spi-rspi.c 30.2 KB
Newer Older
1 2 3
/*
 * SH RSPI driver
 *
4
 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 *
 * Based on spi-sh.c:
 * Copyright (C) 2011 Renesas Solutions Corp.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/clk.h>
32 33 34
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/sh_dma.h>
35
#include <linux/spi/spi.h>
36
#include <linux/spi/rspi.h>
37

38 39 40 41 42 43 44 45 46 47 48 49
#define RSPI_SPCR		0x00	/* Control Register */
#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
#define RSPI_SPPCR		0x02	/* Pin Control Register */
#define RSPI_SPSR		0x03	/* Status Register */
#define RSPI_SPDR		0x04	/* Data Register */
#define RSPI_SPSCR		0x08	/* Sequence Control Register */
#define RSPI_SPSSR		0x09	/* Sequence Status Register */
#define RSPI_SPBR		0x0a	/* Bit Rate Register */
#define RSPI_SPDCR		0x0b	/* Data Control Register */
#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
50
#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
51 52 53 54 55 56 57 58
#define RSPI_SPCMD0		0x10	/* Command Register 0 */
#define RSPI_SPCMD1		0x12	/* Command Register 1 */
#define RSPI_SPCMD2		0x14	/* Command Register 2 */
#define RSPI_SPCMD3		0x16	/* Command Register 3 */
#define RSPI_SPCMD4		0x18	/* Command Register 4 */
#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
59 60

/* RSPI on RZ only */
61 62
#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
63

64
/* QSPI only */
65 66 67 68 69 70
#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
71

72 73 74 75 76 77 78 79 80 81
/* SPCR - Control Register */
#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
#define SPCR_SPE		0x40	/* Function Enable */
#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
/* RSPI on SH only */
#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
82 83 84
/* QSPI on R-Car M2 only */
#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
85 86 87 88 89 90 91 92

/* SSLP - Slave Select Polarity Register */
#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */

/* SPPCR - Pin Control Register */
#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
93
#define SPPCR_SPOM		0x04
94 95 96
#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */

97 98 99
#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */

100 101 102 103 104 105 106
/* SPSR - Status Register */
#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
#define SPSR_TEND		0x40	/* Transmit End */
#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
#define SPSR_PERF		0x08	/* Parity Error Flag */
#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
107
#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

/* SPSCR - Sequence Control Register */
#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */

/* SPSSR - Sequence Status Register */
#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */

/* SPDCR - Data Control Register */
#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
#define SPDCR_SPLWORD		SPDCR_SPLW1
#define SPDCR_SPLBYTE		SPDCR_SPLW0
#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
124
#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
125 126
#define SPDCR_SLSEL1		0x08
#define SPDCR_SLSEL0		0x04
127
#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
128 129
#define SPDCR_SPFC1		0x02
#define SPDCR_SPFC0		0x01
130
#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
131

132 133
/* SPCKD - Clock Delay Register */
#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
134

135 136
/* SSLND - Slave Select Negation Delay Register */
#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
137

138 139
/* SPND - Next-Access Delay Register */
#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
140

141 142 143 144 145
/* SPCR2 - Control Register 2 */
#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
#define SPCR2_SPPE		0x01	/* Parity Enable */
146

147 148 149 150 151 152
/* SPCMDn - Command Registers */
#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
#define SPCMD_LSBF		0x1000	/* LSB First */
#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
153
#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
154 155
#define SPCMD_SPB_8BIT		0x0000	/* qspi only */
#define SPCMD_SPB_16BIT		0x0100
156 157 158
#define SPCMD_SPB_20BIT		0x0000
#define SPCMD_SPB_24BIT		0x0100
#define SPCMD_SPB_32BIT		0x0200
159
#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
160 161 162 163 164 165 166
#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
#define SPCMD_SPIMOD1		0x0040
#define SPCMD_SPIMOD0		0x0020
#define SPCMD_SPIMOD_SINGLE	0
#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
167 168 169 170 171 172
#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */

/* SPBFCR - Buffer Control Register */
173 174
#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
175 176
#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
177

