mv88e6xxx.c 46.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

11
#include <linux/debugfs.h>
12
#include <linux/delay.h>
13
#include <linux/etherdevice.h>
14
#include <linux/if_bridge.h>
15
#include <linux/jiffies.h>
16
#include <linux/list.h>
17
#include <linux/module.h>
18 19
#include <linux/netdevice.h>
#include <linux/phy.h>
20
#include <linux/seq_file.h>
21
#include <net/dsa.h>
22 23
#include "mv88e6xxx.h"

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* MDIO bus access can be nested in the case of PHYs connected to the
 * internal MDIO bus of the switch, which is accessed via MDIO bus of
 * the Ethernet interface. Avoid lockdep false positives by using
 * mutex_lock_nested().
 */
static int mv88e6xxx_mdiobus_read(struct mii_bus *bus, int addr, u32 regnum)
{
	int ret;

	mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
	ret = bus->read(bus, addr, regnum);
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

static int mv88e6xxx_mdiobus_write(struct mii_bus *bus, int addr, u32 regnum,
				   u16 val)
{
	int ret;

	mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING);
	ret = bus->write(bus, addr, regnum, val);
	mutex_unlock(&bus->mdio_lock);

	return ret;
}

52
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
53 54 55 56 57 58 59 60 61 62 63 64 65
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
66
		ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_CMD);
67 68 69
		if (ret < 0)
			return ret;

70
		if ((ret & SMI_CMD_BUSY) == 0)
71 72 73 74 75 76 77 78 79 80 81
			return 0;
	}

	return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
	int ret;

	if (sw_addr == 0)
82
		return mv88e6xxx_mdiobus_read(bus, addr, reg);
83

84
	/* Wait for the bus to become free. */
85 86 87 88
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

89
	/* Transmit the read command. */
90 91
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
				      SMI_CMD_OP_22_READ | (addr << 5) | reg);
92 93 94
	if (ret < 0)
		return ret;

95
	/* Wait for the read command to complete. */
96 97 98 99
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

100
	/* Read the data. */
101
	ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_DATA);
102 103 104 105 106 107
	if (ret < 0)
		return ret;

	return ret & 0xffff;
}

108 109
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
110
{
111
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
112 113
	int ret;

114 115 116 117
	if (bus == NULL)
		return -EINVAL;

	ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
118 119 120 121 122 123
	if (ret < 0)
		return ret;

	dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, ret);

124 125 126
	return ret;
}

127 128 129 130 131 132 133 134 135 136 137 138
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_reg_read(ds, addr, reg);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

139 140 141 142 143 144
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
			  int reg, u16 val)
{
	int ret;

	if (sw_addr == 0)
145
		return mv88e6xxx_mdiobus_write(bus, addr, reg, val);
146

147
	/* Wait for the bus to become free. */
148 149 150 151
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

152
	/* Transmit the data to write. */
153
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_DATA, val);
154 155 156
	if (ret < 0)
		return ret;

157
	/* Transmit the write command. */
158 159
	ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD,
				      SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
160 161 162
	if (ret < 0)
		return ret;

163
	/* Wait for the write command to complete. */
164 165 166 167 168 169 170
	ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
	if (ret < 0)
		return ret;

	return 0;
}

171 172 173
/* Must be called with SMI mutex held */
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
				u16 val)
174
{
175
	struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
176

177 178 179
	if (bus == NULL)
		return -EINVAL;

180 181 182
	dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
		addr, reg, val);

183 184 185 186 187 188 189 190
	return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

191
	mutex_lock(&ps->smi_mutex);
192
	ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
193 194 195 196 197
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

198 199
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
200 201 202
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
	REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
203 204 205 206

	return 0;
}

207 208 209 210 211 212 213 214
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
	int i;
	int ret;

	for (i = 0; i < 6; i++) {
		int j;

215
		/* Write the MAC address byte. */
216 217
		REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
			  GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
218

219
		/* Wait for the write to complete. */
220
		for (j = 0; j < 16; j++) {
221 222
			ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
			if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
223 224 225 226 227 228 229 230 231
				break;
		}
		if (j == 16)
			return -ETIMEDOUT;
	}

	return 0;
}

232
/* Must be called with SMI mutex held */
233
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
234 235
{
	if (addr >= 0)
236
		return _mv88e6xxx_reg_read(ds, addr, regnum);
237 238 239
	return 0xffff;
}

240
/* Must be called with SMI mutex held */
241 242
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
				u16 val)
243 244
{
	if (addr >= 0)
245
		return _mv88e6xxx_reg_write(ds, addr, regnum, val);
246 247 248
	return 0;
}

