spi-rspi.c 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * SH RSPI driver
 *
 * Copyright (C) 2012  Renesas Solutions Corp.
 *
 * Based on spi-sh.c:
 * Copyright (C) 2011 Renesas Solutions Corp.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
34 35 36
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/sh_dma.h>
37
#include <linux/spi/spi.h>
38
#include <linux/spi/rspi.h>
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#define RSPI_SPCR		0x00	/* Control Register */
#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
#define RSPI_SPPCR		0x02	/* Pin Control Register */
#define RSPI_SPSR		0x03	/* Status Register */
#define RSPI_SPDR		0x04	/* Data Register */
#define RSPI_SPSCR		0x08	/* Sequence Control Register */
#define RSPI_SPSSR		0x09	/* Sequence Status Register */
#define RSPI_SPBR		0x0a	/* Bit Rate Register */
#define RSPI_SPDCR		0x0b	/* Data Control Register */
#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
#define RSPI_SPCR2		0x0f	/* Control Register 2 */
#define RSPI_SPCMD0		0x10	/* Command Register 0 */
#define RSPI_SPCMD1		0x12	/* Command Register 1 */
#define RSPI_SPCMD2		0x14	/* Command Register 2 */
#define RSPI_SPCMD3		0x16	/* Command Register 3 */
#define RSPI_SPCMD4		0x18	/* Command Register 4 */
#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
63

64
/*qspi only */
65 66 67 68 69 70
#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
71

72 73 74 75 76 77 78 79 80 81
/* SPCR - Control Register */
#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
#define SPCR_SPE		0x40	/* Function Enable */
#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
/* RSPI on SH only */
#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
82 83 84
/* QSPI on R-Car M2 only */
#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
85 86 87 88 89 90 91 92

/* SSLP - Slave Select Polarity Register */
#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */

/* SPPCR - Pin Control Register */
#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
93
#define SPPCR_SPOM		0x04
94 95 96
#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */

97 98 99
#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/* SPSR - Status Register */
#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
#define SPSR_TEND		0x40	/* Transmit End */
#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
#define SPSR_PERF		0x08	/* Parity Error Flag */
#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
#define SPSR_OVRF		0x01	/* Overrun Error Flag */

/* SPSCR - Sequence Control Register */
#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */

/* SPSSR - Sequence Status Register */
#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */

/* SPDCR - Data Control Register */
#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
#define SPDCR_SPLWORD		SPDCR_SPLW1
#define SPDCR_SPLBYTE		SPDCR_SPLW0
#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select */
125 126
#define SPDCR_SLSEL1		0x08
#define SPDCR_SLSEL0		0x04
127
#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select */
128 129
#define SPDCR_SPFC1		0x02
#define SPDCR_SPFC0		0x01
130
#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) */
131

132 133
/* SPCKD - Clock Delay Register */
#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
134

135 136
/* SSLND - Slave Select Negation Delay Register */
#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
137

138 139
/* SPND - Next-Access Delay Register */
#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
140

141 142 143 144 145
/* SPCR2 - Control Register 2 */
#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
#define SPCR2_SPPE		0x01	/* Parity Enable */
146

147 148 149 150 151 152
/* SPCMDn - Command Registers */
#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
#define SPCMD_LSBF		0x1000	/* LSB First */
#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
153
#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
154 155
#define SPCMD_SPB_8BIT		0x0000	/* qspi only */
#define SPCMD_SPB_16BIT		0x0100
156 157 158
#define SPCMD_SPB_20BIT		0x0000
#define SPCMD_SPB_24BIT		0x0100
#define SPCMD_SPB_32BIT		0x0200
159
#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
160 161 162 163 164 165 166
#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
#define SPCMD_SPIMOD1		0x0040
#define SPCMD_SPIMOD0		0x0020
#define SPCMD_SPIMOD_SINGLE	0
#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
167 168 169 170 171 172 173 174 175 176
#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */

/* SPBFCR - Buffer Control Register */
#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset (qspi only) */
#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset (qspi only) */
#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
177

