0, QSPI_SPBMUL0);

	/* Resets transmit and receive buffer */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	/* Sets buffer to allow normal operation */
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	/* Sets SPCMD */
369
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
370

371
	/* Enables SPI function in master mode */
372 373 374 375 376 377 378
	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);

	return 0;
}

#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)

379
static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
380 381 382 383
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}

384
static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
385 386 387 388 389 390 391 392 393 394
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}

static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
				   u8 enable_bit)
{
	int ret;

	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
395 396 397
	if (rspi->spsr & wait_mask)
		return 0;

398 399 400 401 402 403 404 405
	rspi_enable_irq(rspi, enable_bit);
	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
	if (ret == 0 && !(rspi->spsr & wait_mask))
		return -ETIMEDOUT;

	return 0;
}

406 407 408 409 410 411 412 413 414 415
static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
{
	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
}

static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
{
	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
}

416 417
static int rspi_data_out(struct rspi_data *rspi, u8 data)
{
418 419
	int error = rspi_wait_for_tx_empty(rspi);
	if (error < 0) {
420
		dev_err(&rspi->master->dev, "transmit timeout\n");
421
		return error;
422 423 424 425 426 427 428
	}
	rspi_write_data(rspi, data);
	return 0;
}

static int rspi_data_in(struct rspi_data *rspi)
{
429
	int error;
430 431
	u8 data;

432 433
	error = rspi_wait_for_rx_full(rspi);
	if (error < 0) {
434
		dev_err(&rspi->master->dev, "receive timeout\n");
435
		return error;
436 437 438 439 440
	}
	data = rspi_read_data(rspi);
	return data;
}

441 442
static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
			     unsigned int n)
443
{
444 445 446 447 448 449 450 451 452 453 454 455 456
	while (n-- > 0) {
		if (tx) {
			int ret = rspi_data_out(rspi, *tx++);
			if (ret < 0)
				return ret;
		}
		if (rx) {
			int ret = rspi_data_in(rspi);
			if (ret < 0)
				return ret;
			*rx++ = ret;
		}
	}
457

458
	return 0;
459 460
}

461 462 463 464 465 466 467 468
static void rspi_dma_complete(void *arg)
{
	struct rspi_data *rspi = arg;

	rspi->dma_callbacked = 1;
	wake_up_interruptible(&rspi->wait);
}

G
Geert Uytterhoeven 已提交
469 470
static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
			   unsigned len, struct dma_chan *chan,
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			   enum dma_transfer_direction dir)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, len);
	sg_dma_len(sg) = len;
	return dma_map_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
			      enum dma_transfer_direction dir)
{
	dma_unmap_sg(chan->device->dev, sg, 1, dir);
}

static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg;
488
	const void *buf = t->tx_buf;
489
	struct dma_async_tx_descriptor *desc;
490
	unsigned int len = t->len;
491 492
	int ret = 0;

493 494
	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE))
		return -EFAULT;
495 496 497 498 499 500 501 502 503 504 505 506

	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
507
	disable_irq(rspi->tx_irq);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE);

526
	enable_irq(rspi->tx_irq);
527 528 529 530 531 532

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
	return ret;
}

533
static void rspi_receive_init(const struct rspi_data *rspi)
534
{
535
	u8 spsr;
536 537 538

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
539
		rspi_read_data(rspi);	/* dummy read */
540 541
	if (spsr & SPSR_OVRF)
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
542
			    RSPI_SPSR);
543 544
}

545 546 547 548 549 550 551
static void rspi_rz_receive_init(const struct rspi_data *rspi)
{
	rspi_receive_init(rspi);
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
	rspi_write8(rspi, 0, RSPI_SPBFCR);
}

552
static void qspi_receive_init(const struct rspi_data *rspi)
553
{
554
	u8 spsr;
555 556 557

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
558
		rspi_read_data(rspi);   /* dummy read */
559
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
560
	rspi_write8(rspi, 0, QSPI_SPBFCR);
561 562
}