249 250 251 252
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
	int ret;
253
	unsigned long timeout;
254

255 256 257
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
		  ret & ~GLOBAL_CONTROL_PPU_ENABLE);
258

259 260
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
261
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
262
		usleep_range(1000, 2000);
263 264
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
265
			return 0;
266 267 268 269 270 271 272 273
	}

	return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
	int ret;
274
	unsigned long timeout;
275

276 277
	ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
	REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
278

279 280
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
281
		ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
282
		usleep_range(1000, 2000);
283 284
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
285
			return 0;
286 287 288 289 290 291 292 293 294 295 296
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
	struct mv88e6xxx_priv_state *ps;

	ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
	if (mutex_trylock(&ps->ppu_mutex)) {
297
		struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
298

299 300 301
		if (mv88e6xxx_ppu_enable(ds) == 0)
			ps->ppu_disabled = 0;
		mutex_unlock(&ps->ppu_mutex);
302 303 304 305 306 307 308 309 310 311 312 313
	}
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
	struct mv88e6xxx_priv_state *ps = (void *)_ps;

	schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
314
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
315 316 317 318
	int ret;

	mutex_lock(&ps->ppu_mutex);

319
	/* If the PHY polling unit is enabled, disable it so that
320 321 322 323 324
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
	if (!ps->ppu_disabled) {
325 326 327 328 329 330
		ret = mv88e6xxx_ppu_disable(ds);
		if (ret < 0) {
			mutex_unlock(&ps->ppu_mutex);
			return ret;
		}
		ps->ppu_disabled = 1;
331
	} else {
332 333
		del_timer(&ps->ppu_timer);
		ret = 0;
334 335 336 337 338 339 340
	}

	return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
341
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
342

343
	/* Schedule a timer to re-enable the PHY polling unit. */
344 345 346 347 348 349
	mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
350
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
351 352 353 354 355 356 357 358 359 360 361 362 363 364

	mutex_init(&ps->ppu_mutex);
	INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&ps->ppu_timer);
	ps->ppu_timer.data = (unsigned long)ps;
	ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
365 366
		ret = mv88e6xxx_reg_read(ds, addr, regnum);
		mv88e6xxx_ppu_access_put(ds);
367 368 369 370 371 372 373 374 375 376 377 378
	}

	return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
			    int regnum, u16 val)
{
	int ret;

	ret = mv88e6xxx_ppu_access_get(ds);
	if (ret >= 0) {
379 380
		ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
		mv88e6xxx_ppu_access_put(ds);
381 382 383 384 385 386
	}

	return ret;
}
#endif

387 388 389 390 391 392
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
	int i;

	for (i = 0; i < DSA_MAX_PORTS; i++) {
		struct net_device *dev;
393
		int uninitialized_var(port_status);
394 395 396 397 398 399 400 401 402 403 404
		int link;
		int speed;
		int duplex;
		int fc;

		dev = ds->ports[i];
		if (dev == NULL)
			continue;

		link = 0;
		if (dev->flags & IFF_UP) {
405 406
			port_status = mv88e6xxx_reg_read(ds, REG_PORT(i),
							 PORT_STATUS);
407 408 409
			if (port_status < 0)
				continue;

410
			link = !!(port_status & PORT_STATUS_LINK);
411 412 413 414
		}

		if (!link) {
			if (netif_carrier_ok(dev)) {
415
				netdev_info(dev, "link down\n");
416 417 418 419 420
				netif_carrier_off(dev);
			}
			continue;
		}

421 422
		switch (port_status & PORT_STATUS_SPEED_MASK) {
		case PORT_STATUS_SPEED_10:
423 424
			speed = 10;
			break;
425
		case PORT_STATUS_SPEED_100:
426 427
			speed = 100;
			break;
428
		case PORT_STATUS_SPEED_1000:
429 430 431 432 433 434
			speed = 1000;
			break;
		default:
			speed = -1;
			break;
		}
435 436
		duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0;
		fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0;
437 438

