slab.c 107.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
110
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177 178
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
182 183
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

206
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
207 208
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209 210
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245
	struct rcu_head head;
246
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
247
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267
	spinlock_t lock;
A
Andrew Morton 已提交
268 269 270 271 272 273
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

312 313 314 315 316 317 318
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
static void enable_cpucache(struct kmem_cache *cachep);
static void cache_reap(void *unused);

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
390
	struct kmem_list3 *nodelists[MAX_NUMNODES];
391

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
410 411

	/* de-constructor func */
412
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444 445 446 447 448 449 450
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
451 452 453
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
454
 *
A
Adrian Bunk 已提交
455
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
466
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
467 468 469 470 471
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
472 473
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
490
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
491 492 493
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494
#define	STATS_INC_NODEFREES(x)	do { } while (0)
495
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
496
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
505 506
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
509 510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
512
 * 		redzone word.
513 514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
515 516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_offset;
L
Linus Torvalds 已提交
521 522
}

523
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_size;
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
532 533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
535 536 537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
547 548 549 550
}

#else

551 552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
560 561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
581 582 583 584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
585
 */
586 587 588 589 590 591 592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593 594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595
	BUG_ON(!PageSlab(page));
596 597 598 599 600 601 602 603 604 605
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
606 607
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
608
	BUG_ON(!PageSlab(page));
609 610
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624 625 626 627 628 629 630 631 632 633 634 635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
674 675 676
#endif
};

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
 */
static struct lock_class_key on_slab_key;

static inline void init_lock_keys(struct cache_sizes *s)
{
	int q;

	for (q = 0; q < MAX_NUMNODES; q++) {
		if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
			continue;
		lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
				  &on_slab_key);
	}
}

#else
static inline void init_lock_keys(struct cache_sizes *s)
{
}
#endif



L
Linus Torvalds 已提交
708
/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
709
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
710 711 712
static struct list_head cache_chain;

/*
A
Andrew Morton 已提交
713 714
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
L
Linus Torvalds 已提交
715 716 717 718 719 720 721 722 723 724 725
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
726 727
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
728 729 730
	FULL
} g_cpucache_up;

731 732 733 734 735 736 737 738
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
739 740
static DEFINE_PER_CPU(struct work_struct, reap_work);

741
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
742 743 744 745
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
746 747
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
748 749 750 751 752
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
753 754 755
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
756
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
757 758 759 760 761
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
762
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
763 764 765 766 767 768 769 770
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

771
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
772 773 774 775 776
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

777
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
778
{
779 780
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
781

A
Andrew Morton 已提交
782 783 784
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
785 786 787 788 789 790 791
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
841 842 843 844
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
845 846
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
847 848
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
849
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
850 851 852
	dump_stack();
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
868
		node = first_node(node_online_map);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
911
		init_reap_node(cpu);
L
Linus Torvalds 已提交
912 913 914 915 916
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

917
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
918
					    int batchcount)
L
Linus Torvalds 已提交
919
{
P
Pekka Enberg 已提交
920
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
921 922
	struct array_cache *nc = NULL;

923
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
924 925 926 927 928
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
929
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
930 931 932 933
	}
	return nc;
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

958
#ifdef CONFIG_NUMA
959
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
960
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
961

P
Pekka Enberg 已提交
962
static struct array_cache **alloc_alien_cache(int node, int limit)
963 964
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
965
	int memsize = sizeof(void *) * MAX_NUMNODES;
966 967 968 969 970 971 972 973 974 975 976 977 978
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
979
				for (i--; i <= 0; i--)
980 981 982 983 984 985 986 987 988
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
989
static void free_alien_cache(struct array_cache **ac_ptr)
990 991 992 993 994 995
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
996
	    kfree(ac_ptr[i]);
997 998 999
	kfree(ac_ptr);
}

1000
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1001
				struct array_cache *ac, int node)
1002 1003 1004 1005 1006
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1007 1008 1009 1010 1011
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1012 1013
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1014

1015
		free_block(cachep, ac->entry, ac->avail, node);
1016 1017 1018 1019 1020
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1021 1022 1023 1024 1025 1026 1027 1028 1029
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1030 1031

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1032 1033 1034 1035 1036 1037
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1038 1039
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1040
{
P
Pekka Enberg 已提交
1041
	int i = 0;
1042 1043 1044 1045
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1046
		ac = alien[i];
1047 1048 1049 1050 1051 1052 1053
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1054

1055
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1073
		spin_lock(&alien->lock);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1088
#else
1089

1090
#define drain_alien_cache(cachep, alien) do { } while (0)
1091
#define reap_alien(cachep, l3) do { } while (0)
1092

1093 1094 1095 1096 1097
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1098 1099 1100
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1101

1102
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1103 1104 1105 1106
{
	return 0;
}

1107 1108
#endif

1109
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1110
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1111 1112
{
	long cpu = (long)hcpu;
1113
	struct kmem_cache *cachep;
1114 1115 1116
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1117 1118 1119

