amd_iommu.c 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_types.h>
32
#include <asm/amd_iommu.h>
33 34 35

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

36 37
#define EXIT_LOOP_COUNT 10000000

38 39
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

40 41 42 43
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

44 45
static struct iommu_ops amd_iommu_ops;

46 47 48
/*
 * general struct to manage commands send to an IOMMU
 */
49
struct iommu_cmd {
50 51 52
	u32 data[4];
};

53 54
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);
55
static struct dma_ops_domain *find_protection_domain(u16 devid);
56 57 58
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64
		      **pte_page, gfp_t gfp);
59 60 61
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages);
62

63 64 65 66 67 68
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

69
DECLARE_STATS_COUNTER(compl_wait);
70
DECLARE_STATS_COUNTER(cnt_map_single);
71
DECLARE_STATS_COUNTER(cnt_unmap_single);
72
DECLARE_STATS_COUNTER(cnt_map_sg);
73
DECLARE_STATS_COUNTER(cnt_unmap_sg);
74
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
75
DECLARE_STATS_COUNTER(cnt_free_coherent);
76
DECLARE_STATS_COUNTER(cross_page);
77
DECLARE_STATS_COUNTER(domain_flush_single);
78
DECLARE_STATS_COUNTER(domain_flush_all);
79
DECLARE_STATS_COUNTER(alloced_io_mem);
80
DECLARE_STATS_COUNTER(total_map_requests);
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
static struct dentry *stats_dir;
static struct dentry *de_isolate;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
					 (u32 *)&amd_iommu_isolate);

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
106 107

	amd_iommu_stats_add(&compl_wait);
108
	amd_iommu_stats_add(&cnt_map_single);
109
	amd_iommu_stats_add(&cnt_unmap_single);
110
	amd_iommu_stats_add(&cnt_map_sg);
111
	amd_iommu_stats_add(&cnt_unmap_sg);
112
	amd_iommu_stats_add(&cnt_alloc_coherent);
113
	amd_iommu_stats_add(&cnt_free_coherent);
114
	amd_iommu_stats_add(&cross_page);
115
	amd_iommu_stats_add(&domain_flush_single);
116
	amd_iommu_stats_add(&domain_flush_all);
117
	amd_iommu_stats_add(&alloced_io_mem);
118
	amd_iommu_stats_add(&total_map_requests);
119 120 121 122
}

#endif

123
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
124 125
static int iommu_has_npcache(struct amd_iommu *iommu)
{
126
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
127 128
}

129 130 131 132 133 134
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

135 136 137 138 139 140 141 142 143
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

144
	printk(KERN_ERR "AMD-Vi: Event logged [");
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

215 216
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
217 218
	struct amd_iommu *iommu;

219
	for_each_iommu(iommu)
220 221 222
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
223 224
}

225 226 227 228 229 230 231 232 233 234
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
235
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
236 237 238 239 240
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
241
	target = iommu->cmd_buf + tail;
242 243 244 245 246 247 248 249 250 251
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

252 253 254 255
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
256
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
257 258 259 260 261 262
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
263
	if (!ret)
264
		iommu->need_sync = true;
265 266 267 268 269
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

270 271 272 273 274 275 276 277 278 279
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

280 281
	INC_STATS_COUNTER(compl_wait);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

312 313 314 315 316 317 318
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
319 320
static int iommu_completion_wait(struct amd_iommu *iommu)
{
321 322
	int ret = 0;
	unsigned long flags;
323

324 325
	spin_lock_irqsave(&iommu->lock, flags);

326 327 328
	if (!iommu->need_sync)
		goto out;

329
	ret = __iommu_completion_wait(iommu);
330

331
	iommu->need_sync = false;
332 333

	if (ret)
334
		goto out;
335

336
	__iommu_wait_for_completion(iommu);
337

338 339
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
340 341 342 343

	return 0;
}

344 345 346
/*
 * Command send function for invalidating a device table entry
 */
347 348
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
349
	struct iommu_cmd cmd;
350
	int ret;
351 352 353 354 355 356 357