		if (!netif_carrier_ok(dev)) {
439 440 441 442 443
			netdev_info(dev,
				    "link up, %d Mb/s, %s duplex, flow control %sabled\n",
				    speed,
				    duplex ? "full" : "half",
				    fc ? "en" : "dis");
444 445 446 447 448
			netif_carrier_on(dev);
		}
	}
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6031:
	case PORT_SWITCH_ID_6061:
	case PORT_SWITCH_ID_6035:
	case PORT_SWITCH_ID_6065:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6092:
	case PORT_SWITCH_ID_6095:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6046:
	case PORT_SWITCH_ID_6085:
	case PORT_SWITCH_ID_6096:
	case PORT_SWITCH_ID_6097:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6123:
	case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6121:
	case PORT_SWITCH_ID_6122:
	case PORT_SWITCH_ID_6152:
	case PORT_SWITCH_ID_6155:
	case PORT_SWITCH_ID_6182:
	case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6108:
	case PORT_SWITCH_ID_6131:
		return true;
	}
	return false;
}

static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6175:
	case PORT_SWITCH_ID_6350:
	case PORT_SWITCH_ID_6351:
		return true;
	}
	return false;
}

534 535 536 537 538 539 540
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
	case PORT_SWITCH_ID_6172:
	case PORT_SWITCH_ID_6176:
541 542
	case PORT_SWITCH_ID_6240:
	case PORT_SWITCH_ID_6352:
543 544 545 546 547
		return true;
	}
	return false;
}

548 549
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
550 551 552 553 554
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
555
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
556
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
557 558 559 560 561 562
			return 0;
	}

	return -ETIMEDOUT;
}

563 564
/* Must be called with SMI mutex held */
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
565 566 567
{
	int ret;

568 569 570
	if (mv88e6xxx_6352_family(ds))
		port = (port + 1) << 5;

571
	/* Snapshot the hardware statistics counters for this port. */
572 573 574 575 576
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
577

578
	/* Wait for the snapshotting to complete. */
579
	ret = _mv88e6xxx_stats_wait(ds);
580 581 582 583 584 585
	if (ret < 0)
		return ret;

	return 0;
}

586 587
/* Must be called with SMI mutex held */
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
588 589 590 591 592 593
{
	u32 _val;
	int ret;

	*val = 0;

594 595 596
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
597 598 599
	if (ret < 0)
		return;

600
	ret = _mv88e6xxx_stats_wait(ds);
601 602 603
	if (ret < 0)
		return;

604
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
605 606 607 608 609
	if (ret < 0)
		return;

	_val = ret << 16;

610
	ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
611 612 613 614 615 616
	if (ret < 0)
		return;

	*val = _val | ret;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
	{ "in_good_octets", 8, 0x00, },
	{ "in_bad_octets", 4, 0x02, },
	{ "in_unicast", 4, 0x04, },
	{ "in_broadcasts", 4, 0x06, },
	{ "in_multicasts", 4, 0x07, },
	{ "in_pause", 4, 0x16, },
	{ "in_undersize", 4, 0x18, },
	{ "in_fragments", 4, 0x19, },
	{ "in_oversize", 4, 0x1a, },
	{ "in_jabber", 4, 0x1b, },
	{ "in_rx_error", 4, 0x1c, },
	{ "in_fcs_error", 4, 0x1d, },
	{ "out_octets", 8, 0x0e, },
	{ "out_unicast", 4, 0x10, },
	{ "out_broadcasts", 4, 0x13, },
	{ "out_multicasts", 4, 0x12, },
	{ "out_pause", 4, 0x15, },
	{ "excessive", 4, 0x11, },
	{ "collisions", 4, 0x1e, },
	{ "deferred", 4, 0x05, },
	{ "single", 4, 0x14, },
	{ "multiple", 4, 0x17, },
	{ "out_fcs_error", 4, 0x03, },
	{ "late", 4, 0x1f, },
	{ "hist_64bytes", 4, 0x08, },
	{ "hist_65_127bytes", 4, 0x09, },
	{ "hist_128_255bytes", 4, 0x0a, },
	{ "hist_256_511bytes", 4, 0x0b, },
	{ "hist_512_1023bytes", 4, 0x0c, },
	{ "hist_1024_max_bytes", 4, 0x0d, },
	/* Not all devices have the following counters */
	{ "sw_in_discards", 4, 0x110, },
	{ "sw_in_filtered", 2, 0x112, },
	{ "sw_out_filtered", 2, 0x113, },

};

static bool have_sw_in_discards(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	switch (ps->id) {
660 661 662 663 664
	case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161:
	case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171:
	case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176:
	case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185:
	case PORT_SWITCH_ID_6352:
665 666 667 668 669 670 671 672 673 674
		return true;
	default:
		return false;
	}
}

static void _mv88e6xxx_get_strings(struct dsa_switch *ds,
				   int nr_stats,
				   struct mv88e6xxx_hw_stat *stats,
				   int port, uint8_t *data)
675 676 677 678 679 680 681 682 683
{
	int i;

	for (i = 0; i < nr_stats; i++) {
		memcpy(data + i * ETH_GSTRING_LEN,
		       stats[i].string, ETH_GSTRING_LEN);
	}
}

