i915_gem_request.c 35.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36
{
37
	return to_request(fence)->timeline->common->name;
38 39
}

40
static bool i915_fence_signaled(struct dma_fence *fence)
41 42 43 44
{
	return i915_gem_request_completed(to_request(fence));
}

45
static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 47 48 49 50 51 52 53
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

54
static signed long i915_fence_wait(struct dma_fence *fence,
55
				   bool interruptible,
56
				   signed long timeout)
57
{
58
	return i915_wait_request(to_request(fence), interruptible, timeout);
59 60
}

61
static void i915_fence_release(struct dma_fence *fence)
62 63 64
{
	struct drm_i915_gem_request *req = to_request(fence);

65 66 67 68 69 70 71 72
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);

73 74 75
	kmem_cache_free(req->i915->requests, req);
}

76
const struct dma_fence_ops i915_fence_ops = {
77 78 79 80 81 82 83 84
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

85 86 87
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
88
	struct drm_i915_file_private *file_priv;
89

90
	file_priv = request->file_priv;
91 92 93 94
	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
95 96 97 98
	if (request->file_priv) {
		list_del(&request->client_link);
		request->file_priv = NULL;
	}
99 100 101
	spin_unlock(&file_priv->mm.lock);
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
121
	INIT_LIST_HEAD(&dep->dfs_link);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

148 149
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
174 175
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
176 177
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	ret = i915_gem_wait_for_idle(i915,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

	i915_gem_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests > 1);

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	for_each_engine(engine, i915, id) {
		struct intel_timeline *tl = &timeline->engine[id];

199 200 201
		if (wait_for(intel_engine_is_idle(engine), 50))
			return -EBUSY;

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		if (!i915_seqno_passed(seqno, tl->seqno)) {
			/* spin until threads are complete */
			while (intel_breadcrumbs_busy(engine))
				cond_resched();
		}

		/* Finally reset hw state */
		tl->seqno = seqno;
		intel_engine_init_global_seqno(engine, seqno);
	}

	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

	return 0;
}

int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	return reset_all_global_seqno(dev_priv, seqno - 1);
}

static int reserve_seqno(struct intel_engine_cs *engine)
{
	u32 active = ++engine->timeline->inflight_seqnos;
	u32 seqno = engine->timeline->seqno;
	int ret;

	/* Reservation is fine until we need to wrap around */
	if (likely(!add_overflows(seqno, active)))
		return 0;

	ret = reset_all_global_seqno(engine->i915, 0);
	if (ret) {
		engine->timeline->inflight_seqnos--;
		return ret;
	}

	return 0;
}

258 259 260 261 262 263
static void unreserve_seqno(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
	engine->timeline->inflight_seqnos--;
}

264 265 266 267 268 269
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

270 271
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
272
	struct intel_engine_cs *engine = request->engine;
273 274
	struct i915_gem_active *active, *next;

275
	lockdep_assert_held(&request->i915->drm.struct_mutex);
276
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
277
	GEM_BUG_ON(!i915_gem_request_completed(request));
278
	GEM_BUG_ON(!request->i915->gt.active_requests);
279

280
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
281

282
	spin_lock_irq(&engine->timeline->lock);
283
	list_del_init(&request->link);
284
	spin_unlock_irq(&engine->timeline->lock);
285 286 287 288 289 290 291 292 293

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
294
	list_del(&request->ring_link);
295
	request->ring->last_retired_head = request->postfix;
296 297 298 299 300 301
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
302
	unreserve_seqno(request->engine);
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
326
		RCU_INIT_POINTER(active->request, NULL);
327 328 329 330

		active->retire(active, request);
	}

331 332
	i915_gem_request_remove_from_client(request);

333
	/* Retirement decays the ban score as it is a sign of ctx progress */
334 335
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
336

337 338 339 340 341 342 343 344 345 346
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
347 348

	dma_fence_signal(&request->fence);
349 350

	i915_priotree_fini(request->i915, &request->priotree);
351
	i915_gem_request_put(request);
352 353 354 355 356 357 358 359
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
360 361
	GEM_BUG_ON(!i915_gem_request_completed(req));