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

358 359 360
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

378 379 380
/*
 * Generic command send function for invalidaing TLB entries
 */
381 382 383
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
384
	struct iommu_cmd cmd;
385
	int ret;
386

387
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
388

389 390 391
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
392 393
}

394 395 396 397 398
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
399 400 401
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
402
	int s = 0;
403
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
404 405 406

	address &= PAGE_MASK;

407 408 409 410 411 412 413
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
414 415
	}

416 417
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

418 419
	return 0;
}
420

421 422 423 424 425
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

426 427
	INC_STATS_COUNTER(domain_flush_single);

428 429 430
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

431 432 433 434 435 436 437 438 439 440
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
{
       u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

       INC_STATS_COUNTER(domain_flush_single);

       iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
}

441 442 443 444 445 446 447 448 449 450
/*
 * This function is used to flush the IO/TLB for a given protection domain
 * on every IOMMU in the system
 */
static void iommu_flush_domain(u16 domid)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

451 452
	INC_STATS_COUNTER(domain_flush_all);

453 454 455
	__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      domid, 1, 1);

456
	for_each_iommu(iommu) {
457 458 459 460 461 462 463 464
		spin_lock_irqsave(&iommu->lock, flags);
		__iommu_queue_command(iommu, &cmd);
		__iommu_completion_wait(iommu);
		__iommu_wait_for_completion(iommu);
		spin_unlock_irqrestore(&iommu->lock, flags);
	}
}

465 466 467 468 469 470 471 472 473 474 475
void amd_iommu_flush_all_domains(void)
{
	int i;

	for (i = 1; i < MAX_DOMAIN_ID; ++i) {
		if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
			continue;
		iommu_flush_domain(i);
	}
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
void amd_iommu_flush_all_devices(void)
{
	struct amd_iommu *iommu;
	int i;

	for (i = 0; i <= amd_iommu_last_bdf; ++i) {
		if (amd_iommu_pd_table[i] == NULL)
			continue;

		iommu = amd_iommu_rlookup_table[i];
		if (!iommu)
			continue;

		iommu_queue_inv_dev_entry(iommu, i);
		iommu_completion_wait(iommu);
	}
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
508 509 510 511
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
512
{
513
	u64 __pte, *pte;
514 515

	bus_addr  = PAGE_ALIGN(bus_addr);
516
	phys_addr = PAGE_ALIGN(phys_addr);
517 518 519 520 521

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

522
	pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static void iommu_unmap_page(struct protection_domain *dom,
			     unsigned long bus_addr)
{
	u64 *pte;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	*pte = 0;
}

560 561 562 563
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
564 565 566 567 568 569 570 571 572 573 574 575 576 577
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

578 579 580 581 582 583
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

600 601 602 603
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
604 605 606 607 608 609 610 611
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
612
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
613 614 615 616 617 618 619
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
620
			__set_bit(addr >> PAGE_SHIFT,
621
				  dma_dom->aperture[0]->bitmap);
622 623 624 625 626
	}

	return 0;
}

627 628 629
/*
 * Inits the unity mappings required for a specific device
 */
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

647 648 649 650 651 652 653 654 655
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
656

657
/*
658
 * The address allocator core functions.
659 660 661
 *
 * called with domain->lock held
 */
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
static u64* fetch_pte(struct protection_domain *domain,
		      unsigned long address)
{
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return NULL;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

689 690 691 692 693
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
694 695
static int alloc_new_range(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
696 697 698
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
699
	int i;
700

701 702 703 704
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
			pte = alloc_pte(&dma_dom->domain, address,
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	/* Intialize the exclusion range if necessary */
	if (iommu->exclusion_start &&
	    iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
		u64 *pte = fetch_pte(&dma_dom->domain, i);
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

764 765 766 767 768 769 770 771 772 773 774
	return 0;

out_free:
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

775 776 777 778 779 780 781
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
782
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
783 784 785 786 787 788
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

789 790
	next_bit >>= PAGE_SHIFT;