684 685 686 687
static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
					 int nr_stats,
					 struct mv88e6xxx_hw_stat *stats,
					 int port, uint64_t *data)
688
{
689
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
690 691 692
	int ret;
	int i;

693
	mutex_lock(&ps->smi_mutex);
694

695
	ret = _mv88e6xxx_stats_snapshot(ds, port);
696
	if (ret < 0) {
697
		mutex_unlock(&ps->smi_mutex);
698 699 700
		return;
	}

701
	/* Read each of the counters. */
702 703 704
	for (i = 0; i < nr_stats; i++) {
		struct mv88e6xxx_hw_stat *s = stats + i;
		u32 low;
705 706 707
		u32 high = 0;

		if (s->reg >= 0x100) {
708 709
			ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
						  s->reg - 0x100);
710 711 712 713
			if (ret < 0)
				goto error;
			low = ret;
			if (s->sizeof_stat == 4) {
714 715
				ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
							  s->reg - 0x100 + 1);
716 717 718 719 720 721 722
				if (ret < 0)
					goto error;
				high = ret;
			}
			data[i] = (((u64)high) << 16) | low;
			continue;
		}
723
		_mv88e6xxx_stats_read(ds, s->reg, &low);
724
		if (s->sizeof_stat == 8)
725
			_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
726 727 728

		data[i] = (((u64)high) << 32) | low;
	}
729
error:
730
	mutex_unlock(&ps->smi_mutex);
731
}
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/* All the statistics in the table */
void
mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
				       mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
				       mv88e6xxx_hw_stats, port, data);
}

int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
	if (have_sw_in_discards(ds))
		return ARRAY_SIZE(mv88e6xxx_hw_stats);
	return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3;
}

void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
			    int port, uint64_t *data)
{
	if (have_sw_in_discards(ds))
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats),
			mv88e6xxx_hw_stats, port, data);
	else
		_mv88e6xxx_get_ethtool_stats(
			ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3,
			mv88e6xxx_hw_stats, port, data);
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
	return 32 * sizeof(u16);
}

void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			struct ethtool_regs *regs, void *_p)
{
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

	for (i = 0; i < 32; i++) {
		int ret;

		ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
		if (ret >= 0)
			p[i] = ret;
	}
}

790 791 792 793 794 795 796 797 798 799
#ifdef CONFIG_NET_DSA_HWMON

int  mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int val;

	*temp = 0;

800
	mutex_lock(&ps->smi_mutex);
801

802
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
803 804 805 806
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
807
	ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
808 809 810
	if (ret < 0)
		goto error;

811
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
812 813 814 815 816 817
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

818
	val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
819 820 821 822 823 824
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
825
	ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
826 827 828 829 830 831
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
832
	_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
833
	mutex_unlock(&ps->smi_mutex);
834 835 836 837
	return ret;
}
#endif /* CONFIG_NET_DSA_HWMON */

838 839 840
/* Must be called with SMI lock held */
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
			   u16 mask)
841 842 843 844 845 846
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		int ret;

847 848 849
		ret = _mv88e6xxx_reg_read(ds, reg, offset);
		if (ret < 0)
			return ret;
850 851 852 853 854 855 856 857
		if (!(ret & mask))
			return 0;

		usleep_range(1000, 2000);
	}
	return -ETIMEDOUT;
}

858 859 860 861 862 863 864 865 866 867 868 869 870
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = _mv88e6xxx_wait(ds, reg, offset, mask);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
871
{
872 873
	return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
			       GLOBAL2_SMI_OP_BUSY);
874 875 876 877
}

int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
878 879
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_LOAD);
880 881 882 883
}

int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
884 885
	return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
			      GLOBAL2_EEPROM_OP_BUSY);
886 887
}

888 889 890
/* Must be called with SMI lock held */
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
{
891 892
	return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
			       GLOBAL_ATU_OP_BUSY);
893 894
}

895
/* Must be called with SMI mutex held */
896 897
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
					int regnum)
898 899 900
{
	int ret;

901 902 903 904 905
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_READ | (addr << 5) |
				   regnum);
	if (ret < 0)
		return ret;
906

907
	ret = _mv88e6xxx_phy_wait(ds);
908 909 910
	if (ret < 0)
		return ret;

