mv88e6xxx.c 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11
#include <linux/delay.h>
12
#include <linux/etherdevice.h>
13
#include <linux/if_bridge.h>
14
#include <linux/jiffies.h>
15
#include <linux/list.h>
16
#include <linux/module.h>
17 18
#include <linux/netdevice.h>
#include <linux/phy.h>
19
#include <net/dsa.h>
20 21
#include "mv88e6xxx.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/* MDIO bus access can be nested in the case of PHYs connected to the
 * internal MDIO bus of the switch, which is accessed via MDIO bus of
 * the Ethernet interface. Avoid lockdep false positives by using
 * mutex_lock_nested().
 */
static int mv88e6xxx_mdiobus_read(struct mii_bus *bus, int addr, u32 regnum)
{
	int ret;

	mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
	ret = bus->read(bus, addr, regnum);
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int mv88e6xxx_mdiobus_write(struct mii_bus *bus, int addr, u32 regnum,
				   u16 val)
{
	int ret;

	mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
	ret = bus->write(bus, addr, regnum, val);
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

50
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
51 52 53 54 55 56 57 58 59 60 61 62 63
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
64
		ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_CMD);
65 66 67
		if (ret < 0)
			return ret;

68
		if ((ret & SMI_CMD_BUSY) == 0)
69 70 71 72 73 74 75 76 77 78 79
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
80
		return mv88e6xxx_mdiobus_read(bus, addr, reg);
81

82
	/* Wait for the bus to become free. */
83 84 85 86
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

87
	/* Transmit the read command. */
88 89
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
				      SMI_CMD_OP_22_READ | (addr << 5) | reg);
90 91 92
	if (ret < 0)
		return ret;

93
	/* Wait for the read command to complete. */
94 95 96 97
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

98
	/* Read the data. */
99
	ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_DATA);
100 101 102 103 104 105
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

106 107
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
108
{
109
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
110 111
	int ret;

112 113 114 115
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
116 117 118 119 120 121
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

122 123 124
	return ret;
}

125 126 127 128 129 130 131 132 133 134 135 136
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

137 138 139 140 141 142
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
143
		return mv88e6xxx_mdiobus_write(bus, addr, reg, val);
144

145
	/* Wait for the bus to become free. */
146 147 148 149
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

150
	/* Transmit the data to write. */
151
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_DATA, val);
152 153 154
	if (ret < 0)
		return ret;

155
	/* Transmit the write command. */
156 157
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
				      SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Wait for the write command to complete. */
162 163 164 165 166 167 168
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

169 170 171
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
172
{
173
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
174

175 176 177
	if (bus == NULL)
		return -EINVAL;

178 179 180
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

181 182 183 184 185 186 187 188
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

189
	mutex_lock(&ps->smi_mutex);
190
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
191 192 193 194 195
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

196 197
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
198 199 200
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
201 202 203 204

	return 0;
}

205 206 207 208 209 210 211 212
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

213
		/* Write the MAC address byte. */
214 215
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
216

217
		/* Wait for the write to complete. */
218
		for (j = 0; j < 16; j++) {
219 220
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
221 222 223 224 225 226 227 228 229
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

230
/* Must be called with SMI mutex held */
231
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
232 233
{
	if (addr >= 0)
234
		return _mv88e6xxx_reg_read(ds, addr, regnum);
235 236 237
	return 0xffff;
}

238
/* Must be called with SMI mutex held */
239 240
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
241 242
{
	if (addr >= 0)
243
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
244 245 246
	return 0;
}

247 248 249 250
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
251
	unsigned long timeout;
252

253 254 255
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
256

257 258
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
259
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
260
		usleep_range(1000, 2000);
261 262
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
263
			return 0;
264 265 266 267 268 269 270 271
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
272
	unsigned long timeout;
273

274 275
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
276

277 278
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
279
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
280
		usleep_range(1000, 2000);
281 282
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
283
			return 0;
284 285 286 287 288 289 290 291 292 293 294
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
295
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
296

297 298 299
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
300 301 302 303 304 305 306 307 308 309 310 311
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
312
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
313 314 315 316
	int ret;

	mutex_lock(&ps->ppu_mutex);

317
	/* If the PHY polling unit is enabled, disable it so that
318 319 320 321 322
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
323 324 325 326 327 328
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
329
	} else {
330 331
		del_timer(&ps->ppu_timer);
		ret = 0;
332 333 334 335 336 337 338
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
339
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
340