178 179
#define DUMMY_DATA		0x00

180 181 182 183 184 185
struct rspi_data {
	void __iomem *addr;
	u32 max_speed_hz;
	struct spi_master *master;
	wait_queue_head_t wait;
	struct clk *clk;
186
	u8 spsr;
187
	u16 spcmd;
188
	int rx_irq, tx_irq;
189
	const struct spi_ops *ops;
190 191 192 193 194 195 196

	/* for dmaengine */
	struct dma_chan *chan_tx;
	struct dma_chan *chan_rx;

	unsigned dma_width_16bit:1;
	unsigned dma_callbacked:1;
197
	unsigned byte_access:1;
198 199
};

200
static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
201 202 203 204
{
	iowrite8(data, rspi->addr + offset);
}

205
static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
206 207 208 209
{
	iowrite16(data, rspi->addr + offset);
}

210
static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
211 212 213 214
{
	iowrite32(data, rspi->addr + offset);
}

215
static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
216 217 218 219
{
	return ioread8(rspi->addr + offset);
}

220
static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
221 222 223 224
{
	return ioread16(rspi->addr + offset);
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static void rspi_write_data(const struct rspi_data *rspi, u16 data)
{
	if (rspi->byte_access)
		rspi_write8(rspi, data, RSPI_SPDR);
	else /* 16 bit */
		rspi_write16(rspi, data, RSPI_SPDR);
}

static u16 rspi_read_data(const struct rspi_data *rspi)
{
	if (rspi->byte_access)
		return rspi_read8(rspi, RSPI_SPDR);
	else /* 16 bit */
		return rspi_read16(rspi, RSPI_SPDR);
}

241 242
/* optional functions */
struct spi_ops {
243
	int (*set_config_register)(struct rspi_data *rspi, int access_size);
244 245
	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
			    struct spi_transfer *xfer);
246 247 248
};

/*
249
 * functions for RSPI on legacy SH
250
 */
251
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
252
{
253 254 255 256
	int spbr;

	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);
257

258 259 260 261
	/* Sets transfer bit rate */
	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

262 263 264
	/* Disable dummy transmission, set 16-bit word access, 1 frame */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 0;
265

266 267 268 269 270 271 272 273 274
	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets parity, interrupt mask */
	rspi_write8(rspi, 0x00, RSPI_SPCR2);

	/* Sets SPCMD */
275
	rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | rspi->spcmd,
276 277 278 279 280 281
		     RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
282 283
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * functions for RSPI on RZ
 */
static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
{
	int spbr;

	/* Sets output mode */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);

	/* Sets transfer bit rate */
	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
	rspi->byte_access = 1;

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Sets SPCMD */
	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);

	/* Sets RSPI mode */
	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);

	return 0;
}

317 318 319
/*
 * functions for QSPI
 */
320
static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
321 322 323 324 325 326 327 328 329 330 331
{
	u16 spcmd;
	int spbr;

	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
	rspi_write8(rspi, 0x00, RSPI_SPPCR);

	/* Sets transfer bit rate */
	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);

332 333 334
	/* Disable dummy transmission, set byte access */
	rspi_write8(rspi, 0, RSPI_SPDCR);
	rspi->byte_access = 1;
335 336 337 338 339 340 341 342 343 344 345

	/* Sets RSPCK, SSL, next-access delay value */
	rspi_write8(rspi, 0x00, RSPI_SPCKD);
	rspi_write8(rspi, 0x00, RSPI_SSLND);
	rspi_write8(rspi, 0x00, RSPI_SPND);

	/* Data Length Setting */
	if (access_size == 8)
		spcmd = SPCMD_SPB_8BIT;
	else if (access_size == 16)
		spcmd = SPCMD_SPB_16BIT;
346
	else
347 348
		spcmd = SPCMD_SPB_32BIT;

349
	spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | rspi->spcmd | SPCMD_SPNDEN;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

	/* Resets transfer data length */
	rspi_write32(rspi, 0, QSPI_SPBMUL0);

	/* Resets transmit and receive buffer */
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
	/* Sets buffer to allow normal operation */
	rspi_write8(rspi, 0x00, QSPI_SPBFCR);

