spi-rspi.c 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * SH RSPI driver
 *
 * Copyright (C) 2012  Renesas Solutions Corp.
 *
 * Based on spi-sh.c:
 * Copyright (C) 2011 Renesas Solutions Corp.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
32 33 34
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/sh_dma.h>
35
#include <linux/spi/spi.h>
36
#include <linux/spi/rspi.h>
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#define RSPI_SPCR		0x00	/* Control Register */
#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
#define RSPI_SPPCR		0x02	/* Pin Control Register */
#define RSPI_SPSR		0x03	/* Status Register */
#define RSPI_SPDR		0x04	/* Data Register */
#define RSPI_SPSCR		0x08	/* Sequence Control Register */
#define RSPI_SPSSR		0x09	/* Sequence Status Register */
#define RSPI_SPBR		0x0a	/* Bit Rate Register */
#define RSPI_SPDCR		0x0b	/* Data Control Register */
#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
#define RSPI_SPCR2		0x0f	/* Control Register 2 */
#define RSPI_SPCMD0		0x10	/* Command Register 0 */
#define RSPI_SPCMD1		0x12	/* Command Register 1 */
#define RSPI_SPCMD2		0x14	/* Command Register 2 */
#define RSPI_SPCMD3		0x16	/* Command Register 3 */
#define RSPI_SPCMD4		0x18	/* Command Register 4 */
#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
61

62
/*qspi only */
63 64 65 66 67 68
#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
69

70 71 72 73 74 75 76 77 78 79
/* SPCR - Control Register */
#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
#define SPCR_SPE		0x40	/* Function Enable */
#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
/* RSPI on SH only */
#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
80 81 82
/* QSPI on R-Car M2 only */
#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
83 84 85 86 87 88 89 90

/* SSLP - Slave Select Polarity Register */
#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */

/* SPPCR - Pin Control Register */
#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
91
#define SPPCR_SPOM		0x04
92 93 94
#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */

95 96 97
#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/* SPSR - Status Register */
#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
#define SPSR_TEND		0x40	/* Transmit End */
#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
#define SPSR_PERF		0x08	/* Parity Error Flag */
#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
#define SPSR_OVRF		0x01	/* Overrun Error Flag */

/* SPSCR - Sequence Control Register */
#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */

/* SPSSR - Sequence Status Register */
#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */

/* SPDCR - Data Control Register */
#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
#define SPDCR_SPLWORD		SPDCR_SPLW1
#define SPDCR_SPLBYTE		SPDCR_SPLW0
#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select */
123 124
#define SPDCR_SLSEL1		0x08
#define SPDCR_SLSEL0		0x04
125
#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select */
126 127
#define SPDCR_SPFC1		0x02
#define SPDCR_SPFC0		0x01
128
#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) */
129

130 131
/* SPCKD - Clock Delay Register */
#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
132

133 134
/* SSLND - Slave Select Negation Delay Register */
#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
135

136 137
/* SPND - Next-Access Delay Register */
#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
138

139 140 141 142 143
/* SPCR2 - Control Register 2 */
#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
#define SPCR2_SPPE		0x01	/* Parity Enable */
144

145 146 147 148 149 150
/* SPCMDn - Command Registers */
#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
#define SPCMD_LSBF		0x1000	/* LSB First */
#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
151
#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
152 153
#define SPCMD_SPB_8BIT		0x0000	/* qspi only */
#define SPCMD_SPB_16BIT		0x0100
154 155 156
#define SPCMD_SPB_20BIT		0x0000
#define SPCMD_SPB_24BIT		0x0100
#define SPCMD_SPB_32BIT		0x0200
157
#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
158 159 160 161 162 163 164
#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
#define SPCMD_SPIMOD1		0x0040
#define SPCMD_SPIMOD0		0x0020
#define SPCMD_SPIMOD_SINGLE	0
#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
165 166 167 168 169 170 171 172 173 174
#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */

/* SPBFCR - Buffer Control Register */
#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset (qspi only) */
#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset (qspi only) */
#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
175

176 177
#define DUMMY_DATA		0x00

178 179 180 181 182 183
struct rspi_data {
	void __iomem *addr;
	u32 max_speed_hz;
	struct spi_master *master;
	wait_queue_head_t wait;
	struct clk *clk;
184
	u8 spsr;
185
	u16 spcmd;
186
	const struct spi_ops *ops;
187 188 189 190 191 192 193 194

	/* for dmaengine */
	struct dma_chan *chan_tx;
	struct dma_chan *chan_rx;
	int irq;

	unsigned dma_width_16bit:1;
	unsigned dma_callbacked:1;
195
	unsigned byte_access:1;
196 197
};

198
static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
199 200 201 202
{
	iowrite8(data, rspi->addr + offset);
}

203
static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
204 205 206 207
{
	iowrite16(data, rspi->addr + offset);
}

208
static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
209 210 211 212
{
	iowrite32(data, rspi->addr + offset);
}

213
static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
214 215 216 217
{
	return ioread8(rspi->addr + offset);
}

218
static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
219 220 221 222
{
	return ioread16(rspi->addr + offset);
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static void rspi_write_data(const struct rspi_data *rspi, u16 data)
{
	if (rspi->byte_access)
		rspi_write8(rspi, data, RSPI_SPDR);
	else /* 16 bit */
		rspi_write16(rspi, data, RSPI_SPDR);
}

static u16 rspi_read_data(const struct rspi_data *rspi)
{
	if (rspi->byte_access)
		return rspi_read8(rspi, RSPI_SPDR);
	else /* 16 bit */
		return rspi_read16(rspi, RSPI_SPDR);
}

239 240
/* optional functions */
struct spi_ops {
241
	int (*set_config_register)(struct rspi_data *rspi, int access_size);
242 243
	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
			    struct spi_transfer *xfer);
244 245 246 247 248
};

/*
 * functions for RSPI
 */
249
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
250
{
251 252 253 254
	int spbr;

	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);
255

256 257 258 259
	/* Sets transfer bit rate */
	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

260 261 262
	/* Disable dummy transmission, set 16-bit word access, 1 frame */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 0;
263

264 265 266 267 268 269 270 271 272
	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets parity, interrupt mask */
	rspi_write8(rspi, 0x00, RSPI_SPCR2);

	/* Sets SPCMD */
273
	rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | rspi->spcmd,
274 275 276 277 278 279
		     RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
280 281
}

282 283 284
/*
 * functions for QSPI
 */
285
static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
286 287 288 289 290 291 292 293 294 295 296
{
	u16 spcmd;
	int spbr;

	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);

	/* Sets transfer bit rate */
	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

297 298 299
	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 1;
300 301 302 303 304 305 306 307 308 309 310

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Data Length Setting */
	if (access_size == 8)
		spcmd = SPCMD_SPB_8BIT;
	else if (access_size == 16)
		spcmd = SPCMD_SPB_16BIT;
311
	else
312 313
		spcmd = SPCMD_SPB_32BIT;

314
	spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | rspi->spcmd | SPCMD_SPNDEN;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

	/* Resets transfer data length */
	rspi_write32(rspi, 0, QSPI_SPBMUL0);

	/* Resets transmit and receive buffer */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	/* Sets buffer to allow normal operation */
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	/* Sets SPCMD */
	rspi_write16(rspi, spcmd, RSPI_SPCMD0);

	/* Enables SPI function in a master mode */
	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);

	return 0;
}

#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)

335
static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
336 337 338 339
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}

340
static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}

static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
				   u8 enable_bit)
{
	int ret;