341
	/* Schedule a timer to re-enable the PHY polling unit. */
342 343 344 345 346 347
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
348
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
349 350 351 352 353 354 355 356 357 358 359 360 361 362

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
363 364
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
365 366 367 368 369 370 371 372 373 374 375 376
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
377 378
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
379 380 381 382 383 384
	}

	return ret;
}
#endif

385 386 387 388 389 390
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
391
		int uninitialized_var(port_status);
392 393 394 395 396 397 398 399 400 401 402
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
403 404
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
							 PORT_STATUS);
405 406 407
			if (port_status < 0)
				continue;

408
			link = !!(port_status & PORT_STATUS_LINK);
409 410 411 412
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
413
				netdev_info(dev, "link down\n");
414 415 416 417 418
				netif_carrier_off(dev);
			}
			continue;
		}

419 420
		switch (port_status & PORT_STATUS_SPEED_MASK) {
		case PORT_STATUS_SPEED_10:
421 422
			speed = 10;
			break;
423
		case PORT_STATUS_SPEED_100:
424 425
			speed = 100;
			break;
426
		case PORT_STATUS_SPEED_1000:
427 428 429 430 431 432
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
433 434
		duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
		fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
435 436

		if (!netif_carrier_ok(dev)) {
437 438 439 440 441
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
442 443 444 445 446
			netif_carrier_on(dev);
		}
	}
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

532 533 534 535 536 537 538
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
539 540
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
541 542 543 544 545
		return true;
	}
	return false;
}

546 547
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
548 549 550 551 552
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
553
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
554
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
555 556 557 558 559 560
			return 0;
	}

	return -ETIMEDOUT;
}

561 562
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
563 564 565
{
	int ret;

566 567 568
	if (mv88e6xxx_6352_family(ds))
		port = (port + 1) << 5;

569
	/* Snapshot the hardware statistics counters for this port. */
570 571 572 573 574
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
575

576
	/* Wait for the snapshotting to complete. */
577
	ret = _mv88e6xxx_stats_wait(ds);
578 579 580 581 582 583
	if (ret < 0)
		return ret;

	return 0;
}

584 585
/* Must be called with SMI mutex held */
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
586 587 588 589 590 591
{
	u32 _val;
	int ret;

	*val = 0;

592 593 594
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
595 596 597
	if (ret < 0)
		return;

598
	ret = _mv88e6xxx_stats_wait(ds);
599 600 601
	if (ret < 0)
		return;

602
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
603 604 605 606 607
	if (ret < 0)
		return;

	_val = ret << 16;

608
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
609 610 611 612 613 614
	if (ret < 0)
		return;

	*val = _val | ret;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
	{ "in_good_octets", 8, 0x00, },
	{ "in_bad_octets", 4, 0x02, },
	{ "in_unicast", 4, 0x04, },
	{ "in_broadcasts", 4, 0x06, },
	{ "in_multicasts", 4, 0x07, },
	{ "in_pause", 4, 0x16, },
	{ "in_undersize", 4, 0x18, },
	{ "in_fragments", 4, 0x19, },
	{ "in_oversize", 4, 0x1a, },
	{ "in_jabber", 4, 0x1b, },
	{ "in_rx_error", 4, 0x1c, },
	{ "in_fcs_error", 4, 0x1d, },
	{ "out_octets", 8, 0x0e, },
	{ "out_unicast", 4, 0x10, },
	{ "out_broadcasts", 4, 0x13, },
	{ "out_multicasts", 4, 0x12, },
	{ "out_pause", 4, 0x15, },
	{ "excessive", 4, 0x11, },
	{ "collisions", 4, 0x1e, },
	{ "deferred", 4, 0x05, },
	{ "single", 4, 0x14, },
	{ "multiple", 4, 0x17, },
	{ "out_fcs_error", 4, 0x03, },
	{ "late", 4, 0x1f, },
	{ "hist_64bytes", 4, 0x08, },
	{ "hist_65_127bytes", 4, 0x09, },
	{ "hist_128_255bytes", 4, 0x0a, },
	{ "hist_256_511bytes", 4, 0x0b, },
	{ "hist_512_1023bytes", 4, 0x0c, },
	{ "hist_1024_max_bytes", 4, 0x0d, },
	/* Not all devices have the following counters */
	{ "sw_in_discards", 4, 0x110, },
	{ "sw_in_filtered", 2, 0x112, },
	{ "sw_out_filtered", 2, 0x113, },