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1120
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1121 1122
		/*
		 * We need to do this right in the beginning since
1123 1124 1125 1126 1127
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1128
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1129 1130
			/*
			 * Set up the size64 kmemlist for cpu before we can
1131 1132 1133 1134
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1135 1136
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1137 1138 1139
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1140
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1141

1142 1143 1144 1145 1146
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1147 1148
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1149

1150 1151
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1152 1153
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1154 1155 1156
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1157 1158 1159 1160
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1161
		list_for_each_entry(cachep, &cache_chain, next) {
1162
			struct array_cache *nc;
1163 1164
			struct array_cache *shared;
			struct array_cache **alien;
1165

1166
			nc = alloc_arraycache(node, cachep->limit,
1167
						cachep->batchcount);
L
Linus Torvalds 已提交
1168 1169
			if (!nc)
				goto bad;
1170 1171 1172 1173 1174
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1175

1176 1177 1178
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1179
			cachep->array[cpu] = nc;
1180 1181 1182
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1183 1184 1185 1186 1187 1188 1189 1190
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1191
			}
1192 1193 1194 1195 1196 1197 1198 1199 1200
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1201
		}
I
Ingo Molnar 已提交
1202
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1203 1204 1205 1206 1207 1208
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1209 1210 1211 1212 1213 1214 1215 1216
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1217 1218
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1219
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1220 1221
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1222 1223
			struct array_cache *shared;
			struct array_cache **alien;
1224
			cpumask_t mask;
L
Linus Torvalds 已提交
1225

1226
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1227 1228 1229
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1230 1231 1232
			l3 = cachep->nodelists[node];

			if (!l3)
1233
				goto free_array_cache;
1234

1235
			spin_lock_irq(&l3->list_lock);
1236 1237 1238 1239

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1240
				free_block(cachep, nc->entry, nc->avail, node);
1241 1242

			if (!cpus_empty(mask)) {
1243
				spin_unlock_irq(&l3->list_lock);
1244
				goto free_array_cache;
P
Pekka Enberg 已提交
1245
			}
1246

1247 1248
			shared = l3->shared;
			if (shared) {
1249
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1250
					   l3->shared->avail, node);
1251 1252 1253
				l3->shared = NULL;
			}

1254 1255 1256 1257 1258 1259 1260 1261 1262
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1263
			}
1264
free_array_cache:
L
Linus Torvalds 已提交
1265 1266
			kfree(nc);
		}
1267 1268 1269 1270 1271 1272 1273 1274 1275
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1276
			drain_freelist(cachep, l3, l3->free_objects);
1277
		}
I
Ingo Molnar 已提交
1278
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1279 1280 1281 1282
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1283
bad:
I
Ingo Molnar 已提交
1284
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1285 1286 1287
	return NOTIFY_BAD;
}

1288 1289 1290
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1291

1292 1293 1294
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1295 1296
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1297 1298 1299 1300 1301 1302 1303 1304 1305
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1306 1307 1308 1309 1310
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1311 1312 1313 1314 1315
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1316 1317 1318
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1325
	int i;
1326
	int order;
1327 1328 1329 1330 1331 1332

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1343 1344 1345
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1346 1347 1348
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1349
	 * 2) Create the first kmalloc cache.
1350
	 *    The struct kmem_cache for the new cache is allocated normally.
1351 1352 1353
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1354 1355
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1356 1357 1358
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1359 1360 1361 1362 1363 1364 1365
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1366
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1367

A
Andrew Morton 已提交
1368 1369
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1370

1371 1372 1373 1374 1375 1376
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1377
	BUG_ON(!cache_cache.num);
1378
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1379 1380 1381
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1382 1383 1384 1385 1386

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1387 1388 1389 1390
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1391 1392 1393
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1394 1395 1396 1397
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1398

A
Andrew Morton 已提交
1399
	if (INDEX_AC != INDEX_L3) {
1400
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1401 1402 1403 1404 1405 1406
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1407

1408 1409
	slab_early_init = 0;

L
Linus Torvalds 已提交
1410
	while (sizes->cs_size != ULONG_MAX) {
1411 1412
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1413 1414 1415
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1416 1417
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1418
		if (!sizes->cs_cachep) {
1419
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1420 1421 1422 1423 1424
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1425
		init_lock_keys(sizes);
L
Linus Torvalds 已提交
1426 1427

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1428 1429 1430 1431 1432
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1438
		struct array_cache *ptr;
1439

L
Linus Torvalds 已提交
1440
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1441

L
Linus Torvalds 已提交
1442
		local_irq_disable();
1443 1444
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1445
		       sizeof(struct arraycache_init));
1446 1447 1448 1449 1450
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1451 1452
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1453

L
Linus Torvalds 已提交
1454
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1455

L
Linus Torvalds 已提交
1456
		local_irq_disable();
1457
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1458
		       != &initarray_generic.cache);
1459
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1460
		       sizeof(struct arraycache_init));
1461 1462 1463 1464 1465
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1466
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1467
		    ptr;
L
Linus Torvalds 已提交
1468 1469
		local_irq_enable();
	}
1470 1471 1472 1473 1474
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1475
			  numa_node_id());
1476 1477 1478

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1479
				  &initkmem_list3[SIZE_AC + node], node);
1480 1481 1482