	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
	rspi_enable_irq(rspi, enable_bit);
	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
	if (ret == 0 && !(rspi->spsr & wait_mask))
		return -ETIMEDOUT;

	return 0;
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static int rspi_data_out(struct rspi_data *rspi, u8 data)
{
	if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
		dev_err(&rspi->master->dev, "transmit timeout\n");
		return -ETIMEDOUT;
	}
	rspi_write_data(rspi, data);
	return 0;
}

static int rspi_data_in(struct rspi_data *rspi)
{
	u8 data;

	if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
		dev_err(&rspi->master->dev, "receive timeout\n");
		return -ETIMEDOUT;
	}
	data = rspi_read_data(rspi);
	return data;
}

static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
{
	int ret;

	ret = rspi_data_out(rspi, data);
	if (ret < 0)
		return ret;

	return rspi_data_in(rspi);
}

392
static int rspi_send_pio(struct rspi_data *rspi, struct spi_transfer *t)
393
{
394
	int remain = t->len, ret;
G
Geert Uytterhoeven 已提交
395
	const u8 *data = t->tx_buf;
396

397 398 399 400
	while (remain > 0) {
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
			    RSPI_SPCR);

401 402 403
		ret = rspi_data_out(rspi, *data++);
		if (ret < 0)
			return ret;
404 405 406
		remain--;
	}

407
	/* Waiting for the last transmission */
408 409 410 411 412
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

413
static int qspi_send_pio(struct rspi_data *rspi, struct spi_transfer *t)
414
{
415
	int remain = t->len, ret;
G
Geert Uytterhoeven 已提交
416
	const u8 *data = t->tx_buf;
417 418 419 420 421

	rspi_write8(rspi, SPBFCR_TXRST, QSPI_SPBFCR);
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	while (remain > 0) {
422 423 424 425
		/* dummy read */
		ret = rspi_data_out_in(rspi, *data++);
		if (ret < 0)
			return ret;
426 427 428
		remain--;
	}

429
	/* Waiting for the last transmission */
430 431 432 433 434
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

435 436 437 438 439 440 441 442
static void rspi_dma_complete(void *arg)
{
	struct rspi_data *rspi = arg;

	rspi->dma_callbacked = 1;
	wake_up_interruptible(&rspi->wait);
}

G
Geert Uytterhoeven 已提交
443 444
static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
			   unsigned len, struct dma_chan *chan,
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
			   enum dma_transfer_direction dir)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, len);
	sg_dma_len(sg) = len;
	return dma_map_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
			      enum dma_transfer_direction dir)
{
	dma_unmap_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
{
	u16 *dst = buf;
	const u8 *src = data;

	while (len) {
		*dst++ = (u16)(*src++);
		len--;
	}
}

static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
{
	u8 *dst = buf;
	const u16 *src = data;

	while (len) {
		*dst++ = (u8)*src++;
		len--;
	}
}

static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg;
G
Geert Uytterhoeven 已提交
484
	const void *buf = NULL;
485 486 487 488 489
	struct dma_async_tx_descriptor *desc;
	unsigned len;
	int ret = 0;

	if (rspi->dma_width_16bit) {
G
Geert Uytterhoeven 已提交
490
		void *tmp;
491 492 493 494 495 496 497 498
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, the driver converts original data into the
		 * DMAC data as the following format:
		 *  original data: 1st byte, 2nd byte ...
		 *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
		 */
		len = t->len * 2;
G
Geert Uytterhoeven 已提交
499 500
		tmp = kmalloc(len, GFP_KERNEL);
		if (!tmp)
501
			return -ENOMEM;
G
Geert Uytterhoeven 已提交
502 503
		rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
		buf = tmp;
504 505
	} else {
		len = t->len;
G
Geert Uytterhoeven 已提交
506
		buf = t->tx_buf;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	}

	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
	disable_irq(rspi->irq);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE);

	enable_irq(rspi->irq);

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit)
		kfree(buf);

	return ret;
}

554
static void rspi_receive_init(const struct rspi_data *rspi)
555
{
556
	u8 spsr;
557 558 559

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
560
		rspi_read_data(rspi);	/* dummy read */
561 562
	if (spsr & SPSR_OVRF)
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
563
			    RSPI_SPSR);
564 565
}