};

static bool have_sw_in_discards(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
658 659 660 661 662
	case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
	case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6352:
663 664 665 666 667 668 669 670 671 672
		return true;
	default:
		return false;
	}
}

static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
				   int nr_stats,
				   struct mv88e6xxx_hw_stat *stats,
				   int port, uint8_t *data)
673 674 675 676 677 678 679 680 681
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

682 683 684 685
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
					 int nr_stats,
					 struct mv88e6xxx_hw_stat *stats,
					 int port, uint64_t *data)
686
{
687
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
688 689 690
	int ret;
	int i;

691
	mutex_lock(&ps->smi_mutex);
692

693
	ret = _mv88e6xxx_stats_snapshot(ds, port);
694
	if (ret < 0) {
695
		mutex_unlock(&ps->smi_mutex);
696 697 698
		return;
	}

699
	/* Read each of the counters. */
700 701 702
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
703 704 705
		u32 high = 0;

		if (s->reg >= 0x100) {
706 707
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
						  s->reg - 0x100);
708 709 710 711
			if (ret < 0)
				goto error;
			low = ret;
			if (s->sizeof_stat == 4) {
712 713
				ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
							  s->reg - 0x100 + 1);
714 715 716 717 718 719 720
				if (ret < 0)
					goto error;
				high = ret;
			}
			data[i] = (((u64)high) << 16) | low;
			continue;
		}
721
		_mv88e6xxx_stats_read(ds, s->reg, &low);
722
		if (s->sizeof_stat == 8)
723
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
724 725 726

		data[i] = (((u64)high) << 32) | low;
	}
727
error:
728
	mutex_unlock(&ps->smi_mutex);
729
}
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/* All the statistics in the table */
void
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
				       mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
				       mv88e6xxx_hw_stats, port, data);
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
	if (have_sw_in_discards(ds))
		return ARRAY_SIZE(mv88e6xxx_hw_stats);
	return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
			mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
			mv88e6xxx_hw_stats, port, data);
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

788 789 790 791 792 793 794 795 796 797
#ifdef CONFIG_NET_DSA_HWMON

int  mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

798
	mutex_lock(&ps->smi_mutex);
799

800
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
801 802 803 804
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
805
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
806 807 808
	if (ret < 0)
		goto error;

809
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
810 811 812 813 814 815
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

816
	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
817 818 819 820 821 822
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
823
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
824 825 826 827 828 829
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
830
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
831
	mutex_unlock(&ps->smi_mutex);
832 833 834 835
	return ret;
}
#endif /* CONFIG_NET_DSA_HWMON */

836 837 838
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
839 840 841 842 843 844
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

845 846 847
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
848 849 850 851 852 853 854 855
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

856 857 858 859 860 861 862 863 864 865 866 867 868
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
869
{
870 871
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
872 873 874 875
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
876 877
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
878 879 880 881
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
882 883
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
884 885
}

886 887 888
/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
889 890
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
891 892
}

893
/* Must be called with SMI mutex held */
894 895
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
896 897 898
{
	int ret;

899 900 901 902 903
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
904

905
	ret = _mv88e6xxx_phy_wait(ds);
906 907 908
	if (ret < 0)
		return ret;

909
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
910 911
}

912
/* Must be called with SMI mutex held */
913 914
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
915
{
916 917 918 919 920
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
921

922 923 924 925 926
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
927 928
}

929 930
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
931
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
932 933
	int reg;

934
	mutex_lock(&ps->smi_mutex);
935 936

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
937
	if (reg < 0)
938
		goto out;
939 940 941 942

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

943
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
944
	if (reg < 0)
945
		goto out;
946

947
	e->eee_active = !!(reg & PORT_STATUS_EEE);
948
	reg = 0;
949

950
out:
951
	mutex_unlock(&ps->smi_mutex);
952
	return reg;
953 954 955 956 957
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
958 959
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
960 961
	int ret;

962
	mutex_lock(&ps->smi_mutex);
963

964 965 966 967 968 969 970 971 972 973 974 975
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
976
	mutex_unlock(&ps->smi_mutex);
977 978

	return ret;
979 980
}

981 982 983 984 985 986 987 988
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x01, fid);
	if (ret < 0)
		return ret;

989
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
{
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

1004
	return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
1005 1006 1007 1008 1009
}

static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1010
	int reg, ret = 0;
1011 1012 1013 1014
	u8 oldstate;

	mutex_lock(&ps->smi_mutex);