178 179
#define DUMMY_DATA		0x00

180 181 182 183 184 185 186 187 188
struct rspi_data {
	void __iomem *addr;
	u32 max_speed_hz;
	struct spi_master *master;
	struct list_head queue;
	struct work_struct ws;
	wait_queue_head_t wait;
	spinlock_t lock;
	struct clk *clk;
189
	u8 spsr;
190
	u16 spcmd;
191
	const struct spi_ops *ops;
192 193 194 195 196 197 198 199

	/* for dmaengine */
	struct dma_chan *chan_tx;
	struct dma_chan *chan_rx;
	int irq;

	unsigned dma_width_16bit:1;
	unsigned dma_callbacked:1;
200 201
};

202
static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
203 204 205 206
{
	iowrite8(data, rspi->addr + offset);
}

207
static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
208 209 210 211
{
	iowrite16(data, rspi->addr + offset);
}

212
static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
213 214 215 216
{
	iowrite32(data, rspi->addr + offset);
}

217
static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
218 219 220 221
{
	return ioread8(rspi->addr + offset);
}

222
static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
223 224 225 226
{
	return ioread16(rspi->addr + offset);
}

227 228
/* optional functions */
struct spi_ops {
229 230
	int (*set_config_register)(const struct rspi_data *rspi,
				   int access_size);
231 232
	int (*send_pio)(struct rspi_data *rspi, struct spi_transfer *t);
	int (*receive_pio)(struct rspi_data *rspi, struct spi_transfer *t);
233 234 235 236 237
};

/*
 * functions for RSPI
 */
238 239
static int rspi_set_config_register(const struct rspi_data *rspi,
				    int access_size)
240
{
241 242 243 244
	int spbr;

	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);
245

246 247 248 249 250 251
	/* Sets transfer bit rate */
	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

	/* Sets number of frames to be used: 1 frame */
	rspi_write8(rspi, 0x00, RSPI_SPDCR);
252

253 254 255 256 257 258 259 260 261
	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets parity, interrupt mask */
	rspi_write8(rspi, 0x00, RSPI_SPCR2);

	/* Sets SPCMD */
262
	rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | rspi->spcmd,
263 264 265 266 267 268
		     RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
269 270
}

271 272 273
/*
 * functions for QSPI
 */
274 275
static int qspi_set_config_register(const struct rspi_data *rspi,
				    int access_size)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
{
	u16 spcmd;
	int spbr;

	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);

	/* Sets transfer bit rate */
	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

	/* Sets number of frames to be used: 1 frame */
	rspi_write8(rspi, 0x00, RSPI_SPDCR);

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Data Length Setting */
	if (access_size == 8)
		spcmd = SPCMD_SPB_8BIT;
	else if (access_size == 16)
		spcmd = SPCMD_SPB_16BIT;
300
	else
301 302
		spcmd = SPCMD_SPB_32BIT;

303
	spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | rspi->spcmd | SPCMD_SPNDEN;
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

	/* Resets transfer data length */
	rspi_write32(rspi, 0, QSPI_SPBMUL0);

	/* Resets transmit and receive buffer */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	/* Sets buffer to allow normal operation */
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	/* Sets SPCMD */
	rspi_write16(rspi, spcmd, RSPI_SPCMD0);

	/* Enables SPI function in a master mode */
	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);

	return 0;
}

#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)

324
static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
325 326 327 328
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}

329
static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}

static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
				   u8 enable_bit)
{
	int ret;

	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
	rspi_enable_irq(rspi, enable_bit);
	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
	if (ret == 0 && !(rspi->spsr & wait_mask))
		return -ETIMEDOUT;

	return 0;
}

348
static void rspi_assert_ssl(const struct rspi_data *rspi)
349 350 351 352
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
}

353
static void rspi_negate_ssl(const struct rspi_data *rspi)
354 355 356 357
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
}

358
static int rspi_send_pio(struct rspi_data *rspi, struct spi_transfer *t)
359 360
{
	int remain = t->len;
G
Geert Uytterhoeven 已提交
361
	const u8 *data = t->tx_buf;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	while (remain > 0) {
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
			    RSPI_SPCR);