362 363
	if (list_empty(&req->link))
		return;
364 365

	do {
366
		tmp = list_first_entry(&engine->timeline->requests,
367
				       typeof(*tmp), link);
368 369 370 371 372

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

373
static u32 timeline_get_seqno(struct intel_timeline *tl)
374
{
375
	return ++tl->seqno;
376 377
}

378
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
379
{
380
	struct intel_engine_cs *engine = request->engine;
381 382
	struct intel_timeline *timeline;
	u32 seqno;
383

384
	GEM_BUG_ON(!irqs_disabled());
385
	lockdep_assert_held(&engine->timeline->lock);
386

387 388
	trace_i915_gem_request_execute(request);

C
Chris Wilson 已提交
389 390 391
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
392

393
	seqno = timeline_get_seqno(timeline);
394 395 396 397 398 399 400 401 402 403
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

C
Chris Wilson 已提交
404 405
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
406

407
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
408 409 410
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

411
	wake_up_all(&request->execute);
412 413 414 415 416 417
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
418

419 420 421 422 423 424 425 426
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

427 428 429 430 431
void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_timeline *timeline;

432
	GEM_BUG_ON(!irqs_disabled());
433
	lockdep_assert_held(&engine->timeline->lock);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

	/* Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
	GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
	engine->timeline->seqno--;

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = 0;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_cancel_signaling(request);
	spin_unlock(&request->lock);

	/* Transfer back from the global per-engine timeline to per-context */
	timeline = request->timeline;
	GEM_BUG_ON(timeline == engine->timeline);

	spin_lock(&timeline->lock);
	list_move(&request->link, &timeline->requests);
	spin_unlock(&timeline->lock);

	/* We don't need to wake_up any waiters on request->execute, they
	 * will get woken by any other event or us re-adding this request
	 * to the engine timeline (__i915_gem_request_submit()). The waiters
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_unsubmit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

477 478 479
static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
480 481
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);
482

483 484
	switch (state) {
	case FENCE_COMPLETE:
485
		trace_i915_gem_request_submit(request);
486
		request->engine->submit_request(request);
487 488 489 490 491
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
492
	}
C
Chris Wilson 已提交
493

494 495 496
	return NOTIFY_DONE;
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
512 513 514 515 516
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

517 518
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

519
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
520
	 * EIO if the GPU is already wedged.
521
	 */
522 523
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return ERR_PTR(-EIO);
524

525 526 527 528 529
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
530 531 532
	if (ret)
		return ERR_PTR(ret);

533
	ret = reserve_seqno(engine);
534 535 536
	if (ret)
		goto err_unpin;

537
	/* Move the oldest request to the slab-cache (if not in use!) */
538
	req = list_first_entry_or_null(&engine->timeline->requests,
539
				       typeof(*req), link);
540
	if (req && i915_gem_request_completed(req))
541
		i915_gem_request_retire(req);
542

543 544 545 546 547
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
548
	 * of being read by __i915_gem_active_get_rcu(). As such,
549 550
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
551
	 * read the request->global_seqno and increment the reference count.
552 553 554 555
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
556 557
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
558 559 560 561 562 563 564 565 566 567 568 569 570 571
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
572 573 574 575
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
576

C
Chris Wilson 已提交
577 578
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
579

580
	spin_lock_init(&req->lock);
581 582 583
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
584
		       req->timeline->fence_context,
585
		       timeline_get_seqno(req->timeline));
586

587 588
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
589
	init_waitqueue_head(&req->execute);
590

591 592
	i915_priotree_init(&req->priotree);

593
	INIT_LIST_HEAD(&req->active_list);
594 595
	req->i915 = dev_priv;
	req->engine = engine;
596
	req->ctx = ctx;
597

598
	/* No zalloc, must clear what we need by hand */
599
	req->global_seqno = 0;
600
	req->file_priv = NULL;
C
Chris Wilson 已提交
601
	req->batch = NULL;
602

603 604 605 606 607 608 609 610
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
611
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
612

613
	ret = engine->request_alloc(req);
614 615 616
	if (ret)
		goto err_ctx;

617 618 619 620 621 622 623
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

624 625
	/* Check that we didn't interrupt ourselves with a new request */
	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
626
	return req;
627 628

err_ctx:
629 630 631 632 633
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