1015
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1016 1017
	if (reg < 0) {
		ret = reg;
1018
		goto abort;
1019
	}
1020

1021
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1022 1023 1024 1025 1026
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1027 1028
		if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
		    state <= PORT_CONTROL_STATE_BLOCKING) {
1029 1030 1031 1032
			ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
			if (ret)
				goto abort;
		}
1033 1034 1035
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	}

abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	u16 reg = fid << 12;

	if (dsa_is_cpu_port(ds, port))
		reg |= ds->phys_port_mask;
	else
		reg |= (ps->bridge_mask[fid] |
		       (1 << dsa_upstream_port(ds))) & ~(1 << port);

1056
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int port;
	u32 mask;
	int ret;

	mask = ds->phys_port_mask;
	while (mask) {
		port = __ffs(mask);
		mask &= ~(1 << port);
		if (ps->fid[port] != fid)
			continue;

		ret = _mv88e6xxx_update_port_config(ds, port);
		if (ret)
			return ret;
	}

	return _mv88e6xxx_flush_fid(ds, fid);
}

/* Bridge handling functions */

int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret = 0;
	u32 nmask;
	int fid;

	/* If the bridge group is not empty, join that group.
	 * Otherwise create a new group.
	 */
	fid = ps->fid[port];
	nmask = br_port_mask & ~(1 << port);
	if (nmask)
		fid = ps->fid[__ffs(nmask)];

	nmask = ps->bridge_mask[fid] | (1 << port);
	if (nmask != br_port_mask) {
		netdev_err(ds->ports[port],
			   "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, nmask);
		return -EINVAL;
	}

	mutex_lock(&ps->smi_mutex);

	ps->bridge_mask[fid] = br_port_mask;

	if (fid != ps->fid[port]) {
		ps->fid_mask |= 1 << ps->fid[port];
		ps->fid[port] = fid;
		ret = _mv88e6xxx_update_bridge_config(ds, fid);
	}

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid, newfid;
	int ret;

	fid = ps->fid[port];

	if (ps->bridge_mask[fid] != br_port_mask) {
		netdev_err(ds->ports[port],
			   "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, ps->bridge_mask[fid]);
		return -EINVAL;
	}

	/* If the port was the last port of a bridge, we are done.
	 * Otherwise assign a new fid to the port, and fix up
	 * the bridge configuration.
	 */
	if (br_port_mask == (1 << port))
		return 0;

	mutex_lock(&ps->smi_mutex);

	newfid = __ffs(ps->fid_mask);
	ps->fid[port] = newfid;
	ps->fid_mask &= (1 << newfid);
	ps->bridge_mask[fid] &= ~(1 << port);
	ps->bridge_mask[newfid] = 1 << port;

	ret = _mv88e6xxx_update_bridge_config(ds, fid);
	if (!ret)
		ret = _mv88e6xxx_update_bridge_config(ds, newfid);

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1168
		stp_state = PORT_CONTROL_STATE_DISABLED;
1169 1170 1171
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1172
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1173 1174
		break;
	case BR_STATE_LEARNING:
1175
		stp_state = PORT_CONTROL_STATE_LEARNING;
1176 1177 1178
		break;
	case BR_STATE_FORWARDING:
	default:
1179
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		break;
	}

	netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
	ps->port_state[port] = stp_state;
	set_bit(port, &ps->port_state_update_mask);
	schedule_work(&ps->bridge_work);

	return 0;
}

1195 1196 1197 1198 1199 1200
static int __mv88e6xxx_write_addr(struct dsa_switch *ds,
				  const unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1201 1202 1203
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int __mv88e6xxx_read_addr(struct dsa_switch *ds, unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1216 1217
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port,
				    const unsigned char *addr, int state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

1242
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA,
1243 1244 1245 1246
				   (0x10 << port) | state);
	if (ret)
		return ret;

1247
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB);
1248 1249 1250 1251 1252 1253 1254 1255

	return ret;
}

int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	int state = is_multicast_ether_addr(addr) ?
1256 1257
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, state);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
1275 1276
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr,
				       GLOBAL_ATU_DATA_STATE_UNUSED);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port,
				    unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret, state;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

	do {
1298
		ret = _mv88e6xxx_atu_cmd(ds, fid,  GLOBAL_ATU_OP_GET_NEXT_DB);
1299 1300 1301
		if (ret < 0)
			return ret;