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1483 1484
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1485 1486 1487
			}
		}
	}
L
Linus Torvalds 已提交
1488

1489
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1490
	{
1491
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1492
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1493
		list_for_each_entry(cachep, &cache_chain, next)
A
Andrew Morton 已提交
1494
			enable_cpucache(cachep);
I
Ingo Molnar 已提交
1495
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500
	}

	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1501 1502 1503
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1504 1505 1506
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1507 1508 1509
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514 1515 1516
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1517 1518
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1519
	 */
1520
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1521
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1533
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1534 1535
{
	struct page *page;
1536
	int nr_pages;
L
Linus Torvalds 已提交
1537 1538
	int i;

1539
#ifndef CONFIG_MMU
1540 1541 1542
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1543
	 */
1544
	flags |= __GFP_COMP;
1545
#endif
1546 1547 1548
	flags |= cachep->gfpflags;

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1549 1550 1551
	if (!page)
		return NULL;

1552
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1553
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1554
		atomic_add(nr_pages, &slab_reclaim_pages);
1555
	add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
1556 1557 1558
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563
}

/*
 * Interface to system's page release.
 */
1564
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1565
{
P
Pekka Enberg 已提交
1566
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1567 1568 1569
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1570
	sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
L
Linus Torvalds 已提交
1571
	while (i--) {
N
Nick Piggin 已提交
1572 1573
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1579 1580
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1581 1582 1583 1584
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1585
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1586
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1596
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1597
			    unsigned long caller)
L
Linus Torvalds 已提交
1598
{
1599
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1600

1601
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1602

P
Pekka Enberg 已提交
1603
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1604 1605
		return;

P
Pekka Enberg 已提交
1606 1607 1608 1609
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615 1616
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1617
				*addr++ = svalue;
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1625
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1626 1627 1628
}
#endif

1629
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1630
{
1631 1632
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1633 1634

	memset(addr, val, size);
P
Pekka Enberg 已提交
1635
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640 1641
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1642
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1643
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649
	printk("\n");
}
#endif

#if DEBUG

1650
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1657 1658
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1659 1660 1661 1662
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1663
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1664
		print_symbol("(%s)",
A
Andrew Morton 已提交
1665
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1666 1667
		printk("\n");
	}
1668 1669
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1670
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1671 1672
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1673 1674
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1675 1676 1677 1678
		dump_line(realobj, i, limit);
	}
}

1679
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1680 1681 1682 1683 1684
{
	char *realobj;
	int size, i;
	int lines = 0;

1685 1686
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1687

P
Pekka Enberg 已提交
1688
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1689
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1690
		if (i == size - 1)
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695 1696
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1697
				printk(KERN_ERR
A
Andrew Morton 已提交
1698 1699
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1700 1701 1702
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1703
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1704
			limit = 16;
P
Pekka Enberg 已提交
1705 1706
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1719
		struct slab *slabp = virt_to_slab(objp);
1720
		unsigned int objnr;
L
Linus Torvalds 已提交
1721

1722
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1723
		if (objnr) {
1724
			objp = index_to_obj(cachep, slabp, objnr - 1);
1725
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1726
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1727
			       realobj, size);
L
Linus Torvalds 已提交
1728 1729
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1730
		if (objnr + 1 < cachep->num) {
1731
			objp = index_to_obj(cachep, slabp, objnr + 1);
1732
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1733
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1734
			       realobj, size);
L
Linus Torvalds 已提交
1735 1736 1737 1738 1739 1740
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1741 1742
#if DEBUG
/**
1743 1744 1745 1746 1747 1748
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1749
 */
1750
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1751 1752 1753
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1754
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1755 1756 1757

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1758 1759
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1760
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1761
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1771
					   "was overwritten");
L
Linus Torvalds 已提交
1772 1773
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1774
					   "was overwritten");
L
Linus Torvalds 已提交
1775 1776
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1777
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1778
	}
1779
}
L
Linus Torvalds 已提交
1780
#else
1781
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1782
{
L
Linus Torvalds 已提交
1783 1784 1785
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1786
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1787
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1788 1789
		}
	}
1790
}
L
Linus Torvalds 已提交
1791 1792
#endif

1793 1794 1795 1796 1797
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1798
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1799 1800
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1801
 */
1802
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1803 1804 1805 1806
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1807 1808 1809
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1810
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1816 1817
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1818 1819 1820
	}
}

A
Andrew Morton 已提交
1821 1822 1823 1824
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1825
static void set_up_list3s(struct kmem_cache *cachep, int index)
1826 1827 1828 1829
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1830
		cachep->nodelists[node] = &initkmem_list3[index + node];
1831
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1832 1833
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1834 1835 1836
	}
}

1837
/**
1838 1839 1840 1841 1842 1843 1844
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1845 1846 1847 1848 1849
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1850
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1851
			size_t size, size_t align, unsigned long flags)
1852
{
1853
	unsigned long offslab_limit;
1854
	size_t left_over = 0;
1855
	int gfporder;
1856

A
Andrew Morton 已提交
1857
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1858 1859 1860
		unsigned int num;
		size_t remainder;