		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: tx empty timeout\n", __func__);
			return -ETIMEDOUT;
		}

		rspi_write16(rspi, *data, RSPI_SPDR);
		data++;
		remain--;
	}

377
	/* Waiting for the last transmission */
378 379 380 381 382
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

383
static int qspi_send_pio(struct rspi_data *rspi, struct spi_transfer *t)
384 385
{
	int remain = t->len;
G
Geert Uytterhoeven 已提交
386
	const u8 *data = t->tx_buf;
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

	rspi_write8(rspi, SPBFCR_TXRST, QSPI_SPBFCR);
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	while (remain > 0) {

		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: tx empty timeout\n", __func__);
			return -ETIMEDOUT;
		}
		rspi_write8(rspi, *data++, RSPI_SPDR);

		if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: receive timeout\n", __func__);
			return -ETIMEDOUT;
		}
		rspi_read8(rspi, RSPI_SPDR);

		remain--;
	}

410
	/* Waiting for the last transmission */
411 412 413 414 415
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

416
#define send_pio(spi, t) spi->ops->send_pio(spi, t)
417

418 419 420 421 422 423 424 425
static void rspi_dma_complete(void *arg)
{
	struct rspi_data *rspi = arg;

	rspi->dma_callbacked = 1;
	wake_up_interruptible(&rspi->wait);
}

G
Geert Uytterhoeven 已提交
426 427
static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
			   unsigned len, struct dma_chan *chan,
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
			   enum dma_transfer_direction dir)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, len);
	sg_dma_len(sg) = len;
	return dma_map_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
			      enum dma_transfer_direction dir)
{
	dma_unmap_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
{
	u16 *dst = buf;
	const u8 *src = data;

	while (len) {
		*dst++ = (u16)(*src++);
		len--;
	}
}

static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
{
	u8 *dst = buf;
	const u16 *src = data;

	while (len) {
		*dst++ = (u8)*src++;
		len--;
	}
}

static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg;
G
Geert Uytterhoeven 已提交
467
	const void *buf = NULL;
468 469 470 471 472
	struct dma_async_tx_descriptor *desc;
	unsigned len;
	int ret = 0;

	if (rspi->dma_width_16bit) {
G
Geert Uytterhoeven 已提交
473
		void *tmp;
474 475 476 477 478 479 480 481
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, the driver converts original data into the
		 * DMAC data as the following format:
		 *  original data: 1st byte, 2nd byte ...
		 *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
		 */
		len = t->len * 2;
G
Geert Uytterhoeven 已提交
482 483
		tmp = kmalloc(len, GFP_KERNEL);
		if (!tmp)
484
			return -ENOMEM;
G
Geert Uytterhoeven 已提交
485 486
		rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
		buf = tmp;
487 488
	} else {
		len = t->len;
G
Geert Uytterhoeven 已提交
489
		buf = t->tx_buf;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	}

	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
	disable_irq(rspi->irq);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE);

	enable_irq(rspi->irq);

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit)
		kfree(buf);

	return ret;
}

537
static void rspi_receive_init(const struct rspi_data *rspi)
538
{
539
	u8 spsr;
540 541 542 543 544 545

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		rspi_read16(rspi, RSPI_SPDR);	/* dummy read */
	if (spsr & SPSR_OVRF)
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
546
			    RSPI_SPSR);
547 548
}

549
static int rspi_receive_pio(struct rspi_data *rspi, struct spi_transfer *t)
550 551 552 553 554
{
	int remain = t->len;
	u8 *data;

	rspi_receive_init(rspi);
555

G
Geert Uytterhoeven 已提交
556
	data = t->rx_buf;
557 558 559 560 561 562 563 564 565 566
	while (remain > 0) {
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
			    RSPI_SPCR);

		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: tx empty timeout\n", __func__);
			return -ETIMEDOUT;
		}
		/* dummy write for generate clock */
567
		rspi_write16(rspi, DUMMY_DATA, RSPI_SPDR);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

		if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: receive timeout\n", __func__);
			return -ETIMEDOUT;
		}
		/* SPDR allows 16 or 32-bit access only */
		*data = (u8)rspi_read16(rspi, RSPI_SPDR);

		data++;
		remain--;
	}

	return 0;
}

584
static void qspi_receive_init(const struct rspi_data *rspi)
585
{
586
	u8 spsr;
587 588 589 590 591 592 593 594