1302
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1303 1304
		if (ret < 0)
			return ret;
1305 1306
		state = ret & GLOBAL_ATU_DATA_STATE_MASK;
		if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
1307 1308 1309 1310 1311 1312 1313 1314
			return -ENOENT;
	} while (!(((ret >> 4) & 0xff) & (1 << port)));

	ret = __mv88e6xxx_read_addr(ds, addr);
	if (ret < 0)
		return ret;

	*is_static = state == (is_multicast_ether_addr(addr) ?
1315 1316
			       GLOBAL_ATU_DATA_STATE_MC_STATIC :
			       GLOBAL_ATU_DATA_STATE_UC_STATIC);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	return 0;
}

/* get next entry for port */
int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port,
			       unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_getnext(ds, port, addr, is_static);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

	while (ps->port_state_update_mask) {
		port = __ffs(ps->port_state_update_mask);
		clear_bit(port, &ps->port_state_update_mask);
		mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
	}
}

1351
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
1352 1353
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1354
	int ret, fid;
1355
	u16 reg;
1356 1357 1358

	mutex_lock(&ps->smi_mutex);

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6065_family(ds)) {
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
		if (dsa_is_cpu_port(ds, port) ||
		    ds->dsa_port_mask & (1 << port)) {
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
	    mv88e6xxx_6185_family(ds))
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
		    mv88e6xxx_6185_family(ds)) {
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds)) {
		if (ds->dsa_port_mask & (1 << port))
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control 2: don't force a good FCS, set the maximum
	 * frame size to 10240 bytes, don't let the switch add or
	 * strip 802.1q tags, don't discard tagged or untagged frames
	 * on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't
	 * send a copy of all transmitted/received frames on this port
	 * to the CPU.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds))
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds))
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR,
				   1 << port);
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) {
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

1557 1558
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
1559
	 */
1560
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
1561 1562 1563 1564 1565 1566 1567 1568
	if (ret)
		goto abort;

	/* Port based VLAN map: give each port its own address
	 * database, allow the CPU port to talk to each of the 'real'
	 * ports, and allow each of the 'real' ports to only talk to
	 * the upstream port.
	 */
1569 1570 1571 1572 1573 1574
	fid = __ffs(ps->fid_mask);
	ps->fid[port] = fid;
	ps->fid_mask &= ~(1 << fid);

	if (!dsa_is_cpu_port(ds, port))
		ps->bridge_mask[fid] = 1 << port;
1575

1576
	ret = _mv88e6xxx_update_port_config(ds, port);
1577 1578 1579 1580 1581 1582
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
1583 1584
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
1585 1586 1587 1588 1589
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

1604 1605 1606 1607 1608 1609
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	mutex_init(&ps->smi_mutex);

1610
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
1611

1612 1613 1614 1615
	ps->fid_mask = (1 << DSA_MAX_PORTS) - 1;

	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

1616 1617 1618
	return 0;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) {
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

	return 0;
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
1727 1728
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

1757 1758 1759 1760 1761
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

1762
	mutex_lock(&ps->smi_mutex);
1763
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1764 1765
	if (ret < 0)
		goto error;
1766
	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
1767
error:
1768
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
1769
	mutex_unlock(&ps->smi_mutex);
1770 1771 1772 1773 1774 1775 1776 1777 1778
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

1779
	mutex_lock(&ps->smi_mutex);
1780
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1781 1782 1783
	if (ret < 0)
		goto error;

1784
	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
1785
error:
1786
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
1787
	mutex_unlock(&ps->smi_mutex);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1810
	mutex_lock(&ps->smi_mutex);
1811
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
1812
	mutex_unlock(&ps->smi_mutex);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1826
	mutex_lock(&ps->smi_mutex);
1827
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
1828
	mutex_unlock(&ps->smi_mutex);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1842
	mutex_lock(&ps->smi_mutex);
1843
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
1844
	mutex_unlock(&ps->smi_mutex);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1859
	mutex_lock(&ps->smi_mutex);
1860
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
1861
	mutex_unlock(&ps->smi_mutex);
1862 1863 1864
	return ret;
}

1865 1866 1867 1868 1869 1870 1871
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
1872
#endif
1873 1874 1875
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
1876 1877
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
1878 1879 1880 1881 1882 1883 1884
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
1885 1886 1887
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
1888 1889 1890
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
1891 1892 1893 1894 1895 1896 1897 1898
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
1899 1900 1901 1902

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");