	/* Sets SPCMD */
	rspi_write16(rspi, spcmd, RSPI_SPCMD0);

	/* Enables SPI function in a master mode */
	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);

	return 0;
}

#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)

370
static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
371 372 373 374
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
}

375
static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
{
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
}

static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
				   u8 enable_bit)
{
	int ret;

	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
	rspi_enable_irq(rspi, enable_bit);
	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
	if (ret == 0 && !(rspi->spsr & wait_mask))
		return -ETIMEDOUT;

	return 0;
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static int rspi_data_out(struct rspi_data *rspi, u8 data)
{
	if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
		dev_err(&rspi->master->dev, "transmit timeout\n");
		return -ETIMEDOUT;
	}
	rspi_write_data(rspi, data);
	return 0;
}

static int rspi_data_in(struct rspi_data *rspi)
{
	u8 data;

	if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
		dev_err(&rspi->master->dev, "receive timeout\n");
		return -ETIMEDOUT;
	}
	data = rspi_read_data(rspi);
	return data;
}

static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
{
	int ret;

	ret = rspi_data_out(rspi, data);
	if (ret < 0)
		return ret;

	return rspi_data_in(rspi);
}

427 428 429 430 431 432 433 434
static void rspi_dma_complete(void *arg)
{
	struct rspi_data *rspi = arg;

	rspi->dma_callbacked = 1;
	wake_up_interruptible(&rspi->wait);
}

G
Geert Uytterhoeven 已提交
435 436
static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
			   unsigned len, struct dma_chan *chan,
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
			   enum dma_transfer_direction dir)
{
	sg_init_table(sg, 1);
	sg_set_buf(sg, buf, len);
	sg_dma_len(sg) = len;
	return dma_map_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
			      enum dma_transfer_direction dir)
{
	dma_unmap_sg(chan->device->dev, sg, 1, dir);
}

static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
{
	u16 *dst = buf;
	const u8 *src = data;

	while (len) {
		*dst++ = (u16)(*src++);
		len--;
	}
}

static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
{
	u8 *dst = buf;
	const u16 *src = data;

	while (len) {
		*dst++ = (u8)*src++;
		len--;
	}
}

static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg;
G
Geert Uytterhoeven 已提交
476
	const void *buf = NULL;
477
	struct dma_async_tx_descriptor *desc;
478
	unsigned int len;
479 480 481
	int ret = 0;

	if (rspi->dma_width_16bit) {
G
Geert Uytterhoeven 已提交
482
		void *tmp;
483 484 485 486 487 488 489 490
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, the driver converts original data into the
		 * DMAC data as the following format:
		 *  original data: 1st byte, 2nd byte ...
		 *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
		 */
		len = t->len * 2;
G
Geert Uytterhoeven 已提交
491 492
		tmp = kmalloc(len, GFP_KERNEL);
		if (!tmp)
493
			return -ENOMEM;
G
Geert Uytterhoeven 已提交
494 495
		rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
		buf = tmp;
496 497
	} else {
		len = t->len;
G
Geert Uytterhoeven 已提交
498
		buf = t->tx_buf;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	}

	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
516
	disable_irq(rspi->tx_irq);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE);

535
	enable_irq(rspi->tx_irq);
536 537 538 539 540 541 542 543 544 545

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit)
		kfree(buf);

	return ret;
}

546
static void rspi_receive_init(const struct rspi_data *rspi)
547
{
548
	u8 spsr;
549 550 551

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
552
		rspi_read_data(rspi);	/* dummy read */
553 554
	if (spsr & SPSR_OVRF)
		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
555
			    RSPI_SPSR);
556 557
}

558 559 560 561 562 563 564
static void rspi_rz_receive_init(const struct rspi_data *rspi)
{
	rspi_receive_init(rspi);
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
	rspi_write8(rspi, 0, RSPI_SPBFCR);
}

565
static void qspi_receive_init(const struct rspi_data *rspi)
566
{
567
	u8 spsr;
568 569 570

	spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
571
		rspi_read_data(rspi);   /* dummy read */
572
	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
573
	rspi_write8(rspi, 0, QSPI_SPBFCR);
574 575
}