911
	return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
912 913
}

914
/* Must be called with SMI mutex held */
915 916
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
					 int regnum, u16 val)
917
{
918 919 920 921 922
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
	if (ret < 0)
		return ret;
923

924 925 926 927 928
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
				   GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
				   regnum);

	return _mv88e6xxx_phy_wait(ds);
929 930
}

931 932
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
933
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
934 935
	int reg;

936
	mutex_lock(&ps->smi_mutex);
937 938

	reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
939
	if (reg < 0)
940
		goto out;
941 942 943 944

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

945
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
946
	if (reg < 0)
947
		goto out;
948

949
	e->eee_active = !!(reg & PORT_STATUS_EEE);
950
	reg = 0;
951

952
out:
953
	mutex_unlock(&ps->smi_mutex);
954
	return reg;
955 956 957 958 959
}

int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
		      struct phy_device *phydev, struct ethtool_eee *e)
{
960 961
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg;
962 963
	int ret;

964
	mutex_lock(&ps->smi_mutex);
965

966 967 968 969 970 971 972 973 974 975 976 977
	ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

	ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
out:
978
	mutex_unlock(&ps->smi_mutex);
979 980

	return ret;
981 982
}

983 984 985 986 987 988 989 990
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd)
{
	int ret;

	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x01, fid);
	if (ret < 0)
		return ret;

991
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	if (ret < 0)
		return ret;

	return _mv88e6xxx_atu_wait(ds);
}

static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid)
{
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

1006
	return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB);
1007 1008 1009 1010 1011
}

static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1012
	int reg, ret = 0;
1013 1014 1015 1016
	u8 oldstate;

	mutex_lock(&ps->smi_mutex);

1017
	reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1018 1019
	if (reg < 0) {
		ret = reg;
1020
		goto abort;
1021
	}
1022

1023
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1024 1025 1026 1027 1028
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1029 1030
		if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
		    state <= PORT_CONTROL_STATE_BLOCKING) {
1031 1032 1033 1034
			ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]);
			if (ret)
				goto abort;
		}
1035 1036 1037
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
					   reg);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	}

abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	u16 reg = fid << 12;

	if (dsa_is_cpu_port(ds, port))
		reg |= ds->phys_port_mask;
	else
		reg |= (ps->bridge_mask[fid] |
		       (1 << dsa_upstream_port(ds))) & ~(1 << port);

1058
	return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
}

/* Must be called with smi lock held */
static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int port;
	u32 mask;
	int ret;

	mask = ds->phys_port_mask;
	while (mask) {
		port = __ffs(mask);
		mask &= ~(1 << port);
		if (ps->fid[port] != fid)
			continue;

		ret = _mv88e6xxx_update_port_config(ds, port);
		if (ret)
			return ret;
	}

	return _mv88e6xxx_flush_fid(ds, fid);
}

/* Bridge handling functions */

int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret = 0;
	u32 nmask;
	int fid;

	/* If the bridge group is not empty, join that group.
	 * Otherwise create a new group.
	 */
	fid = ps->fid[port];
	nmask = br_port_mask & ~(1 << port);
	if (nmask)
		fid = ps->fid[__ffs(nmask)];

	nmask = ps->bridge_mask[fid] | (1 << port);
	if (nmask != br_port_mask) {
		netdev_err(ds->ports[port],
			   "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, nmask);
		return -EINVAL;
	}

	mutex_lock(&ps->smi_mutex);

	ps->bridge_mask[fid] = br_port_mask;

	if (fid != ps->fid[port]) {
		ps->fid_mask |= 1 << ps->fid[port];
		ps->fid[port] = fid;
		ret = _mv88e6xxx_update_bridge_config(ds, fid);
	}

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid, newfid;
	int ret;

	fid = ps->fid[port];

	if (ps->bridge_mask[fid] != br_port_mask) {
		netdev_err(ds->ports[port],
			   "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n",
			   fid, br_port_mask, ps->bridge_mask[fid]);
		return -EINVAL;
	}

	/* If the port was the last port of a bridge, we are done.
	 * Otherwise assign a new fid to the port, and fix up
	 * the bridge configuration.
	 */
	if (br_port_mask == (1 << port))
		return 0;

	mutex_lock(&ps->smi_mutex);

	newfid = __ffs(ps->fid_mask);
	ps->fid[port] = newfid;
	ps->fid_mask &= (1 << newfid);
	ps->bridge_mask[fid] &= ~(1 << port);
	ps->bridge_mask[newfid] = 1 << port;

	ret = _mv88e6xxx_update_bridge_config(ds, fid);
	if (!ret)
		ret = _mv88e6xxx_update_bridge_config(ds, newfid);