634
	kmem_cache_free(dev_priv->requests, req);
635
err_unreserve:
636
	unreserve_seqno(engine);
637 638
err_unpin:
	engine->context_unpin(engine, ctx);
639
	return ERR_PTR(ret);
640 641
}

642 643 644 645
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
646
	u32 seqno;
647
	int ret;
648 649 650

	GEM_BUG_ON(to == from);

651 652 653 654 655 656 657 658
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

659
	if (to->timeline == from->timeline)
660 661
		return 0;

662 663 664 665 666 667 668
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

669 670
	seqno = i915_gem_request_global_seqno(from);
	if (!seqno) {
671 672 673 674 675 676
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

677
	if (seqno <= to->timeline->sync_seqno[from->engine->id])
678 679 680 681
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
682 683 684 685 686 687 688
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
689 690 691 692 693 694
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

695
	to->timeline->sync_seqno[from->engine->id] = seqno;
696 697 698
	return 0;
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
771 772
	struct dma_fence *excl;
	int ret = 0;
773 774

	if (write) {
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
794
	} else {
795
		excl = reservation_object_get_excl_rcu(obj->resv);
796 797
	}

798 799 800
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
801

802
		dma_fence_put(excl);
803 804
	}

805
	return ret;
806 807
}

808 809 810 811 812 813 814
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

815 816
	GEM_BUG_ON(!dev_priv->gt.active_requests);

817 818 819
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

820
	intel_enable_gt_powersave(dev_priv);
821 822 823 824 825 826 827 828 829 830 831 832 833 834
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
835
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
836
{
837 838
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
839
	struct intel_timeline *timeline = request->timeline;
840
	struct drm_i915_gem_request *prev;
841
	u32 *cs;
C
Chris Wilson 已提交
842
	int err;
843

844
	lockdep_assert_held(&request->i915->drm.struct_mutex);
845 846
	trace_i915_gem_request_add(request);

847 848 849 850
	/* Make sure that no request gazumped us - if it was allocated after
	 * our i915_gem_request_alloc() and called __i915_add_request() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
851
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
852

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
868
		err = engine->emit_flush(request, EMIT_FLUSH);
869

870
		/* Not allowed to fail! */
C
Chris Wilson 已提交
871
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
872 873
	}

874
	/* Record the position of the start of the breadcrumb so that
875 876
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
877
	 * position of the ring's HEAD.
878
	 */
879 880 881
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);
882

883 884 885 886 887
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
888

889
	prev = i915_gem_active_raw(&timeline->last_request,
890
				   &request->i915->drm.struct_mutex);
891
	if (prev) {
892 893
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
894 895 896 897 898 899
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
900

C
Chris Wilson 已提交
901
	spin_lock_irq(&timeline->lock);
902
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
903 904
	spin_unlock_irq(&timeline->lock);

905
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
906
	i915_gem_active_set(&timeline->last_request, request);
907

908
	list_add_tail(&request->ring_link, &ring->request_list);
909
	request->emitted_jiffies = jiffies;
910

911 912
	if (!request->i915->gt.active_requests++)
		i915_gem_mark_busy(engine);
913

914 915 916 917 918 919 920 921 922 923 924
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
925
		engine->schedule(request, request->ctx->priority);
926

927 928 929
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
965
			 u32 seqno, int state, unsigned long timeout_us)
966
{
967 968
	struct intel_engine_cs *engine = req->engine;
	unsigned int irq, cpu;
969 970 971 972 973 974 975 976 977 978 979

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

980
	irq = atomic_read(&engine->irq_count);
981 982
	timeout_us += local_clock_us(&cpu);
	do {
983 984 985 986 987
		if (seqno != i915_gem_request_global_seqno(req))
			break;

		if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
				      seqno))
988 989
			return true;

990 991 992 993 994 995 996 997
		/* Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (atomic_read(&engine->irq_count) != irq)
			break;

998 999 1000 1001 1002 1003
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1004
		cpu_relax();
1005 1006 1007 1008 1009
	} while (!need_resched());

	return false;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
{
	if (likely(!i915_reset_in_progress(&request->i915->gpu_error)))
		return false;