1861
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1862 1863
		if (!num)
			continue;
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1877

1878
		/* Found something acceptable - save it away */
1879
		cachep->num = num;
1880
		cachep->gfporder = gfporder;
1881 1882
		left_over = remainder;

1883 1884 1885 1886 1887 1888 1889 1890
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1891 1892 1893 1894
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1895
		if (gfporder >= slab_break_gfp_order)
1896 1897
			break;

1898 1899 1900
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1901
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1902 1903 1904 1905 1906
			break;
	}
	return left_over;
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static void setup_cpu_cache(struct kmem_cache *cachep)
{
	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
		return;
	}
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
}

L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
1976 1977
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1990
struct kmem_cache *
L
Linus Torvalds 已提交
1991
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
1992 1993
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1994
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1995 1996
{
	size_t left_over, slab_size, ralign;
1997
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
1998 1999 2000 2001

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2002
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2003
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2004 2005
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2006 2007
		BUG();
	}
L
Linus Torvalds 已提交
2008

2009 2010 2011 2012 2013 2014
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
2015
	mutex_lock(&cache_chain_mutex);
2016

2017
	list_for_each_entry(pc, &cache_chain, next) {
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2032
			       pc->buffer_size);
2033 2034 2035
			continue;
		}

P
Pekka Enberg 已提交
2036
		if (!strcmp(pc->name, name)) {
2037 2038 2039 2040 2041 2042
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2043 2044 2045 2046 2047
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2048
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2058
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2059
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2070 2071
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2072
	 */
2073
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2074

A
Andrew Morton 已提交
2075 2076
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2077 2078 2079
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2080 2081 2082
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2083 2084
	}

A
Andrew Morton 已提交
2085 2086
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2087 2088
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2089 2090 2091 2092
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2093 2094
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2095
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101 2102 2103
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2104
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2110
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2111
	}
A
Andrew Morton 已提交
2112 2113
	/*
	 * 4) Store it. Note that the debug code below can reduce
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2119
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2120
	if (!cachep)
2121
		goto oops;
L
Linus Torvalds 已提交
2122 2123

#if DEBUG
2124
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
2131
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2132
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2143
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2144 2145
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150
		size = PAGE_SIZE;
	}
#endif
#endif

2151 2152 2153 2154 2155 2156
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2165
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2166 2167 2168 2169 2170

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2171
		goto oops;
L
Linus Torvalds 已提交
2172
	}
P
Pekka Enberg 已提交
2173 2174
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2187 2188
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2189 2190 2191 2192 2193 2194
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2195
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2201
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2202 2203

	if (flags & CFLGS_OFF_SLAB)
2204
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
2205 2206 2207 2208 2209
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


2210
	setup_cpu_cache(cachep);
L
Linus Torvalds 已提交
2211 2212 2213

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2214
oops:
L
Linus Torvalds 已提交
2215 2216
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2217
		      name);
I
Ingo Molnar 已提交
2218
	mutex_unlock(&cache_chain_mutex);
2219
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2235
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2236 2237 2238
{
#ifdef CONFIG_SMP
	check_irq_off();
2239
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2240 2241
#endif
}
2242

2243
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2244 2245 2246 2247 2248 2249 2250
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2251 2252 2253 2254
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2255
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2256 2257
#endif

2258 2259 2260 2261
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2262 2263
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2264
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2265
	struct array_cache *ac;
2266
	int node = numa_node_id();
L
Linus Torvalds 已提交
2267 2268

	check_irq_off();
2269
	ac = cpu_cache_get(cachep);
2270 2271 2272
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2273 2274 2275
	ac->avail = 0;
}

2276
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2277
{
2278 2279 2280
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2281
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2282
	check_irq_on();
P
Pekka Enberg 已提交
2283
	for_each_online_node(node) {
2284
		l3 = cachep->nodelists[node];
2285 2286 2287 2288 2289 2290 2291
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2292
			drain_array(cachep, l3, l3->shared, 1, node);
2293
	}
L
Linus Torvalds 已提交
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2304
{
2305 2306
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2307 2308
	struct slab *slabp;

2309 2310
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2311

2312
		spin_lock_irq(&l3->list_lock);
2313
		p = l3->slabs_free.prev;
2314 2315 2316 2317
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2318

2319
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2320
#if DEBUG
2321
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2322 2323
#endif
		list_del(&slabp->list);
2324 2325 2326 2327 2328
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2329
		spin_unlock_irq(&l3->list_lock);
2330 2331
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2332
	}
2333 2334
out:
	return nr_freed;
L
Linus Torvalds 已提交
2335 2336
}

2337
static int __cache_shrink(struct kmem_cache *cachep)
2338 2339 2340 2341 2342 2343 2344 2345 2346
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2347 2348 2349 2350 2351 2352 2353
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2354 2355 2356 2357
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2365
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2366
{
2367
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2377
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2390
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2391 2392
{
	int i;
2393
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2394

2395
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2396 2397 2398 2399 2400

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2401
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2402 2403 2404 2405
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2406
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2407 2408 2409

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2410
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2411
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2412
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2418
		synchronize_rcu();
L
Linus Torvalds 已提交
2419