	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int stp_state;

	switch (state) {
	case BR_STATE_DISABLED:
1170
		stp_state = PORT_CONTROL_STATE_DISABLED;
1171 1172 1173
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1174
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1175 1176
		break;
	case BR_STATE_LEARNING:
1177
		stp_state = PORT_CONTROL_STATE_LEARNING;
1178 1179 1180
		break;
	case BR_STATE_FORWARDING:
	default:
1181
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		break;
	}

	netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);

	/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
	 * so we can not update the port state directly but need to schedule it.
	 */
	ps->port_state[port] = stp_state;
	set_bit(port, &ps->port_state_update_mask);
	schedule_work(&ps->bridge_work);

	return 0;
}

1197 1198 1199 1200 1201 1202
static int __mv88e6xxx_write_addr(struct dsa_switch *ds,
				  const unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1203 1204 1205
		ret = _mv88e6xxx_reg_write(
			ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int __mv88e6xxx_read_addr(struct dsa_switch *ds, unsigned char *addr)
{
	int i, ret;

	for (i = 0; i < 3; i++) {
1218 1219
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
					  GLOBAL_ATU_MAC_01 + i);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

static int __mv88e6xxx_port_fdb_cmd(struct dsa_switch *ds, int port,
				    const unsigned char *addr, int state)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

1244
	ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA,
1245 1246 1247 1248
				   (0x10 << port) | state);
	if (ret)
		return ret;

1249
	ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_LOAD_DB);
1250 1251 1252 1253 1254 1255 1256 1257

	return ret;
}

int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	int state = is_multicast_ether_addr(addr) ?
1258 1259
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr, state);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
			   const unsigned char *addr, u16 vid)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
1277 1278
	ret = __mv88e6xxx_port_fdb_cmd(ds, port, addr,
				       GLOBAL_ATU_DATA_STATE_UNUSED);
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

static int __mv88e6xxx_port_getnext(struct dsa_switch *ds, int port,
				    unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u8 fid = ps->fid[port];
	int ret, state;

	ret = _mv88e6xxx_atu_wait(ds);
	if (ret < 0)
		return ret;

	ret = __mv88e6xxx_write_addr(ds, addr);
	if (ret < 0)
		return ret;

	do {
1300
		ret = _mv88e6xxx_atu_cmd(ds, fid,  GLOBAL_ATU_OP_GET_NEXT_DB);
1301 1302 1303
		if (ret < 0)
			return ret;

1304
		ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
1305 1306
		if (ret < 0)
			return ret;
1307 1308
		state = ret & GLOBAL_ATU_DATA_STATE_MASK;
		if (state == GLOBAL_ATU_DATA_STATE_UNUSED)
1309 1310 1311 1312 1313 1314 1315 1316
			return -ENOENT;
	} while (!(((ret >> 4) & 0xff) & (1 << port)));

	ret = __mv88e6xxx_read_addr(ds, addr);
	if (ret < 0)
		return ret;

	*is_static = state == (is_multicast_ether_addr(addr) ?
1317 1318
			       GLOBAL_ATU_DATA_STATE_MC_STATIC :
			       GLOBAL_ATU_DATA_STATE_UC_STATIC);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	return 0;
}

/* get next entry for port */
int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port,
			       unsigned char *addr, bool *is_static)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

	mutex_lock(&ps->smi_mutex);
	ret = __mv88e6xxx_port_getnext(ds, port, addr, is_static);
	mutex_unlock(&ps->smi_mutex);

	return ret;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
	struct mv88e6xxx_priv_state *ps;
	struct dsa_switch *ds;
	int port;

	ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
	ds = ((struct dsa_switch *)ps) - 1;

	while (ps->port_state_update_mask) {
		port = __ffs(ps->port_state_update_mask);
		clear_bit(port, &ps->port_state_update_mask);
		mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
	}
}

1353
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
1354 1355
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1356
	int ret, fid;
1357
	u16 reg;
1358 1359 1360

	mutex_lock(&ps->smi_mutex);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
	    mv88e6xxx_6065_family(ds)) {
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
		reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
		if (dsa_is_cpu_port(ds, port) ||
		    ds->dsa_port_mask & (1 << port)) {
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
			if (mv88e6xxx_6065_family(ds))
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PCS_CTRL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
	    mv88e6xxx_6185_family(ds))
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
		if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
			reg |= PORT_CONTROL_DSA_TAG;
		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
			else
				reg |= PORT_CONTROL_FRAME_MODE_DSA;
		}

		if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
		    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
		    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
		    mv88e6xxx_6185_family(ds)) {
			if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
				reg |= PORT_CONTROL_EGRESS_ADD_TAG;
		}
	}
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds)) {
		if (ds->dsa_port_mask & (1 << port))
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL, reg);
		if (ret)
			goto abort;
	}