563
static int rspi_send_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
564
{
565 566 567 568
	struct scatterlist sg_rx, sg_tx;
	const void *tx_buf = t->tx_buf;
	void *rx_buf = t->rx_buf;
	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
569
	unsigned int len = t->len;
570 571
	int ret = 0;

572 573 574 575 576 577
	/* prepare transmit transfer */
	if (!rspi_dma_map_sg(&sg_tx, tx_buf, len, rspi->chan_tx,
			     DMA_TO_DEVICE))
		return -EFAULT;

	desc_tx = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_tx, 1,
578
			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
579
	if (!desc_tx) {
580
		ret = -EIO;
581
		goto end_tx_mapped;
582 583 584
	}

	/* prepare receive transfer */
585
	if (!rspi_dma_map_sg(&sg_rx, rx_buf, len, rspi->chan_rx,
586 587
			     DMA_FROM_DEVICE)) {
		ret = -EFAULT;
588
		goto end_tx_mapped;
589 590

	}
591 592 593 594
	desc_rx = dmaengine_prep_slave_sg(rspi->chan_rx, &sg_rx, 1,
					  DMA_FROM_DEVICE,
					  DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc_rx) {
595 596 597 598 599 600 601 602 603 604
		ret = -EIO;
		goto end;
	}

	rspi_receive_init(rspi);

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
605 606 607
	disable_irq(rspi->tx_irq);
	if (rspi->rx_irq != rspi->tx_irq)
		disable_irq(rspi->rx_irq);
608 609 610 611 612

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
	rspi->dma_callbacked = 0;

613 614 615
	desc_rx->callback = rspi_dma_complete;
	desc_rx->callback_param = rspi;
	dmaengine_submit(desc_rx);
616 617
	dma_async_issue_pending(rspi->chan_rx);

618 619
	desc_tx->callback = NULL;	/* No callback */
	dmaengine_submit(desc_tx);
620 621 622 623 624 625 626 627 628 629
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);

630 631 632
	enable_irq(rspi->tx_irq);
	if (rspi->rx_irq != rspi->tx_irq)
		enable_irq(rspi->rx_irq);
633 634

end:
635 636 637
	rspi_dma_unmap_sg(&sg_rx, rspi->chan_rx, DMA_FROM_DEVICE);
end_tx_mapped:
	rspi_dma_unmap_sg(&sg_tx, rspi->chan_tx, DMA_TO_DEVICE);
638 639 640
	return ret;
}

641
static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
642 643
{
	/* If the module receives data by DMAC, it also needs TX DMAC */
644 645 646 647
	if (t->rx_buf)
		return rspi->chan_tx && rspi->chan_rx;

	if (rspi->chan_tx)
648 649 650 651 652
		return 1;

	return 0;
}

653 654 655
static int rspi_transfer_out_in(struct rspi_data *rspi,
				struct spi_transfer *xfer)
{
656
	u8 spcr;
657
	int ret;
658 659

	spcr = rspi_read8(rspi, RSPI_SPCR);
660
	if (xfer->rx_buf) {
661
		rspi_receive_init(rspi);
662
		spcr &= ~SPCR_TXMD;
663
	} else {
664
		spcr |= SPCR_TXMD;
665
	}
666 667
	rspi_write8(rspi, spcr, RSPI_SPCR);

668 669 670
	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
	if (ret < 0)
		return ret;
671 672

	/* Wait for the last transmission */
673
	rspi_wait_for_tx_empty(rspi);
674 675 676 677

	return 0;
}

678 679
static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
680
{
681
	struct rspi_data *rspi = spi_master_get_devdata(master);
682 683 684

	if (!rspi_is_dma(rspi, xfer))
		return rspi_transfer_out_in(rspi, xfer);
685

686
	if (xfer->rx_buf)
687 688 689
		return rspi_send_receive_dma(rspi, xfer);
	else
		return rspi_send_dma(rspi, xfer);
690 691
}

692 693 694
static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
				   struct spi_transfer *xfer)
{
695
	int ret;
696 697 698

	rspi_rz_receive_init(rspi);