566
static int rspi_receive_pio(struct rspi_data *rspi, struct spi_transfer *t)
567
{
568 569
	int remain = t->len, ret;
	u8 *data = t->rx_buf;
570 571

	rspi_receive_init(rspi);
572 573 574 575 576

	while (remain > 0) {
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
			    RSPI_SPCR);

577 578 579 580 581
		/* dummy write data for generate clock */
		ret = rspi_data_out_in(rspi, DUMMY_DATA);
		if (ret < 0)
			return ret;
		*data++ = ret;
582 583 584 585 586 587
		remain--;
	}

	return 0;
}

588
static void qspi_receive_init(const struct rspi_data *rspi)
589
{
590
	u8 spsr;
591 592 593

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
594
		rspi_read_data(rspi);   /* dummy read */
595 596 597 598
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
}

599
static int qspi_receive_pio(struct rspi_data *rspi, struct spi_transfer *t)
600
{
601 602
	int remain = t->len, ret;
	u8 *data = t->rx_buf;
603 604 605 606 607

	qspi_receive_init(rspi);

	while (remain > 0) {
		/* dummy write for generate clock */
608 609 610 611
		ret = rspi_data_out_in(rspi, DUMMY_DATA);
		if (ret < 0)
			return ret;
		*data++ = ret;
612 613 614 615 616 617
		remain--;
	}

	return 0;
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg, sg_dummy;
	void *dummy = NULL, *rx_buf = NULL;
	struct dma_async_tx_descriptor *desc, *desc_dummy;
	unsigned len;
	int ret = 0;

	if (rspi->dma_width_16bit) {
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, finally the driver converts the DMAC data into
		 * actual data as the following format:
		 *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
		 *  actual data: 1st byte, 2nd byte ...
		 */
		len = t->len * 2;
		rx_buf = kmalloc(len, GFP_KERNEL);
		if (!rx_buf)
			return -ENOMEM;
	 } else {
		len = t->len;
		rx_buf = t->rx_buf;
	}

	/* prepare dummy transfer to generate SPI clocks */
	dummy = kzalloc(len, GFP_KERNEL);
	if (!dummy) {
		ret = -ENOMEM;
		goto end_nomap;
	}
	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
			     DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc_dummy) {
		ret = -EIO;
		goto end_dummy_mapped;
	}

	/* prepare receive transfer */
	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
			     DMA_FROM_DEVICE)) {
		ret = -EFAULT;
		goto end_dummy_mapped;

	}
	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	rspi_receive_init(rspi);

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
	disable_irq(rspi->irq);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_rx);

	desc_dummy->callback = NULL;	/* No callback */
	dmaengine_submit(desc_dummy);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);

	enable_irq(rspi->irq);

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
end_dummy_mapped:
	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit) {
		if (!ret)
			rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
		kfree(rx_buf);
	}
	kfree(dummy);

	return ret;
}

721
static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
722 723 724 725 726 727 728 729 730 731
{
	if (t->tx_buf && rspi->chan_tx)
		return 1;
	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
		return 1;

	return 0;
}

732 733
static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
734
{
735 736
	struct rspi_data *rspi = spi_master_get_devdata(master);
	int ret = 0;
737

738 739 740 741
	if (xfer->tx_buf) {
		if (rspi_is_dma(rspi, xfer))
			ret = rspi_send_dma(rspi, xfer);
		else
742
			ret = rspi_send_pio(rspi, xfer);
743 744
		if (ret < 0)
			return ret;
745
	}
746 747 748 749
	if (xfer->rx_buf) {
		if (rspi_is_dma(rspi, xfer))
			ret = rspi_receive_dma(rspi, xfer);
		else
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
			ret = rspi_receive_pio(rspi, xfer);
	}
	return ret;
}

static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);
	int ret = 0;

	if (xfer->tx_buf) {
		ret = qspi_send_pio(rspi, xfer);
		if (ret < 0)
			return ret;
765
	}
766 767
	if (xfer->rx_buf)
		ret = qspi_receive_pio(rspi, xfer);
768
	return ret;
769 770 771 772 773 774 775 776
}

static int rspi_setup(struct spi_device *spi)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);

	rspi->max_speed_hz = spi->max_speed_hz;