576 577 578 579 580
static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
{
	struct scatterlist sg, sg_dummy;
	void *dummy = NULL, *rx_buf = NULL;
	struct dma_async_tx_descriptor *desc, *desc_dummy;
581
	unsigned int len;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	int ret = 0;

	if (rspi->dma_width_16bit) {
		/*
		 * If DMAC bus width is 16-bit, the driver allocates a dummy
		 * buffer. And, finally the driver converts the DMAC data into
		 * actual data as the following format:
		 *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
		 *  actual data: 1st byte, 2nd byte ...
		 */
		len = t->len * 2;
		rx_buf = kmalloc(len, GFP_KERNEL);
		if (!rx_buf)
			return -ENOMEM;
	 } else {
		len = t->len;
		rx_buf = t->rx_buf;
	}

	/* prepare dummy transfer to generate SPI clocks */
	dummy = kzalloc(len, GFP_KERNEL);
	if (!dummy) {
		ret = -ENOMEM;
		goto end_nomap;
	}
	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
			     DMA_TO_DEVICE)) {
		ret = -EFAULT;
		goto end_nomap;
	}
	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc_dummy) {
		ret = -EIO;
		goto end_dummy_mapped;
	}

	/* prepare receive transfer */
	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
			     DMA_FROM_DEVICE)) {
		ret = -EFAULT;
		goto end_dummy_mapped;

	}
	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!desc) {
		ret = -EIO;
		goto end;
	}

	rspi_receive_init(rspi);

	/*
	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
	 * called. So, this driver disables the IRQ while DMA transfer.
	 */
639 640 641
	disable_irq(rspi->tx_irq);
	if (rspi->rx_irq != rspi->tx_irq)
		disable_irq(rspi->rx_irq);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
	rspi->dma_callbacked = 0;

	desc->callback = rspi_dma_complete;
	desc->callback_param = rspi;
	dmaengine_submit(desc);
	dma_async_issue_pending(rspi->chan_rx);

	desc_dummy->callback = NULL;	/* No callback */
	dmaengine_submit(desc_dummy);
	dma_async_issue_pending(rspi->chan_tx);

	ret = wait_event_interruptible_timeout(rspi->wait,
					       rspi->dma_callbacked, HZ);
	if (ret > 0 && rspi->dma_callbacked)
		ret = 0;
	else if (!ret)
		ret = -ETIMEDOUT;
	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);

664 665 666
	enable_irq(rspi->tx_irq);
	if (rspi->rx_irq != rspi->tx_irq)
		enable_irq(rspi->rx_irq);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

end:
	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
end_dummy_mapped:
	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
	if (rspi->dma_width_16bit) {
		if (!ret)
			rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
		kfree(rx_buf);
	}
	kfree(dummy);

	return ret;
}

683
static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
684 685 686 687 688 689 690 691 692 693
{
	if (t->tx_buf && rspi->chan_tx)
		return 1;
	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
		return 1;

	return 0;
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static int rspi_transfer_out_in(struct rspi_data *rspi,
				struct spi_transfer *xfer)
{
	int remain = xfer->len, ret;
	const u8 *tx_buf = xfer->tx_buf;
	u8 *rx_buf = xfer->rx_buf;
	u8 spcr, data;

	rspi_receive_init(rspi);

	spcr = rspi_read8(rspi, RSPI_SPCR);
	if (rx_buf)
		spcr &= ~SPCR_TXMD;
	else
		spcr |= SPCR_TXMD;
	rspi_write8(rspi, spcr, RSPI_SPCR);

	while (remain > 0) {
		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
		ret = rspi_data_out(rspi, data);
		if (ret < 0)
			return ret;
		if (rx_buf) {
			ret = rspi_data_in(rspi);
			if (ret < 0)
				return ret;
			*rx_buf++ = ret;
		}
		remain--;
	}

	/* Wait for the last transmission */
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