699 700 701
	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
	if (ret < 0)
		return ret;
702 703

	/* Wait for the last transmission */
704
	rspi_wait_for_tx_empty(rspi);
705 706 707 708 709 710 711 712 713 714 715 716 717

	return 0;
}

static int rspi_rz_transfer_one(struct spi_master *master,
				struct spi_device *spi,
				struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);

	return rspi_rz_transfer_out_in(rspi, xfer);
}

718 719
static int qspi_transfer_out_in(struct rspi_data *rspi,
				struct spi_transfer *xfer)
720
{
721
	int ret;
722

723 724
	qspi_receive_init(rspi);

725 726 727
	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
	if (ret < 0)
		return ret;
728 729

	/* Wait for the last transmission */
730
	rspi_wait_for_tx_empty(rspi);
731 732 733 734

	return 0;
}

735 736 737 738
static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
{
	int ret;

739 740 741
	ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
	if (ret < 0)
		return ret;
742 743

	/* Wait for the last transmission */
744
	rspi_wait_for_tx_empty(rspi);
745 746 747 748 749 750

	return 0;
}

static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
{
751
	return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
752 753
}

754 755 756 757 758
static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);

759 760
	if (spi->mode & SPI_LOOP) {
		return qspi_transfer_out_in(rspi, xfer);
761
	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
762 763
		/* Quad or Dual SPI Write */
		return qspi_transfer_out(rspi, xfer);
764
	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
765 766 767 768 769 770
		/* Quad or Dual SPI Read */
		return qspi_transfer_in(rspi, xfer);
	} else {
		/* Single SPI Transfer */
		return qspi_transfer_out_in(rspi, xfer);
	}
771 772 773 774 775 776 777 778
}

static int rspi_setup(struct spi_device *spi)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);

	rspi->max_speed_hz = spi->max_speed_hz;

779 780 781 782 783 784
	rspi->spcmd = SPCMD_SSLKP;
	if (spi->mode & SPI_CPOL)
		rspi->spcmd |= SPCMD_CPOL;
	if (spi->mode & SPI_CPHA)
		rspi->spcmd |= SPCMD_CPHA;

785 786 787 788 789
	/* CMOS output mode and MOSI signal from previous transfer */
	rspi->sppcr = 0;
	if (spi->mode & SPI_LOOP)
		rspi->sppcr |= SPPCR_SPLP;

790
	set_config_register(rspi, 8);
791 792 793 794

	return 0;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
{
	if (xfer->tx_buf)
		switch (xfer->tx_nbits) {
		case SPI_NBITS_QUAD:
			return SPCMD_SPIMOD_QUAD;
		case SPI_NBITS_DUAL:
			return SPCMD_SPIMOD_DUAL;
		default:
			return 0;
		}
	if (xfer->rx_buf)
		switch (xfer->rx_nbits) {
		case SPI_NBITS_QUAD:
			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
		case SPI_NBITS_DUAL:
			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
		default:
			return 0;
		}

	return 0;
}

static int qspi_setup_sequencer(struct rspi_data *rspi,
				const struct spi_message *msg)
{
	const struct spi_transfer *xfer;
	unsigned int i = 0, len = 0;
	u16 current_mode = 0xffff, mode;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		mode = qspi_transfer_mode(xfer);
		if (mode == current_mode) {
			len += xfer->len;
			continue;
		}

		/* Transfer mode change */
		if (i) {
			/* Set transfer data length of previous transfer */
			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
		}

		if (i >= QSPI_NUM_SPCMD) {
			dev_err(&msg->spi->dev,
				"Too many different transfer modes");
			return -EINVAL;
		}

		/* Program transfer mode for this transfer */
		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
		current_mode = mode;
		len = xfer->len;
		i++;
	}
	if (i) {
		/* Set final transfer data length and sequence length */
		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
		rspi_write8(rspi, i - 1, RSPI_SPSCR);
	}

	return 0;
}

860
static int rspi_prepare_message(struct spi_master *master,
861
				struct spi_message *msg)
862 863
{
	struct rspi_data *rspi = spi_master_get_devdata(master);
864
	int ret;
865