777 778 779 780 781 782
	rspi->spcmd = SPCMD_SSLKP;
	if (spi->mode & SPI_CPOL)
		rspi->spcmd |= SPCMD_CPOL;
	if (spi->mode & SPI_CPHA)
		rspi->spcmd |= SPCMD_CPHA;

783
	set_config_register(rspi, 8);
784 785 786 787

	return 0;
}

788
static void rspi_cleanup(struct spi_device *spi)
789
{
790
}
791

792 793 794 795
static int rspi_prepare_message(struct spi_master *master,
				struct spi_message *message)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);
796

797
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
798 799 800
	return 0;
}

801 802
static int rspi_unprepare_message(struct spi_master *master,
				  struct spi_message *message)
803
{
804 805 806 807
	struct rspi_data *rspi = spi_master_get_devdata(master);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
	return 0;
808 809 810 811
}

static irqreturn_t rspi_irq(int irq, void *_sr)
{
G
Geert Uytterhoeven 已提交
812
	struct rspi_data *rspi = _sr;
813
	u8 spsr;
814
	irqreturn_t ret = IRQ_NONE;
815
	u8 disable_irq = 0;
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		disable_irq |= SPCR_SPRIE;
	if (spsr & SPSR_SPTEF)
		disable_irq |= SPCR_SPTIE;

	if (disable_irq) {
		ret = IRQ_HANDLED;
		rspi_disable_irq(rspi, disable_irq);
		wake_up(&rspi->wait);
	}

	return ret;
}

832
static int rspi_request_dma(struct rspi_data *rspi,
833
				      struct platform_device *pdev)
834
{
835
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
836
	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
837
	dma_cap_mask_t mask;
838 839
	struct dma_slave_config cfg;
	int ret;
840

841
	if (!res || !rspi_pd)
842
		return 0;	/* The driver assumes no error. */
843 844 845 846 847 848 849

	rspi->dma_width_16bit = rspi_pd->dma_width_16bit;

	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
850 851 852 853 854
		rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_rx_id);
		if (rspi->chan_rx) {
			cfg.slave_id = rspi_pd->dma_rx_id;
			cfg.direction = DMA_DEV_TO_MEM;
855 856
			cfg.dst_addr = 0;
			cfg.src_addr = res->start + RSPI_SPDR;
857 858 859 860 861 862
			ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when rx.\n");
			else
				return ret;
		}
863 864 865 866
	}
	if (rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
867 868 869 870 871
		rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_tx_id);
		if (rspi->chan_tx) {
			cfg.slave_id = rspi_pd->dma_tx_id;
			cfg.direction = DMA_MEM_TO_DEV;
872 873
			cfg.dst_addr = res->start + RSPI_SPDR;
			cfg.src_addr = 0;
874 875 876 877 878 879
			ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when tx\n");
			else
				return ret;
		}
880
	}
881 882

	return 0;
883 884
}

885
static void rspi_release_dma(struct rspi_data *rspi)
886 887 888 889 890 891 892
{
	if (rspi->chan_tx)
		dma_release_channel(rspi->chan_tx);
	if (rspi->chan_rx)
		dma_release_channel(rspi->chan_rx);
}

893
static int rspi_remove(struct platform_device *pdev)
894
{
895
	struct rspi_data *rspi = platform_get_drvdata(pdev);
896