	__set_current_state(TASK_RUNNING);
	i915_reset(request->i915);
	return true;
}

1020
/**
1021
 * i915_wait_request - wait until execution of request has finished
1022
 * @req: the request to wait upon
1023
 * @flags: how to wait
1024 1025 1026 1027 1028
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1029
 *
1030 1031 1032
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1033
 *
1034 1035 1036 1037
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1038
 */
1039 1040 1041
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1042
{
1043 1044
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1045
	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1046 1047
	DEFINE_WAIT_FUNC(reset, default_wake_function);
	DEFINE_WAIT_FUNC(exec, default_wake_function);
1048 1049 1050
	struct intel_wait wait;

	might_sleep();
1051
#if IS_ENABLED(CONFIG_LOCKDEP)
1052 1053
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1054 1055
		   !!(flags & I915_WAIT_LOCKED));
#endif
1056
	GEM_BUG_ON(timeout < 0);
1057 1058

	if (i915_gem_request_completed(req))
1059
		return timeout;
1060

1061 1062
	if (!timeout)
		return -ETIME;
1063

1064
	trace_i915_gem_request_wait_begin(req, flags);
1065

1066
	add_wait_queue(&req->execute, &exec);
1067 1068 1069
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(errq, &reset);

1070
	intel_wait_init(&wait, req);
1071

1072
restart:
1073 1074 1075 1076
	do {
		set_current_state(state);
		if (intel_wait_update_request(&wait, req))
			break;
1077

1078 1079 1080
		if (flags & I915_WAIT_LOCKED &&
		    __i915_wait_request_check_and_reset(req))
			continue;
1081

1082 1083 1084 1085
		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			goto complete;
		}
1086

1087 1088 1089 1090
		if (!timeout) {
			timeout = -ETIME;
			goto complete;
		}
1091

1092 1093
		timeout = io_schedule_timeout(timeout);
	} while (1);
1094

1095
	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1096
	GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1097

1098
	/* Optimistic short spin before touching IRQs */
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

1110 1111 1112
	if (flags & I915_WAIT_LOCKED)
		__i915_wait_request_check_and_reset(req);

1113 1114
	for (;;) {
		if (signal_pending_state(state, current)) {
1115
			timeout = -ERESTARTSYS;
1116 1117 1118
			break;
		}

1119 1120
		if (!timeout) {
			timeout = -ETIME;
1121 1122 1123
			break;
		}

1124 1125
		timeout = io_schedule_timeout(timeout);

1126 1127
		if (intel_wait_complete(&wait) &&
		    intel_wait_check_request(&wait, req))
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
1152
		    __i915_wait_request_check_and_reset(req))
1153 1154
			continue;

1155 1156 1157
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1158 1159 1160 1161 1162

		if (!intel_wait_check_request(&wait, req)) {
			intel_engine_remove_wait(req->engine, &wait);
			goto restart;
		}
1163 1164 1165 1166
	}

	intel_engine_remove_wait(req->engine, &wait);
complete:
1167
	__set_current_state(TASK_RUNNING);
1168 1169
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(errq, &reset);
1170
	remove_wait_queue(&req->execute, &exec);
1171 1172
	trace_i915_gem_request_wait_end(req);

1173
	return timeout;
1174
}
1175

1176
static void engine_retire_requests(struct intel_engine_cs *engine)
1177 1178
{
	struct drm_i915_gem_request *request, *next;
1179 1180
	u32 seqno = intel_engine_get_seqno(engine);
	LIST_HEAD(retire);
1181

1182
	spin_lock_irq(&engine->timeline->lock);
1183 1184
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
1185 1186
		if (!i915_seqno_passed(seqno, request->global_seqno))
			break;
1187

1188
		list_move_tail(&request->link, &retire);
1189
	}
1190 1191 1192 1193
	spin_unlock_irq(&engine->timeline->lock);

	list_for_each_entry_safe(request, next, &retire, link)
		i915_gem_request_retire(request);
1194 1195 1196 1197 1198
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1199
	enum intel_engine_id id;
1200 1201 1202

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1203
	if (!dev_priv->gt.active_requests)
1204 1205
		return;

1206 1207
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1208
}
1209 1210 1211 1212 1213

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_gem_request.c"
#endif