866 867 868 869 870 871 872 873 874
	if (msg->spi->mode &
	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
		/* Setup sequencer for messages with multiple transfer modes */
		ret = qspi_setup_sequencer(rspi, msg);
		if (ret < 0)
			return ret;
	}

	/* Enable SPI function in master mode */
875
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
876 877 878
	return 0;
}

879
static int rspi_unprepare_message(struct spi_master *master,
880
				  struct spi_message *msg)
881
{
882 883
	struct rspi_data *rspi = spi_master_get_devdata(master);

884
	/* Disable SPI function */
885
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
886 887 888 889

	/* Reset sequencer for Single SPI Transfers */
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
	rspi_write8(rspi, 0, RSPI_SPSCR);
890
	return 0;
891 892
}

893
static irqreturn_t rspi_irq_mux(int irq, void *_sr)
894
{
G
Geert Uytterhoeven 已提交
895
	struct rspi_data *rspi = _sr;
896
	u8 spsr;
897
	irqreturn_t ret = IRQ_NONE;
898
	u8 disable_irq = 0;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		disable_irq |= SPCR_SPRIE;
	if (spsr & SPSR_SPTEF)
		disable_irq |= SPCR_SPTIE;

	if (disable_irq) {
		ret = IRQ_HANDLED;
		rspi_disable_irq(rspi, disable_irq);
		wake_up(&rspi->wait);
	}

	return ret;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
static irqreturn_t rspi_irq_rx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF) {
		rspi_disable_irq(rspi, SPCR_SPRIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

static irqreturn_t rspi_irq_tx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPTEF) {
		rspi_disable_irq(rspi, SPCR_SPTIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

945 946 947 948
static struct dma_chan *rspi_request_dma_chan(struct device *dev,
					      enum dma_transfer_direction dir,
					      unsigned int id,
					      dma_addr_t port_addr)
949 950
{
	dma_cap_mask_t mask;
951
	struct dma_chan *chan;
952 953
	struct dma_slave_config cfg;
	int ret;
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	chan = dma_request_channel(mask, shdma_chan_filter,
				   (void *)(unsigned long)id);
	if (!chan) {
		dev_warn(dev, "dma_request_channel failed\n");
		return NULL;
	}

	memset(&cfg, 0, sizeof(cfg));
	cfg.slave_id = id;
	cfg.direction = dir;
	if (dir == DMA_MEM_TO_DEV)
		cfg.dst_addr = port_addr;
	else
		cfg.src_addr = port_addr;

	ret = dmaengine_slave_config(chan, &cfg);
	if (ret) {
		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
		dma_release_channel(chan);
		return NULL;
	}

	return chan;
}

static int rspi_request_dma(struct rspi_data *rspi,
			    struct platform_device *pdev)
{
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

989
	if (!res || !rspi_pd)
990
		return 0;	/* The driver assumes no error. */
991 992 993

	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
994 995 996 997 998 999 1000 1001
		rspi->chan_rx = rspi_request_dma_chan(&pdev->dev,
						      DMA_DEV_TO_MEM,
						      rspi_pd->dma_rx_id,
						      res->start + RSPI_SPDR);
		if (!rspi->chan_rx)
			return -ENODEV;

		dev_info(&pdev->dev, "Use DMA when rx.\n");
1002 1003
	}
	if (rspi_pd->dma_tx_id) {
1004 1005 1006 1007 1008 1009 1010 1011
		rspi->chan_tx = rspi_request_dma_chan(&pdev->dev,
						      DMA_MEM_TO_DEV,
						      rspi_pd->dma_tx_id,
						      res->start + RSPI_SPDR);
		if (!rspi->chan_tx)
			return -ENODEV;

		dev_info(&pdev->dev, "Use DMA when tx\n");
1012
	}
1013 1014

	return 0;
1015 1016
}

1017
static void rspi_release_dma(struct rspi_data *rspi)
1018 1019 1020 1021 1022 1023 1024
{
	if (rspi->chan_tx)
		dma_release_channel(rspi->chan_tx);
	if (rspi->chan_rx)
		dma_release_channel(rspi->chan_rx);
}