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		rspi_read8(rspi, RSPI_SPDR);   /* dummy read */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
}

595
static int qspi_receive_pio(struct rspi_data *rspi, struct spi_transfer *t)
596 597 598 599 600 601
{
	int remain = t->len;
	u8 *data;

	qspi_receive_init(rspi);

G
Geert Uytterhoeven 已提交
602
	data = t->rx_buf;
603 604 605 606 607 608 609 610
	while (remain > 0) {

		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: tx empty timeout\n", __func__);
			return -ETIMEDOUT;
		}
		/* dummy write for generate clock */
611
		rspi_write8(rspi, DUMMY_DATA, RSPI_SPDR);
612 613 614 615 616 617 618 619 620 621 622 623 624 625

		if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
			dev_err(&rspi->master->dev,
				"%s: receive timeout\n", __func__);
			return -ETIMEDOUT;
		}
		/* SPDR allows 8, 16 or 32-bit access */
		*data++ = rspi_read8(rspi, RSPI_SPDR);
		remain--;
	}

	return 0;
}

626
#define receive_pio(spi, t) spi->ops->receive_pio(spi, t)
627

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg, sg_dummy;
	void *dummy = NULL, *rx_buf = NULL;
	struct dma_async_tx_descriptor *desc, *desc_dummy;
	unsigned len;
	int ret = 0;

	if (rspi->dma_width_16bit) {
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, finally the driver converts the DMAC data into
		 * actual data as the following format:
		 *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
		 *  actual data: 1st byte, 2nd byte ...
		 */
		len = t->len * 2;
		rx_buf = kmalloc(len, GFP_KERNEL);
		if (!rx_buf)
			return -ENOMEM;
	 } else {
		len = t->len;
		rx_buf = t->rx_buf;
	}

	/* prepare dummy transfer to generate SPI clocks */
	dummy = kzalloc(len, GFP_KERNEL);
	if (!dummy) {
		ret = -ENOMEM;
		goto end_nomap;
	}
	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
			     DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc_dummy) {
		ret = -EIO;
		goto end_dummy_mapped;
	}

	/* prepare receive transfer */
	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
			     DMA_FROM_DEVICE)) {
		ret = -EFAULT;
		goto end_dummy_mapped;

	}
	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	rspi_receive_init(rspi);

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
	disable_irq(rspi->irq);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_rx);

	desc_dummy->callback = NULL;	/* No callback */
	dmaengine_submit(desc_dummy);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);

	enable_irq(rspi->irq);

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
end_dummy_mapped:
	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit) {
		if (!ret)
			rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
		kfree(rx_buf);
	}
	kfree(dummy);

	return ret;
}

731
static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
732 733 734 735 736 737 738 739 740 741
{
	if (t->tx_buf && rspi->chan_tx)
		return 1;
	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
		return 1;

	return 0;
}

742 743 744 745 746 747 748 749
static void rspi_work(struct work_struct *work)
{
	struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
	struct spi_message *mesg;
	struct spi_transfer *t;
	unsigned long flags;
	int ret;

750 751 752 753 754 755
	while (1) {
		spin_lock_irqsave(&rspi->lock, flags);
		if (list_empty(&rspi->queue)) {
			spin_unlock_irqrestore(&rspi->lock, flags);
			break;
		}
756 757 758 759 760 761 762 763
		mesg = list_entry(rspi->queue.next, struct spi_message, queue);
		list_del_init(&mesg->queue);
		spin_unlock_irqrestore(&rspi->lock, flags);

		rspi_assert_ssl(rspi);

		list_for_each_entry(t, &mesg->transfers, transfer_list) {
			if (t->tx_buf) {
764 765 766
				if (rspi_is_dma(rspi, t))
					ret = rspi_send_dma(rspi, t);
				else
767
					ret = send_pio(rspi, t);
768 769 770 771
				if (ret < 0)
					goto error;
			}
			if (t->rx_buf) {
772 773 774
				if (rspi_is_dma(rspi, t))
					ret = rspi_receive_dma(rspi, t);
				else
775
					ret = receive_pio(rspi, t);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
				if (ret < 0)
					goto error;
			}
			mesg->actual_length += t->len;
		}
		rspi_negate_ssl(rspi);

		mesg->status = 0;
		mesg->complete(mesg->context);
	}

	return;

error:
	mesg->status = ret;
	mesg->complete(mesg->context);
}

static int rspi_setup(struct spi_device *spi)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);

	rspi->max_speed_hz = spi->max_speed_hz;