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
809
			dom->next_address = address + (pages << PAGE_SHIFT);
810 811 812 813 814 815 816 817 818
			break;
		}

		next_bit = 0;
	}

	return address;
}

819 820
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
821
					     unsigned int pages,
822 823
					     unsigned long align_mask,
					     u64 dma_mask)
824 825 826
{
	unsigned long address;

827 828 829 830
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
831

832
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
833
				     dma_mask, dom->next_address);
834

835
	if (address == -1) {
836
		dom->next_address = 0;
837 838
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
839 840
		dom->need_flush = true;
	}
841

842
	if (unlikely(address == -1))
843 844 845 846 847 848 849
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

850 851 852 853 854
/*
 * The address free function.
 *
 * called with domain->lock held
 */
855 856 857 858
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
859 860
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
861

862 863
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

864 865 866 867
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
868

869
	if (address >= dom->next_address)
870
		dom->need_flush = true;
871 872

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
873

874 875
	iommu_area_free(range->bitmap, address, pages);

876 877
}

878 879 880 881 882 883 884 885 886 887
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

905 906 907 908 909 910 911 912 913 914
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

915 916 917 918
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
919 920 921 922
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
923
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
924 925 926 927

	if (start_page + pages > last_page)
		pages = last_page - start_page;

928 929 930 931 932
	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
933 934
}

935
static void free_pagetable(struct protection_domain *domain)
936 937 938 939
{
	int i, j;
	u64 *p1, *p2, *p3;

940
	p1 = domain->pt_root;
941 942 943 944 945 946 947 948 949

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
950
		for (j = 0; j < 512; ++j) {
951 952 953 954 955 956 957 958 959 960
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
961 962

	domain->pt_root = NULL;
963 964
}

965 966 967 968
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
969 970
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
971 972
	int i;

973 974 975
	if (!dom)
		return;

976
	free_pagetable(&dom->domain);
977

978 979 980 981 982 983
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
984 985 986 987

	kfree(dom);
}

988 989 990 991 992
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
993
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1008
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1009 1010 1011 1012
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1013
	dma_dom->need_flush = false;
1014
	dma_dom->target_dev = 0xffff;
1015

1016
	if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1017 1018
		goto free_dma_dom;

1019
	/*
1020 1021
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1022
	 */
1023
	dma_dom->aperture[0]->bitmap[0] = 1;
1024
	dma_dom->next_address = 0;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1044 1045 1046 1047
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1060 1061 1062 1063
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1064 1065 1066
static void attach_device(struct amd_iommu *iommu,
			  struct protection_domain *domain,
			  u16 devid)
1067 1068 1069 1070
{
	unsigned long flags;
	u64 pte_root = virt_to_phys(domain->pt_root);

1071 1072
	domain->dev_cnt += 1;

1073 1074 1075
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1076 1077

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1078 1079
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1080 1081 1082 1083 1084
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1085 1086 1087 1088 1089
       /*
        * We might boot into a crash-kernel here. The crashed kernel
        * left the caches in the IOMMU dirty. So we have to flush
        * here to evict all dirty stuff.
        */
1090
	iommu_queue_inv_dev_entry(iommu, devid);
1091
	iommu_flush_tlb_pde(iommu, domain->id);
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Removes a device from a protection domain (unlocked)
 */
static void __detach_device(struct protection_domain *domain, u16 devid)
{

	/* lock domain */
	spin_lock(&domain->lock);

	/* remove domain from the lookup table */
	amd_iommu_pd_table[devid] = NULL;

	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	/* decrease reference counter */
	domain->dev_cnt -= 1;

	/* ready */
	spin_unlock(&domain->lock);
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
static void detach_device(struct protection_domain *domain, u16 devid)
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	__detach_device(domain, devid);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1140
	unsigned long flags;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	if (devid > amd_iommu_last_bdf)
		goto out;

	devid = amd_iommu_alias_table[devid];