731 732
static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
733
{
734
	struct rspi_data *rspi = spi_master_get_devdata(master);
735 736 737 738
	int ret;

	if (!rspi_is_dma(rspi, xfer))
		return rspi_transfer_out_in(rspi, xfer);
739

740
	if (xfer->tx_buf) {
741
		ret = rspi_send_dma(rspi, xfer);
742 743
		if (ret < 0)
			return ret;
744
	}
745 746 747 748
	if (xfer->rx_buf)
		return rspi_receive_dma(rspi, xfer);

	return 0;
749 750
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
				   struct spi_transfer *xfer)
{
	int remain = xfer->len, ret;
	const u8 *tx_buf = xfer->tx_buf;
	u8 *rx_buf = xfer->rx_buf;
	u8 data;

	rspi_rz_receive_init(rspi);

	while (remain > 0) {
		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
		ret = rspi_data_out_in(rspi, data);
		if (ret < 0)
			return ret;
		if (rx_buf)
			*rx_buf++ = ret;
		remain--;
	}

	/* Wait for the last transmission */
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

static int rspi_rz_transfer_one(struct spi_master *master,
				struct spi_device *spi,
				struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);

	return rspi_rz_transfer_out_in(rspi, xfer);
}

786 787
static int qspi_transfer_out_in(struct rspi_data *rspi,
				struct spi_transfer *xfer)
788
{
789 790 791 792
	int remain = xfer->len, ret;
	const u8 *tx_buf = xfer->tx_buf;
	u8 *rx_buf = xfer->rx_buf;
	u8 data;
793

794 795 796 797 798
	qspi_receive_init(rspi);

	while (remain > 0) {
		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
		ret = rspi_data_out_in(rspi, data);
799 800
		if (ret < 0)
			return ret;
801 802 803
		if (rx_buf)
			*rx_buf++ = ret;
		remain--;
804
	}
805 806 807 808 809 810 811 812 813 814 815 816 817

	/* Wait for the last transmission */
	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);

	return 0;
}

static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
			     struct spi_transfer *xfer)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);

	return qspi_transfer_out_in(rspi, xfer);
818 819 820 821 822 823 824 825
}

static int rspi_setup(struct spi_device *spi)
{
	struct rspi_data *rspi = spi_master_get_devdata(spi->master);

	rspi->max_speed_hz = spi->max_speed_hz;

826 827 828 829 830 831
	rspi->spcmd = SPCMD_SSLKP;
	if (spi->mode & SPI_CPOL)
		rspi->spcmd |= SPCMD_CPOL;
	if (spi->mode & SPI_CPHA)
		rspi->spcmd |= SPCMD_CPHA;

832
	set_config_register(rspi, 8);
833 834 835 836

	return 0;
}

837
static void rspi_cleanup(struct spi_device *spi)
838
{
839
}
840

841 842 843 844
static int rspi_prepare_message(struct spi_master *master,
				struct spi_message *message)
{
	struct rspi_data *rspi = spi_master_get_devdata(master);
845

846
	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
847 848 849
	return 0;
}

850 851
static int rspi_unprepare_message(struct spi_master *master,
				  struct spi_message *message)
852
{
853 854 855 856
	struct rspi_data *rspi = spi_master_get_devdata(master);

	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
	return 0;
857 858
}

859
static irqreturn_t rspi_irq_mux(int irq, void *_sr)
860
{
G
Geert Uytterhoeven 已提交
861
	struct rspi_data *rspi = _sr;
862
	u8 spsr;
863
	irqreturn_t ret = IRQ_NONE;
864
	u8 disable_irq = 0;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF)
		disable_irq |= SPCR_SPRIE;
	if (spsr & SPSR_SPTEF)
		disable_irq |= SPCR_SPTIE;

	if (disable_irq) {
		ret = IRQ_HANDLED;
		rspi_disable_irq(rspi, disable_irq);
		wake_up(&rspi->wait);
	}

	return ret;
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static irqreturn_t rspi_irq_rx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPRF) {
		rspi_disable_irq(rspi, SPCR_SPRIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

static irqreturn_t rspi_irq_tx(int irq, void *_sr)
{
	struct rspi_data *rspi = _sr;
	u8 spsr;