2420
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2421
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2422 2423

	/* NUMA: free the list3 structures */
2424
	for_each_online_node(i) {
A
Andrew Morton 已提交
2425 2426
		l3 = cachep->nodelists[i];
		if (l3) {
2427 2428 2429 2430 2431
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438
	kmem_cache_free(&cache_cache, cachep);
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2439
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2440 2441
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2442 2443
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2444

L
Linus Torvalds 已提交
2445 2446
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2447 2448
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2449 2450 2451
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2452
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2453 2454 2455 2456
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2457
	slabp->s_mem = objp + colour_off;
2458
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2459 2460 2461 2462 2463
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2464
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2465 2466
}

2467
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2468
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2469 2470 2471 2472
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2473
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2486 2487 2488
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2489 2490
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2491
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2492
				     ctor_flags);
L
Linus Torvalds 已提交
2493 2494 2495 2496

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2497
					   " end of an object");
L
Linus Torvalds 已提交
2498 2499
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2500
					   " start of an object");
L
Linus Torvalds 已提交
2501
		}
A
Andrew Morton 已提交
2502 2503
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2504
			kernel_map_pages(virt_to_page(objp),
2505
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2506 2507 2508 2509
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2510
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2511
	}
P
Pekka Enberg 已提交
2512
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2513 2514 2515
	slabp->free = 0;
}

2516
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2517
{
A
Andrew Morton 已提交
2518 2519 2520 2521
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2522 2523
}

A
Andrew Morton 已提交
2524 2525
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2526
{
2527
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2541 2542
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2543
{
2544
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2545 2546 2547 2548 2549

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2550
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2551
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2552
				"'%s', objp %p\n", cachep->name, objp);
2553 2554 2555 2556 2557 2558 2559 2560
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2561 2562 2563 2564 2565 2566 2567
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2568
{
2569
	int nr_pages;
L
Linus Torvalds 已提交
2570 2571
	struct page *page;

2572
	page = virt_to_page(addr);
2573

2574
	nr_pages = 1;
2575
	if (likely(!PageCompound(page)))
2576 2577
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2578
	do {
2579 2580
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2581
		page++;
2582
	} while (--nr_pages);
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2589
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2590
{
P
Pekka Enberg 已提交
2591 2592 2593 2594 2595
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2596
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2597

A
Andrew Morton 已提交
2598 2599 2600
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2601
	 */
2602
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2615
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2616
	check_irq_off();
2617 2618
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2619 2620

	/* Get colour for the slab, and cal the next value. */
2621 2622 2623 2624 2625
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2626

2627
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2640 2641 2642
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2643
	 */
A
Andrew Morton 已提交
2644 2645
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2646 2647 2648
		goto failed;

	/* Get slab management. */
2649
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2650
	if (!slabp)
L
Linus Torvalds 已提交
2651 2652
		goto opps1;

2653
	slabp->nodeid = nodeid;
2654
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2655 2656 2657 2658 2659 2660

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2661
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2662 2663

	/* Make slab active. */
2664
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2665
	STATS_INC_GROWN(cachep);
2666 2667
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2668
	return 1;
A
Andrew Morton 已提交
2669
opps1:
L
Linus Torvalds 已提交
2670
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2671
failed:
L
Linus Torvalds 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2691 2692
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2693 2694 2695
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2696 2697
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2698 2699 2700 2701
		BUG();
	}
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2724
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2725
				   void *caller)
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2731
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2732 2733 2734
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2735
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2736 2737

	if (cachep->flags & SLAB_RED_ZONE) {
2738
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2739 2740 2741 2742 2743 2744
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2745
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2746 2747

	BUG_ON(objnr >= cachep->num);
2748
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2749 2750

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2751 2752 2753 2754
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2755
		 */
2756
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2757
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2758 2759 2760 2761 2762
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2763
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2764
	}
2765 2766 2767
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2768 2769
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2770
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2771
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2772
			kernel_map_pages(virt_to_page(objp),
2773
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2784
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2785 2786 2787
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2788

L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794 2795
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2796 2797 2798 2799
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2800
		for (i = 0;
2801
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2802
		     i++) {
A
Andrew Morton 已提交
2803
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2804
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2805
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2817
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2824
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2825
retry:
L
Linus Torvalds 已提交
2826 2827
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2828 2829 2830 2831
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2832 2833 2834
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2835 2836 2837 2838
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2839

2840 2841 2842 2843
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2864 2865
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2877
must_grow:
L
Linus Torvalds 已提交
2878
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2879
alloc_done:
2880
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2881 2882 2883

	if (unlikely(!ac->avail)) {
		int x;
2884 2885
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2886
		/* cache_grow can reenable interrupts, then ac could change. */
2887
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2888
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2889 2890
			return NULL;

A
Andrew Morton 已提交
2891
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2892 2893 2894
			goto retry;
	}
	ac->touched = 1;
2895
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2896 2897
}