800 801 802 803 804 805
	rspi->spcmd = SPCMD_SSLKP;
	if (spi->mode & SPI_CPOL)
		rspi->spcmd |= SPCMD_CPOL;
	if (spi->mode & SPI_CPHA)
		rspi->spcmd |= SPCMD_CPHA;

806
	set_config_register(rspi, 8);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

	return 0;
}

static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
	unsigned long flags;

	mesg->actual_length = 0;
	mesg->status = -EINPROGRESS;

	spin_lock_irqsave(&rspi->lock, flags);
	list_add_tail(&mesg->queue, &rspi->queue);
	schedule_work(&rspi->ws);
	spin_unlock_irqrestore(&rspi->lock, flags);

	return 0;
}

static void rspi_cleanup(struct spi_device *spi)
{
}

static irqreturn_t rspi_irq(int irq, void *_sr)
{
G
Geert Uytterhoeven 已提交
833
	struct rspi_data *rspi = _sr;
834
	u8 spsr;
835
	irqreturn_t ret = IRQ_NONE;
836
	u8 disable_irq = 0;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		disable_irq |= SPCR_SPRIE;
	if (spsr & SPSR_SPTEF)
		disable_irq |= SPCR_SPTIE;

	if (disable_irq) {
		ret = IRQ_HANDLED;
		rspi_disable_irq(rspi, disable_irq);
		wake_up(&rspi->wait);
	}

	return ret;
}

853
static int rspi_request_dma(struct rspi_data *rspi,
854
				      struct platform_device *pdev)
855
{
856
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
857
	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
858
	dma_cap_mask_t mask;
859 860
	struct dma_slave_config cfg;
	int ret;
861

862
	if (!res || !rspi_pd)
863
		return 0;	/* The driver assumes no error. */
864 865 866 867 868 869 870

	rspi->dma_width_16bit = rspi_pd->dma_width_16bit;

	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
871 872 873 874 875
		rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_rx_id);
		if (rspi->chan_rx) {
			cfg.slave_id = rspi_pd->dma_rx_id;
			cfg.direction = DMA_DEV_TO_MEM;
876 877
			cfg.dst_addr = 0;
			cfg.src_addr = res->start + RSPI_SPDR;
878 879 880 881 882 883
			ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when rx.\n");
			else
				return ret;
		}
884 885 886 887
	}
	if (rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
888 889 890 891 892
		rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_tx_id);
		if (rspi->chan_tx) {
			cfg.slave_id = rspi_pd->dma_tx_id;
			cfg.direction = DMA_MEM_TO_DEV;
893 894
			cfg.dst_addr = res->start + RSPI_SPDR;
			cfg.src_addr = 0;
895 896 897 898 899 900
			ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when tx\n");
			else
				return ret;
		}
901
	}
902 903

	return 0;
904 905
}

906
static void rspi_release_dma(struct rspi_data *rspi)
907 908 909 910 911 912 913
{
	if (rspi->chan_tx)
		dma_release_channel(rspi->chan_tx);
	if (rspi->chan_rx)
		dma_release_channel(rspi->chan_rx);
}

914
static int rspi_remove(struct platform_device *pdev)
915
{
916
	struct rspi_data *rspi = platform_get_drvdata(pdev);
917