	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
	if (spsr & SPSR_SPTEF) {
		rspi_disable_irq(rspi, SPCR_SPTIE);
		wake_up(&rspi->wait);
		return IRQ_HANDLED;
	}

	return 0;
}

911
static int rspi_request_dma(struct rspi_data *rspi,
912
				      struct platform_device *pdev)
913
{
914
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
915
	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
916
	dma_cap_mask_t mask;
917 918
	struct dma_slave_config cfg;
	int ret;
919

920
	if (!res || !rspi_pd)
921
		return 0;	/* The driver assumes no error. */
922 923 924 925 926 927 928

	rspi->dma_width_16bit = rspi_pd->dma_width_16bit;

	/* If the module receives data by DMAC, it also needs TX DMAC */
	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
929 930 931 932 933
		rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_rx_id);
		if (rspi->chan_rx) {
			cfg.slave_id = rspi_pd->dma_rx_id;
			cfg.direction = DMA_DEV_TO_MEM;
934 935
			cfg.dst_addr = 0;
			cfg.src_addr = res->start + RSPI_SPDR;
936 937 938 939 940 941
			ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when rx.\n");
			else
				return ret;
		}
942 943 944 945
	}
	if (rspi_pd->dma_tx_id) {
		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);
946 947 948 949 950
		rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
						    (void *)rspi_pd->dma_tx_id);
		if (rspi->chan_tx) {
			cfg.slave_id = rspi_pd->dma_tx_id;
			cfg.direction = DMA_MEM_TO_DEV;
951 952
			cfg.dst_addr = res->start + RSPI_SPDR;
			cfg.src_addr = 0;
953 954 955 956 957 958
			ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
			if (!ret)
				dev_info(&pdev->dev, "Use DMA when tx\n");
			else
				return ret;
		}
959
	}
960 961

	return 0;
962 963
}

964
static void rspi_release_dma(struct rspi_data *rspi)
965 966 967 968 969 970 971
{
	if (rspi->chan_tx)
		dma_release_channel(rspi->chan_tx);
	if (rspi->chan_rx)
		dma_release_channel(rspi->chan_rx);
}

972
static int rspi_remove(struct platform_device *pdev)
973
{
974
	struct rspi_data *rspi = platform_get_drvdata(pdev);
975

976
	rspi_release_dma(rspi);
977
	clk_disable(rspi->clk);
978 979 980 981

	return 0;
}

982 983 984 985 986 987 988 989 990 991 992 993 994
static int rspi_request_irq(struct device *dev, unsigned int irq,
			    irq_handler_t handler, const char *suffix,
			    void *dev_id)
{
	const char *base = dev_name(dev);
	size_t len = strlen(base) + strlen(suffix) + 2;
	char *name = devm_kzalloc(dev, len, GFP_KERNEL);
	if (!name)
		return -ENOMEM;
	snprintf(name, len, "%s:%s", base, suffix);
	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
}

995
static int rspi_probe(struct platform_device *pdev)
996 997 998 999
{
	struct resource *res;
	struct spi_master *master;
	struct rspi_data *rspi;
1000
	int ret;
1001
	char clk_name[16];
1002
	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
1003 1004 1005 1006 1007 1008 1009 1010 1011
	const struct spi_ops *ops;
	const struct platform_device_id *id_entry = pdev->id_entry;

	ops = (struct spi_ops *)id_entry->driver_data;
	/* ops parameter check */
	if (!ops->set_config_register) {
		dev_err(&pdev->dev, "there is no set_config_register\n");
		return -ENODEV;
	}
1012 1013 1014 1015 1016 1017 1018 1019

	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
	if (master == NULL) {
		dev_err(&pdev->dev, "spi_alloc_master error.\n");
		return -ENOMEM;
	}

	rspi = spi_master_get_devdata(master);
1020
	platform_set_drvdata(pdev, rspi);
1021
	rspi->ops = ops;
1022
	rspi->master = master;
1023 1024 1025 1026 1027

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(rspi->addr)) {
		ret = PTR_ERR(rspi->addr);
1028 1029 1030
		goto error1;
	}