A
Andrew Morton 已提交
2898 2899
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905 2906 2907
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2908 2909
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2910
{
P
Pekka Enberg 已提交
2911
	if (!objp)
L
Linus Torvalds 已提交
2912
		return objp;
P
Pekka Enberg 已提交
2913
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2914
#ifdef CONFIG_DEBUG_PAGEALLOC
2915
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2916
			kernel_map_pages(virt_to_page(objp),
2917
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2929 2930 2931 2932
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2933
			printk(KERN_ERR
A
Andrew Morton 已提交
2934 2935 2936
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2937 2938 2939 2940
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
2951
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2952
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2953
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2954 2955 2956 2957 2958

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2959
	}
L
Linus Torvalds 已提交
2960 2961 2962 2963 2964 2965
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2966
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2967
{
P
Pekka Enberg 已提交
2968
	void *objp;
L
Linus Torvalds 已提交
2969 2970
	struct array_cache *ac;

2971
#ifdef CONFIG_NUMA
2972
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2973 2974 2975
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
2976 2977 2978
	}
#endif

2979
	check_irq_off();
2980
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2981 2982 2983
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2984
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2985 2986 2987 2988
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2989 2990 2991
	return objp;
}

A
Andrew Morton 已提交
2992 2993
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
2994 2995
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2996
	void *objp;
2997 2998 2999 3000 3001

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
3002
	local_irq_restore(save_flags);
3003
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3004
					    caller);
3005
	prefetchw(objp);
L
Linus Torvalds 已提交
3006 3007 3008
	return objp;
}

3009
#ifdef CONFIG_NUMA
3010
/*
3011
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

3032 3033
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3034
 */
A
Andrew Morton 已提交
3035 3036
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
3037 3038
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3039 3040 3041 3042 3043 3044 3045 3046
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3047
retry:
3048
	check_irq_off();
P
Pekka Enberg 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3068
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3069 3070 3071 3072 3073
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3074
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3075
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3076
	else
P
Pekka Enberg 已提交
3077
		list_add(&slabp->list, &l3->slabs_partial);
3078

P
Pekka Enberg 已提交
3079 3080
	spin_unlock(&l3->list_lock);
	goto done;
3081

A
Andrew Morton 已提交
3082
must_grow:
P
Pekka Enberg 已提交
3083 3084
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
3085

P
Pekka Enberg 已提交
3086 3087
	if (!x)
		return NULL;
3088

P
Pekka Enberg 已提交
3089
	goto retry;
A
Andrew Morton 已提交
3090
done:
P
Pekka Enberg 已提交
3091
	return obj;
3092 3093 3094 3095 3096 3097
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3098
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3099
		       int node)
L
Linus Torvalds 已提交
3100 3101
{
	int i;
3102
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3103 3104 3105 3106 3107

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3108
		slabp = virt_to_slab(objp);
3109
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3110
		list_del(&slabp->list);
3111
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3112
		check_slabp(cachep, slabp);
3113
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3114
		STATS_DEC_ACTIVE(cachep);
3115
		l3->free_objects++;
L
Linus Torvalds 已提交
3116 3117 3118 3119
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3120 3121
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
3122 3123
				slab_destroy(cachep, slabp);
			} else {
3124
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3125 3126 3127 3128 3129 3130
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3131
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3132 3133 3134 3135
		}
	}
}

3136
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3137 3138
{
	int batchcount;
3139
	struct kmem_list3 *l3;
3140
	int node = numa_node_id();
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3147
	l3 = cachep->nodelists[node];
3148
	spin_lock(&l3->list_lock);
3149 3150
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3151
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3152 3153 3154
		if (max) {
			if (batchcount > max)
				batchcount = max;
3155
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3156
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3157 3158 3159 3160 3161
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3162
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3163
free_done:
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168
#if STATS
	{
		int i = 0;
		struct list_head *p;

3169 3170
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3182
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3183
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3184
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3185 3186 3187
}

/*
A
Andrew Morton 已提交
3188 3189
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3190
 */
3191
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3192
{
3193
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3194 3195 3196 3197

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3198
	if (cache_free_alien(cachep, objp))
3199 3200
		return;

L
Linus Torvalds 已提交
3201 3202
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3203
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3204 3205 3206 3207
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3208
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3220
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3221
{
3222
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3223 3224 3225
}
EXPORT_SYMBOL(kmem_cache_alloc);

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/**
 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3257
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3258
{
P
Pekka Enberg 已提交
3259
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3260
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3261
	unsigned long align_mask = BYTES_PER_WORD - 1;
3262
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3278
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3279 3280
		goto out;
	return 1;
A
Andrew Morton 已提交
3281
out:
L
Linus Torvalds 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3295 3296
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3297
 */
3298
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3299
{
3300 3301
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3302

3303 3304
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3305 3306

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3307
			!cachep->nodelists[nodeid])
3308 3309 3310
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3311
	local_irq_restore(save_flags);
3312 3313 3314

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3315

3316
	return ptr;
L
Linus Torvalds 已提交
3317 3318 3319
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3320
void *kmalloc_node(size_t size, gfp_t flags, int node)
3321
{
3322
	struct kmem_cache *cachep;
3323 3324 3325 3326 3327 3328 3329