897
	rspi_release_dma(rspi);
898
	clk_disable(rspi->clk);
899 900 901 902

	return 0;
}

903
static int rspi_probe(struct platform_device *pdev)
904 905 906 907 908 909
{
	struct resource *res;
	struct spi_master *master;
	struct rspi_data *rspi;
	int ret, irq;
	char clk_name[16];
910
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
911 912 913 914 915 916 917 918 919
	const struct spi_ops *ops;
	const struct platform_device_id *id_entry = pdev->id_entry;

	ops = (struct spi_ops *)id_entry->driver_data;
	/* ops parameter check */
	if (!ops->set_config_register) {
		dev_err(&pdev->dev, "there is no set_config_register\n");
		return -ENODEV;
	}
920 921 922 923 924 925 926 927 928 929 930 931 932 933

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "platform_get_irq error\n");
		return -ENODEV;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
	if (master == NULL) {
		dev_err(&pdev->dev, "spi_alloc_master error.\n");
		return -ENOMEM;
	}

	rspi = spi_master_get_devdata(master);
934
	platform_set_drvdata(pdev, rspi);
935
	rspi->ops = ops;
936
	rspi->master = master;
937 938 939 940 941

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(rspi->addr)) {
		ret = PTR_ERR(rspi->addr);
942 943 944
		goto error1;
	}

945
	snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id);
946
	rspi->clk = devm_clk_get(&pdev->dev, clk_name);
947 948 949
	if (IS_ERR(rspi->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(rspi->clk);
950
		goto error1;
951 952 953 954 955
	}
	clk_enable(rspi->clk);

	init_waitqueue_head(&rspi->wait);

956 957 958
	if (rspi_pd && rspi_pd->num_chipselect)
		master->num_chipselect = rspi_pd->num_chipselect;
	else
959 960
		master->num_chipselect = 2; /* default */

961 962
	master->bus_num = pdev->id;
	master->setup = rspi_setup;
963
	master->transfer_one = ops->transfer_one;
964
	master->cleanup = rspi_cleanup;
965 966
	master->prepare_message = rspi_prepare_message;
	master->unprepare_message = rspi_unprepare_message;
967
	master->mode_bits = SPI_CPHA | SPI_CPOL;
968

969 970
	ret = devm_request_irq(&pdev->dev, irq, rspi_irq, 0,
			       dev_name(&pdev->dev), rspi);
971 972
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq error\n");
973
		goto error2;
974 975
	}

976
	rspi->irq = irq;
977 978 979
	ret = rspi_request_dma(rspi, pdev);
	if (ret < 0) {
		dev_err(&pdev->dev, "rspi_request_dma failed.\n");
980
		goto error3;
981
	}
982

983
	ret = devm_spi_register_master(&pdev->dev, master);
984 985
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
986
		goto error3;
987 988 989 990 991 992
	}

	dev_info(&pdev->dev, "probed\n");

	return 0;

993
error3:
994
	rspi_release_dma(rspi);
995 996
error2:
	clk_disable(rspi->clk);
997 998 999 1000 1001 1002
error1:
	spi_master_put(master);

	return ret;
}

1003 1004
static struct spi_ops rspi_ops = {
	.set_config_register =		rspi_set_config_register,
1005
	.transfer_one =			rspi_transfer_one,
1006 1007 1008 1009
};

static struct spi_ops qspi_ops = {
	.set_config_register =		qspi_set_config_register,
1010
	.transfer_one =			qspi_transfer_one,
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
};

static struct platform_device_id spi_driver_ids[] = {
	{ "rspi",	(kernel_ulong_t)&rspi_ops },
	{ "qspi",	(kernel_ulong_t)&qspi_ops },
	{},
};

MODULE_DEVICE_TABLE(platform, spi_driver_ids);

1021 1022
static struct platform_driver rspi_driver = {
	.probe =	rspi_probe,
1023
	.remove =	rspi_remove,
1024
	.id_table =	spi_driver_ids,
1025
	.driver		= {
1026
		.name = "renesas_spi",
1027 1028 1029 1030 1031 1032 1033 1034 1035
		.owner	= THIS_MODULE,
	},
};
module_platform_driver(rspi_driver);

MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_ALIAS("platform:rspi");