1031
	snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id);
1032
	rspi->clk = devm_clk_get(&pdev->dev, clk_name);
1033 1034 1035
	if (IS_ERR(rspi->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(rspi->clk);
1036
		goto error1;
1037 1038 1039 1040 1041
	}
	clk_enable(rspi->clk);

	init_waitqueue_head(&rspi->wait);

1042 1043 1044
	if (rspi_pd && rspi_pd->num_chipselect)
		master->num_chipselect = rspi_pd->num_chipselect;
	else
1045 1046
		master->num_chipselect = 2; /* default */

1047 1048
	master->bus_num = pdev->id;
	master->setup = rspi_setup;
1049
	master->transfer_one = ops->transfer_one;
1050
	master->cleanup = rspi_cleanup;
1051 1052
	master->prepare_message = rspi_prepare_message;
	master->unprepare_message = rspi_unprepare_message;
1053
	master->mode_bits = SPI_CPHA | SPI_CPOL;
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	ret = platform_get_irq_byname(pdev, "rx");
	if (ret < 0) {
		ret = platform_get_irq_byname(pdev, "mux");
		if (ret < 0)
			ret = platform_get_irq(pdev, 0);
		if (ret >= 0)
			rspi->rx_irq = rspi->tx_irq = ret;
	} else {
		rspi->rx_irq = ret;
		ret = platform_get_irq_byname(pdev, "tx");
		if (ret >= 0)
			rspi->tx_irq = ret;
	}
	if (ret < 0) {
		dev_err(&pdev->dev, "platform_get_irq error\n");
		goto error2;
	}

	if (rspi->rx_irq == rspi->tx_irq) {
		/* Single multiplexed interrupt */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
				       "mux", rspi);
	} else {
		/* Multi-interrupt mode, only SPRI and SPTI are used */
		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
				       "rx", rspi);
		if (!ret)
			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
					       rspi_irq_tx, "tx", rspi);
	}
1085 1086
	if (ret < 0) {
		dev_err(&pdev->dev, "request_irq error\n");
1087
		goto error2;
1088 1089
	}

1090 1091 1092
	ret = rspi_request_dma(rspi, pdev);
	if (ret < 0) {
		dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1093
		goto error3;
1094
	}
1095

1096
	ret = devm_spi_register_master(&pdev->dev, master);
1097 1098
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
1099
		goto error3;
1100 1101 1102 1103 1104 1105
	}

	dev_info(&pdev->dev, "probed\n");

	return 0;

1106
error3:
1107
	rspi_release_dma(rspi);
1108 1109
error2:
	clk_disable(rspi->clk);
1110 1111 1112 1113 1114 1115
error1:
	spi_master_put(master);

	return ret;
}

1116 1117
static struct spi_ops rspi_ops = {
	.set_config_register =		rspi_set_config_register,
1118
	.transfer_one =			rspi_transfer_one,
1119 1120
};

1121 1122 1123 1124 1125
static struct spi_ops rspi_rz_ops = {
	.set_config_register =		rspi_rz_set_config_register,
	.transfer_one =			rspi_rz_transfer_one,
};

1126 1127
static struct spi_ops qspi_ops = {
	.set_config_register =		qspi_set_config_register,
1128
	.transfer_one =			qspi_transfer_one,
1129 1130 1131 1132
};

static struct platform_device_id spi_driver_ids[] = {
	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1133
	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1134 1135 1136 1137 1138 1139
	{ "qspi",	(kernel_ulong_t)&qspi_ops },
	{},
};

MODULE_DEVICE_TABLE(platform, spi_driver_ids);

1140 1141
static struct platform_driver rspi_driver = {
	.probe =	rspi_probe,
1142
	.remove =	rspi_remove,
1143
	.id_table =	spi_driver_ids,
1144
	.driver		= {
1145
		.name = "renesas_spi",
1146 1147 1148 1149 1150 1151 1152 1153 1154
		.owner	= THIS_MODULE,
	},
};
module_platform_driver(rspi_driver);

MODULE_DESCRIPTION("Renesas RSPI bus driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_ALIAS("platform:rspi");