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3330 3331 3332
#endif

/**
3333
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3334
 * @size: how many bytes of memory are required.
3335
 * @flags: the type of memory to allocate (see kmalloc).
3336
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3337
 */
3338 3339
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3340
{
3341
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3342

3343 3344 3345 3346 3347 3348
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3349 3350
	if (unlikely(cachep == NULL))
		return NULL;
3351 3352 3353 3354 3355 3356
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3357
#ifndef CONFIG_DEBUG_SLAB
3358
	return __do_kmalloc(size, flags, NULL);
3359 3360 3361
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3362 3363 3364
}
EXPORT_SYMBOL(__kmalloc);

3365
#ifdef CONFIG_DEBUG_SLAB
3366 3367 3368 3369 3370 3371 3372
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3373 3374 3375 3376 3377 3378 3379 3380
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3381
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3382 3383
{
	int i;
P
Pekka Enberg 已提交
3384
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3385 3386 3387 3388

	if (!pdata)
		return NULL;

3389 3390 3391 3392 3393
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
3394
	for_each_possible_cpu(i) {
3395 3396 3397 3398 3399 3400
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3401 3402 3403 3404 3405 3406 3407

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3408
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3409

A
Andrew Morton 已提交
3410
unwind_oom:
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3430
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3431 3432 3433
{
	unsigned long flags;

3434 3435
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3436
	local_irq_save(flags);
3437
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3438 3439 3440 3441 3442 3443 3444 3445
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3446 3447
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3448 3449 3450 3451 3452
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3453
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3454 3455 3456 3457 3458 3459
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3460
	c = virt_to_cache(objp);
3461
	debug_check_no_locks_freed(objp, obj_size(c));
3462
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3475
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3476 3477
{
	int i;
P
Pekka Enberg 已提交
3478
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3479

3480 3481 3482
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
3483
	for_each_possible_cpu(i)
P
Pekka Enberg 已提交
3484
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3490
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3491
{
3492
	return obj_size(cachep);
L
Linus Torvalds 已提交
3493 3494 3495
}
EXPORT_SYMBOL(kmem_cache_size);

3496
const char *kmem_cache_name(struct kmem_cache *cachep)
3497 3498 3499 3500 3501
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3502
/*
3503
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3504
 */
3505
static int alloc_kmemlist(struct kmem_cache *cachep)
3506 3507 3508
{
	int node;
	struct kmem_list3 *l3;
3509 3510
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3511 3512

	for_each_online_node(node) {
3513

A
Andrew Morton 已提交
3514 3515
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3516
			goto fail;
3517

3518 3519
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3520
					0xbaadf00d);
3521 3522
		if (!new_shared) {
			free_alien_cache(new_alien);
3523
			goto fail;
3524
		}
3525

A
Andrew Morton 已提交
3526 3527
		l3 = cachep->nodelists[node];
		if (l3) {
3528 3529
			struct array_cache *shared = l3->shared;

3530 3531
			spin_lock_irq(&l3->list_lock);

3532
			if (shared)
3533 3534
				free_block(cachep, shared->entry,
						shared->avail, node);
3535

3536 3537
			l3->shared = new_shared;
			if (!l3->alien) {
3538 3539 3540
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3541
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3542
					cachep->batchcount + cachep->num;
3543
			spin_unlock_irq(&l3->list_lock);
3544
			kfree(shared);
3545 3546 3547
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3548
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3549 3550 3551
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3552
			goto fail;
3553
		}
3554 3555 3556

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3557
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3558
		l3->shared = new_shared;
3559
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3560
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3561
					cachep->batchcount + cachep->num;
3562 3563
		cachep->nodelists[node] = l3;
	}
3564
	return 0;
3565

A
Andrew Morton 已提交
3566
fail:
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3582
	return -ENOMEM;
3583 3584
}

L
Linus Torvalds 已提交
3585
struct ccupdate_struct {
3586
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3587 3588 3589 3590 3591
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3592
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3593 3594 3595
	struct array_cache *old;

	check_irq_off();
3596
	old = cpu_cache_get(new->cachep);
3597

L
Linus Torvalds 已提交
3598 3599 3600 3601
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3602
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3603 3604
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3605 3606
{
	struct ccupdate_struct new;
3607
	int i, err;
L
Linus Torvalds 已提交
3608

P
Pekka Enberg 已提交
3609
	memset(&new.new, 0, sizeof(new.new));
3610
	for_each_online_cpu(i) {
A
Andrew Morton 已提交
3611 3612
		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
						batchcount);
3613
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3614 3615
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3616
			return -ENOMEM;
L
Linus Torvalds 已提交
3617 3618 3619 3620
		}
	}
	new.cachep = cachep;

A
Andrew Morton 已提交
3621
	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3622

L
Linus Torvalds 已提交
3623 3624 3625
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3626
	cachep->shared = shared;
L
Linus Torvalds 已提交
3627

3628
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3629 3630 3631
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3632
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3633
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3634
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3635 3636 3637
		kfree(ccold);
	}

3638 3639 3640
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3641
		       cachep->name, -err);
3642
		BUG();
L
Linus Torvalds 已提交
3643 3644 3645 3646
	}
	return 0;
}