1025
static int rspi_remove(struct platform_device *pdev)
1026
{
1027
	struct rspi_data *rspi = platform_get_drvdata(pdev);
1028

1029
	rspi_release_dma(rspi);
1030
	pm_runtime_disable(&pdev->dev);
1031 1032 1033 1034

	return 0;
}

G
Geert Uytterhoeven 已提交
1035
static const struct spi_ops rspi_ops = {
1036 1037 1038 1039
	.set_config_register =	rspi_set_config_register,
	.transfer_one =		rspi_transfer_one,
	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
	.flags =		SPI_MASTER_MUST_TX,
G
Geert Uytterhoeven 已提交
1040 1041 1042
};

static const struct spi_ops rspi_rz_ops = {
1043 1044 1045 1046
	.set_config_register =	rspi_rz_set_config_register,
	.transfer_one =		rspi_rz_transfer_one,
	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
G
Geert Uytterhoeven 已提交
1047 1048 1049
};

static const struct spi_ops qspi_ops = {
1050 1051 1052 1053 1054 1055
	.set_config_register =	qspi_set_config_register,
	.transfer_one =		qspi_transfer_one,
	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
				SPI_TX_DUAL | SPI_TX_QUAD |
				SPI_RX_DUAL | SPI_RX_QUAD,
	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
G
Geert Uytterhoeven 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
};

#ifdef CONFIG_OF
static const struct of_device_id rspi_of_match[] = {
	/* RSPI on legacy SH */
	{ .compatible = "renesas,rspi", .data = &rspi_ops },
	/* RSPI on RZ/A1H */
	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
	/* QSPI on R-Car Gen2 */
	{ .compatible = "renesas,qspi", .data = &qspi_ops },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, rspi_of_match);

static int rspi_parse_dt(struct device *dev, struct spi_master *master)
{
	u32 num_cs;
	int error;

	/* Parse DT properties */
	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
	if (error) {
		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
		return error;
	}

	master->num_chipselect = num_cs;
	return 0;
}
#else
1087
#define rspi_of_match	NULL
G
Geert Uytterhoeven 已提交
1088 1089 1090 1091 1092 1093
static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
{
	return -EINVAL;
}
#endif /* CONFIG_OF */

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static int rspi_request_irq(struct device *dev, unsigned int irq,
			    irq_handler_t handler, const char *suffix,
			    void *dev_id)
{
	const char *base = dev_name(dev);
	size_t len = strlen(base) + strlen(suffix) + 2;
	char *name = devm_kzalloc(dev, len, GFP_KERNEL);
	if (!name)
		return -ENOMEM;
	snprintf(name, len, "%s:%s", base, suffix);
	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
}

1107
static int rspi_probe(struct platform_device *pdev)
1108 1109 1110 1111
{
	struct resource *res;
	struct spi_master *master;
	struct rspi_data *rspi;
1112
	int ret;
G
Geert Uytterhoeven 已提交
1113 1114
	const struct of_device_id *of_id;
	const struct rspi_plat_data *rspi_pd;
1115
	const struct spi_ops *ops;
1116 1117 1118 1119 1120 1121 1122

	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
	if (master == NULL) {
		dev_err(&pdev->dev, "spi_alloc_master error.\n");
		return -ENOMEM;
	}

G
Geert Uytterhoeven 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	of_id = of_match_device(rspi_of_match, &pdev->dev);
	if (of_id) {
		ops = of_id->data;
		ret = rspi_parse_dt(&pdev->dev, master);
		if (ret)
			goto error1;
	} else {
		ops = (struct spi_ops *)pdev->id_entry->driver_data;
		rspi_pd = dev_get_platdata(&pdev->dev);
		if (rspi_pd && rspi_pd->num_chipselect)
			master->num_chipselect = rspi_pd->num_chipselect;
		else
			master->num_chipselect = 2; /* default */
	};