	/* Port Control 2: don't force a good FCS, set the maximum
	 * frame size to 10240 bytes, don't let the switch add or
	 * strip 802.1q tags, don't discard tagged or untagged frames
	 * on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't
	 * send a copy of all transmitted/received frames on this port
	 * to the CPU.
	 */
	reg = 0;
	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6095_family(ds))
		reg = PORT_CONTROL_2_MAP_DA;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds))
		reg |= PORT_CONTROL_2_JUMBO_10240;

	if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

	if (reg) {
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_CONTROL_2, reg);
		if (ret)
			goto abort;
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR,
				   1 << port);
	if (ret)
		goto abort;

	/* Egress rate control 2: disable egress rate control. */
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
				   0x0000);
	if (ret)
		goto abort;

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
			goto abort;

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
			goto abort;

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
			goto abort;
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
			goto abort;

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
			goto abort;
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) {
		/* Rate Control: disable ingress rate limiting. */
		ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
			goto abort;
	}

1559 1560
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
1561
	 */
1562
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
1563 1564 1565 1566 1567 1568 1569 1570
	if (ret)
		goto abort;

	/* Port based VLAN map: give each port its own address
	 * database, allow the CPU port to talk to each of the 'real'
	 * ports, and allow each of the 'real' ports to only talk to
	 * the upstream port.
	 */
1571 1572 1573 1574 1575 1576
	fid = __ffs(ps->fid_mask);
	ps->fid[port] = fid;
	ps->fid_mask &= ~(1 << fid);

	if (!dsa_is_cpu_port(ds, port))
		ps->bridge_mask[fid] = 1 << port;
1577

1578
	ret = _mv88e6xxx_update_port_config(ds, port);
1579 1580 1581 1582 1583 1584
	if (ret)
		goto abort;

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
1585 1586
	ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
				   0x0000);
1587 1588 1589 1590 1591
abort:
	mutex_unlock(&ps->smi_mutex);
	return ret;
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;
	int i;

	for (i = 0; i < ps->num_ports; i++) {
		ret = mv88e6xxx_setup_port(ds, i);
		if (ret < 0)
			return ret;
	}
	return 0;
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static int mv88e6xxx_regs_show(struct seq_file *s, void *p)
{
	struct dsa_switch *ds = s->private;

	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int reg, port;

	seq_puts(s, "    GLOBAL GLOBAL2 ");
	for (port = 0 ; port < ps->num_ports; port++)
		seq_printf(s, " %2d  ", port);
	seq_puts(s, "\n");

	for (reg = 0; reg < 32; reg++) {
		seq_printf(s, "%2x: ", reg);
		seq_printf(s, " %4x    %4x  ",
			   mv88e6xxx_reg_read(ds, REG_GLOBAL, reg),
			   mv88e6xxx_reg_read(ds, REG_GLOBAL2, reg));

		for (port = 0 ; port < ps->num_ports; port++)
			seq_printf(s, "%4x ",
				   mv88e6xxx_reg_read(ds, REG_PORT(port), reg));
		seq_puts(s, "\n");
	}

	return 0;
}

static int mv88e6xxx_regs_open(struct inode *inode, struct file *file)
{
	return single_open(file, mv88e6xxx_regs_show, inode->i_private);
}

static const struct file_operations mv88e6xxx_regs_fops = {
	.open   = mv88e6xxx_regs_open,
	.read   = seq_read,
	.llseek = no_llseek,
	.release = single_release,
	.owner  = THIS_MODULE,
};

1646 1647 1648
int mv88e6xxx_setup_common(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1649
	char *name;
1650 1651 1652

	mutex_init(&ps->smi_mutex);

1653
	ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
1654

1655 1656 1657 1658
	ps->fid_mask = (1 << DSA_MAX_PORTS) - 1;

	INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);

1659 1660 1661 1662 1663 1664 1665
	name = kasprintf(GFP_KERNEL, "dsa%d", ds->index);
	ps->dbgfs = debugfs_create_dir(name, NULL);
	kfree(name);

	debugfs_create_file("regs", S_IRUGO, ps->dbgfs, ds,
			    &mv88e6xxx_regs_fops);

1666 1667 1668
	return 0;
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int i;

	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
	REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
		  0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);