3647
/* Called with cache_chain_mutex held always */
3648
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3649 3650 3651 3652
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3653 3654
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3655 3656
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3657
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3658 3659 3660 3661
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3662
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3663
		limit = 1;
3664
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3665
		limit = 8;
3666
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3667
		limit = 24;
3668
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3669 3670 3671 3672
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3673 3674
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3684
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3685 3686 3687 3688
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3689 3690 3691
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3692 3693 3694 3695
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3696
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3697 3698
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3699
		       cachep->name, -err);
L
Linus Torvalds 已提交
3700 3701
}

3702 3703
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3704 3705
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3706 3707 3708
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3709 3710 3711
{
	int tofree;

3712 3713
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3714 3715
	if (ac->touched && !force) {
		ac->touched = 0;
3716
	} else {
3717
		spin_lock_irq(&l3->list_lock);
3718 3719 3720 3721 3722 3723 3724 3725 3726
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3727
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3728 3729 3730 3731 3732
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3733
 * @unused: unused parameter
L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3740 3741
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3742 3743 3744
 */
static void cache_reap(void *unused)
{
3745
	struct kmem_cache *searchp;
3746
	struct kmem_list3 *l3;
3747
	int node = numa_node_id();
L
Linus Torvalds 已提交
3748

I
Ingo Molnar 已提交
3749
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3750
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3751 3752
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3753 3754 3755
		return;
	}

3756
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3757 3758
		check_irq_on();

3759 3760 3761 3762 3763
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3764
		l3 = searchp->nodelists[node];
3765

3766
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3767

3768
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3769

3770 3771 3772 3773
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3774
		if (time_after(l3->next_reap, jiffies))
3775
			goto next;
L
Linus Torvalds 已提交
3776

3777
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3778

3779
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3780

3781
		if (l3->free_touched)
3782
			l3->free_touched = 0;
3783 3784
		else {
			int freed;
L
Linus Torvalds 已提交
3785

3786 3787 3788 3789
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3790
next:
L
Linus Torvalds 已提交
3791 3792 3793
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3794
	mutex_unlock(&cache_chain_mutex);
3795
	next_reap_node();
3796
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3797
	/* Set up the next iteration */
3798
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3799 3800 3801 3802
}

#ifdef CONFIG_PROC_FS

3803
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3804
{
3805 3806 3807 3808
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3809
#if STATS
3810
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3811
#else
3812
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3813
#endif
3814 3815 3816 3817
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3818
#if STATS
3819
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3820
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3821
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3822
#endif
3823 3824 3825 3826 3827 3828 3829 3830
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3831
	mutex_lock(&cache_chain_mutex);
3832 3833
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3834 3835 3836 3837 3838 3839
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3840
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3841 3842 3843 3844
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3845
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3846
	++*pos;
A
Andrew Morton 已提交
3847 3848
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3849 3850 3851 3852
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3853
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3854 3855 3856 3857
}

static int s_show(struct seq_file *m, void *p)
{
3858
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3859 3860 3861 3862 3863
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3864
	const char *name;
L
Linus Torvalds 已提交
3865
	char *error = NULL;
3866 3867
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3868 3869 3870

	active_objs = 0;
	num_slabs = 0;
3871 3872 3873 3874 3875
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3876 3877
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3878

3879
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3880 3881 3882 3883 3884
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3885
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3886 3887 3888 3889 3890 3891 3892
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
3893
		list_for_each_entry(slabp, &l3->slabs_free, list) {
3894 3895 3896 3897 3898
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3899 3900
		if (l3->shared)
			shared_avail += l3->shared->avail;
3901

3902
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3903
	}
P
Pekka Enberg 已提交
3904 3905
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3906
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3907 3908
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3909
	name = cachep->name;
L
Linus Torvalds 已提交
3910 3911 3912 3913
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3914
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3915
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3916
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3917
		   cachep->limit, cachep->batchcount, cachep->shared);
3918
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3919
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3920
#if STATS
P
Pekka Enberg 已提交
3921
	{			/* list3 stats */
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926 3927 3928
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3929
		unsigned long node_frees = cachep->node_frees;
3930
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3931

3932
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3933
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
3934
				reaped, errors, max_freeable, node_allocs,
3935
				node_frees, overflows);
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3945
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3967 3968 3969 3970
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3981 3982
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3983
{
P
Pekka Enberg 已提交
3984
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3985
	int limit, batchcount, shared, res;
3986
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
3987

L
Linus Torvalds 已提交
3988 3989 3990 3991
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3992
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4003
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4004
	res = -EINVAL;
4005
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4006
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4007 4008
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4009
				res = 0;
L
Linus Torvalds 已提交
4010
			} else {
4011
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4012
						       batchcount, shared);
L
Linus Torvalds 已提交
4013 4014 4015 4016
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4017
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4018 4019 4020 4021
	if (res >= 0)
		res = count;
	return res;
}
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4131
		list_for_each_entry(slabp, &l3->slabs_full, list)
4132
			handle_slab(n, cachep, slabp);
4133
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4170 4171
#endif

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4184 4185
unsigned int ksize(const void *objp)
{
4186 4187
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4188

4189
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4190
}