	/* ops parameter check */
	if (!ops->set_config_register) {
		dev_err(&pdev->dev, "there is no set_config_register\n");
		ret = -ENODEV;
		goto error1;
	}

1145
	rspi = spi_master_get_devdata(master);
1146
	platform_set_drvdata(pdev, rspi);
1147
	rspi->ops = ops;
1148
	rspi->master = master;
1149 1150 1151 1152 1153

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(rspi->addr)) {
		ret = PTR_ERR(rspi->addr);
1154 1155 1156
		goto error1;
	}

1157
	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1158 1159 1160
	if (IS_ERR(rspi->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(rspi->clk);
1161
		goto error1;
1162
	}
1163

1164
	pm_runtime_enable(&pdev->dev);
1165 1166 1167 1168 1169

	init_waitqueue_head(&rspi->wait);

	master->bus_num = pdev->id;
	master->setup = rspi_setup;
1170
	master->auto_runtime_pm = true;
1171
	master->transfer_one = ops->transfer_one;
1172 1173
	master->prepare_message = rspi_prepare_message;
	master->unprepare_message = rspi_unprepare_message;
1174
	master->mode_bits = ops->mode_bits;
1175
	master->flags = ops->flags;
G
Geert Uytterhoeven 已提交
1176
	master->dev.of_node = pdev->dev.of_node;
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	ret = platform_get_irq_byname(pdev, "rx");
	if (ret < 0) {
		ret = platform_get_irq_byname(pdev, "mux");
		if (ret < 0)
			ret = platform_get_irq(pdev, 0);
		if (ret >= 0)
			rspi->rx_irq = rspi->tx_irq = ret;
	} else {
		rspi->rx_irq = ret;
		ret = platform_get_irq_byname(pdev, "tx");
		if (ret >= 0)
			rspi->tx_irq = ret;
	}
	if (ret < 0) {
		dev_err(&pdev->dev, "platform_get_irq error\n");
		goto error2;
	}

	if (rspi->rx_irq == rspi->tx_irq) {
		/* Single multiplexed interrupt */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
				       "mux", rspi);
	} else {
		/* Multi-interrupt mode, only SPRI and SPTI are used */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
				       "rx", rspi);
		if (!ret)
			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
					       rspi_irq_tx, "tx", rspi);
	}
1208 1209
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq error\n");
1210
		goto error2;
1211 1212
	}

1213
	ret = rspi_request_dma(rspi, pdev);
1214 1215
	if (ret < 0)
		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1216

1217
	ret = devm_spi_register_master(&pdev->dev, master);
1218 1219
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
1220
		goto error3;
1221 1222 1223 1224 1225 1226
	}

	dev_info(&pdev->dev, "probed\n");

	return 0;

1227
error3:
1228
	rspi_release_dma(rspi);
1229
error2:
1230
	pm_runtime_disable(&pdev->dev);
1231 1232 1233 1234 1235 1236
error1:
	spi_master_put(master);

	return ret;
}

1237 1238
static struct platform_device_id spi_driver_ids[] = {
	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1239
	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1240 1241 1242 1243 1244 1245
	{ "qspi",	(kernel_ulong_t)&qspi_ops },
	{},
};

MODULE_DEVICE_TABLE(platform, spi_driver_ids);

1246 1247
static struct platform_driver rspi_driver = {
	.probe =	rspi_probe,
1248
	.remove =	rspi_remove,
1249
	.id_table =	spi_driver_ids,
1250
	.driver		= {
1251
		.name = "renesas_spi",
1252
		.owner	= THIS_MODULE,
G
Geert Uytterhoeven 已提交
1253
		.of_match_table = of_match_ptr(rspi_of_match),
1254 1255 1256 1257 1258 1259 1260 1261
	},
};
module_platform_driver(rspi_driver);

MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_ALIAS("platform:rspi");