	/* Configure the IP ToS mapping registers. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
	REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);

	/* Configure the IEEE 802.1p priority mapping register. */
	REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);

	/* Send all frames with destination addresses matching
	 * 01:80:c2:00:00:0x to the CPU port.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
	REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
		  0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
		  GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);

	/* Program the DSA routing table. */
	for (i = 0; i < 32; i++) {
		int nexthop = 0x1f;

		if (ds->pd->rtable &&
		    i != ds->index && i < ds->dst->pd->nr_chips)
			nexthop = ds->pd->rtable[i] & 0x1f;

		REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
			  GLOBAL2_DEVICE_MAPPING_UPDATE |
			  (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
			  nexthop);
	}

	/* Clear all trunk masks. */
	for (i = 0; i < 8; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
			  0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
			  ((1 << ps->num_ports) - 1));

	/* Clear all trunk mappings. */
	for (i = 0; i < 16; i++)
		REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
			  GLOBAL2_TRUNK_MAPPING_UPDATE |
			  (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds)) {
		/* Send all frames with destination addresses matching
		 * 01:80:c2:00:00:2x to the CPU port.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);

		/* Initialise cross-chip port VLAN table to reset
		 * defaults.
		 */
		REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);

		/* Clear the priority override table. */
		for (i = 0; i < 16; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
				  0x8000 | (i << 8));
	}

	if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
	    mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
	    mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds)) {
		/* Disable ingress rate limiting by resetting all
		 * ingress rate limit registers to their initial
		 * state.
		 */
		for (i = 0; i < ps->num_ports; i++)
			REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
				  0x9000 | (i << 8));
	}

	return 0;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
	for (i = 0; i < ps->num_ports; i++) {
1777 1778
		ret = REG_READ(REG_PORT(i), PORT_CONTROL);
		REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
		REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
	else
		REG_WRITE(REG_GLOBAL, 0x04, 0xc400);

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
		ret = REG_READ(REG_GLOBAL, 0x00);
		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		return -ETIMEDOUT;

	return 0;
}

1807 1808 1809 1810 1811
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

1812
	mutex_lock(&ps->smi_mutex);
1813
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1814 1815
	if (ret < 0)
		goto error;
1816
	ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
1817
error:
1818
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
1819
	mutex_unlock(&ps->smi_mutex);
1820 1821 1822 1823 1824 1825 1826 1827 1828
	return ret;
}

int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
			     int reg, int val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int ret;

1829
	mutex_lock(&ps->smi_mutex);
1830
	ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
1831 1832 1833
	if (ret < 0)
		goto error;

1834
	ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
1835
error:
1836
	_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
1837
	mutex_unlock(&ps->smi_mutex);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	return ret;
}

static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);

	if (port >= 0 && port < ps->num_ports)
		return port;
	return -EINVAL;
}

int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1860
	mutex_lock(&ps->smi_mutex);
1861
	ret = _mv88e6xxx_phy_read(ds, addr, regnum);
1862
	mutex_unlock(&ps->smi_mutex);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	return ret;
}

int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1876
	mutex_lock(&ps->smi_mutex);
1877
	ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
1878
	mutex_unlock(&ps->smi_mutex);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	return ret;
}

int
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1892
	mutex_lock(&ps->smi_mutex);
1893
	ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
1894
	mutex_unlock(&ps->smi_mutex);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	return ret;
}

int
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
			     u16 val)
{
	struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
	int addr = mv88e6xxx_port_to_phy_addr(ds, port);
	int ret;

	if (addr < 0)
		return addr;

1909
	mutex_lock(&ps->smi_mutex);
1910
	ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
1911
	mutex_unlock(&ps->smi_mutex);
1912 1913 1914
	return ret;
}

1915 1916 1917 1918 1919 1920 1921
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	register_switch_driver(&mv88e6123_61_65_switch_driver);
1922
#endif
1923 1924 1925
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	register_switch_driver(&mv88e6352_switch_driver);
#endif
1926 1927
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	register_switch_driver(&mv88e6171_switch_driver);
1928 1929 1930 1931 1932 1933 1934
#endif
	return 0;
}
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
1935 1936 1937
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
	unregister_switch_driver(&mv88e6171_switch_driver);
#endif
1938 1939 1940
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
	unregister_switch_driver(&mv88e6352_switch_driver);
#endif
1941 1942 1943 1944 1945 1946 1947 1948
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
	unregister_switch_driver(&mv88e6123_61_65_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
	unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
1949 1950 1951 1952

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");