918
	rspi_release_dma(rspi);
919
	clk_disable(rspi->clk);
920 921 922 923

	return 0;
}

924
static int rspi_probe(struct platform_device *pdev)
925 926 927 928 929 930
{
	struct resource *res;
	struct spi_master *master;
	struct rspi_data *rspi;
	int ret, irq;
	char clk_name[16];
931
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
932 933 934 935 936 937 938 939 940
	const struct spi_ops *ops;
	const struct platform_device_id *id_entry = pdev->id_entry;

	ops = (struct spi_ops *)id_entry->driver_data;
	/* ops parameter check */
	if (!ops->set_config_register) {
		dev_err(&pdev->dev, "there is no set_config_register\n");
		return -ENODEV;
	}
941 942 943 944 945 946 947 948 949 950 951 952 953 954

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "platform_get_irq error\n");
		return -ENODEV;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
	if (master == NULL) {
		dev_err(&pdev->dev, "spi_alloc_master error.\n");
		return -ENOMEM;
	}

	rspi = spi_master_get_devdata(master);
955
	platform_set_drvdata(pdev, rspi);
956
	rspi->ops = ops;
957
	rspi->master = master;
958 959 960 961 962

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(rspi->addr)) {
		ret = PTR_ERR(rspi->addr);
963 964 965
		goto error1;
	}

966
	snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id);
967
	rspi->clk = devm_clk_get(&pdev->dev, clk_name);
968 969 970
	if (IS_ERR(rspi->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(rspi->clk);
971
		goto error1;
972 973 974 975 976 977 978 979
	}
	clk_enable(rspi->clk);

	INIT_LIST_HEAD(&rspi->queue);
	spin_lock_init(&rspi->lock);
	INIT_WORK(&rspi->ws, rspi_work);
	init_waitqueue_head(&rspi->wait);

980 981 982
	if (rspi_pd && rspi_pd->num_chipselect)
		master->num_chipselect = rspi_pd->num_chipselect;
	else
983 984
		master->num_chipselect = 2; /* default */

985 986 987 988
	master->bus_num = pdev->id;
	master->setup = rspi_setup;
	master->transfer = rspi_transfer;
	master->cleanup = rspi_cleanup;
989
	master->mode_bits = SPI_CPHA | SPI_CPOL;
990

991 992
	ret = devm_request_irq(&pdev->dev, irq, rspi_irq, 0,
			       dev_name(&pdev->dev), rspi);
993 994
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq error\n");
995
		goto error2;
996 997
	}

998
	rspi->irq = irq;
999 1000 1001
	ret = rspi_request_dma(rspi, pdev);
	if (ret < 0) {
		dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1002
		goto error3;
1003
	}
1004

1005
	ret = devm_spi_register_master(&pdev->dev, master);
1006 1007
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
1008
		goto error3;
1009 1010 1011 1012 1013 1014
	}

	dev_info(&pdev->dev, "probed\n");

	return 0;

1015
error3:
1016
	rspi_release_dma(rspi);
1017 1018
error2:
	clk_disable(rspi->clk);
1019 1020 1021 1022 1023 1024
error1:
	spi_master_put(master);

	return ret;
}

1025 1026
static struct spi_ops rspi_ops = {
	.set_config_register =		rspi_set_config_register,
1027 1028
	.send_pio =			rspi_send_pio,
	.receive_pio =			rspi_receive_pio,
1029 1030 1031 1032
};

static struct spi_ops qspi_ops = {
	.set_config_register =		qspi_set_config_register,
1033 1034
	.send_pio =			qspi_send_pio,
	.receive_pio =			qspi_receive_pio,
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
};

static struct platform_device_id spi_driver_ids[] = {
	{ "rspi",	(kernel_ulong_t)&rspi_ops },
	{ "qspi",	(kernel_ulong_t)&qspi_ops },
	{},
};

MODULE_DEVICE_TABLE(platform, spi_driver_ids);

1045 1046
static struct platform_driver rspi_driver = {
	.probe =	rspi_probe,
1047
	.remove =	rspi_remove,
1048
	.id_table =	spi_driver_ids,
1049
	.driver		= {
1050
		.name = "renesas_spi",
1051 1052 1053 1054 1055 1056 1057 1058 1059
		.owner	= THIS_MODULE,
	},
};
module_platform_driver(rspi_driver);

MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_ALIAS("platform:rspi");