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		goto out;

	domain = domain_for_device(devid);

	if (domain && !dma_ops_domain(domain))
		WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
			  "to a non-dma-ops domain\n", dev_name(dev));

	switch (action) {
1158
	case BUS_NOTIFY_UNBOUND_DRIVER:
1159 1160 1161
		if (!domain)
			goto out;
		detach_device(domain, devid);
1162 1163 1164 1165 1166 1167
		break;
	case BUS_NOTIFY_ADD_DEVICE:
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1168
		dma_domain = dma_ops_domain_alloc(iommu);
1169 1170 1171 1172 1173 1174 1175 1176
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		break;
	default:
		goto out;
	}

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);

out:
	return 0;
}

1189
static struct notifier_block device_nb = {
1190 1191
	.notifier_call = device_change_notifier,
};
1192

1193 1194 1195 1196 1197 1198
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

1237 1238 1239 1240 1241 1242 1243
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1244 1245 1246 1247 1248 1249 1250 1251 1252
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

1253 1254 1255 1256 1257 1258
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
1259 1260

	pcidev = to_pci_dev(dev);
1261
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1262

1263
	/* device not translated by any IOMMU in the system? */
1264
	if (_bdf > amd_iommu_last_bdf)
1265 1266 1267 1268 1269 1270 1271 1272 1273
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
1274 1275 1276
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
1277
		*domain = &dma_dom->domain;
1278
		attach_device(*iommu, *domain, *bdf);
1279 1280
		DUMP_printk("Using protection domain %d for device %s\n",
			    (*domain)->id, dev_name(dev));
1281 1282
	}

1283
	if (domain_for_device(_bdf) == NULL)
1284
		attach_device(*iommu, *domain, _bdf);
1285

1286 1287 1288
	return 1;
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
/*
 * If the pte_page is not yet allocated this function is called
 */
static u64* alloc_pte(struct protection_domain *dom,
		      unsigned long address, u64 **pte_page, gfp_t gfp)
{
	u64 *pte, *page;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(address)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(gfp);
		if (!page)
			return NULL;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);

	if (pte_page)
		*pte_page = pte;

	pte = &pte[IOMMU_PTE_L0_INDEX(address)];

	return pte;
}

/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1332
	struct aperture_range *aperture;
1333 1334
	u64 *pte, *pte_page;

1335 1336 1337 1338 1339
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1340 1341
	if (!pte) {
		pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1342 1343 1344
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
		pte += IOMMU_PTE_L0_INDEX(address);
1345 1346 1347 1348

	return pte;
}

1349 1350 1351 1352
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1365
	pte  = dma_ops_get_pte(dom, address);
1366 1367
	if (!pte)
		return bad_dma_address;
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1385 1386 1387
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1388 1389 1390 1391
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
1392
	struct aperture_range *aperture;
1393 1394 1395 1396 1397
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1398 1399 1400 1401 1402 1403 1404
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1405 1406 1407 1408 1409 1410 1411 1412

	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1413 1414
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1415 1416
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1417 1418
 * Must be called with the domain lock held.
 */
1419 1420 1421 1422 1423
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1424
			       int dir,
1425 1426
			       bool align,
			       u64 dma_mask)
1427 1428
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1429
	dma_addr_t address, start, ret;
1430
	unsigned int pages;
1431
	unsigned long align_mask = 0;
1432 1433
	int i;

1434
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1435 1436
	paddr &= PAGE_MASK;

1437 1438
	INC_STATS_COUNTER(total_map_requests);

1439 1440 1441
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1442 1443 1444
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1445
retry:
1446 1447
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (unlikely(address == bad_dma_address)) {
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

		if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
			goto out;

		/*
		 * aperture was sucessfully enlarged by 128 MB, try
		 * allocation again
		 */
		goto retry;
	}
1465 1466 1467

	start = address;
	for (i = 0; i < pages; ++i) {
1468 1469 1470 1471
		ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		if (ret == bad_dma_address)
			goto out_unmap;

1472 1473 1474 1475 1476
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1477 1478
	ADD_STATS_COUNTER(alloced_io_mem, size);

1479
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1480 1481 1482
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1483 1484
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1485 1486
out:
	return address;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
		dma_ops_domain_unmap(iommu, dma_dom, start);
	}

	dma_ops_free_addresses(dma_dom, address, pages);

	return bad_dma_address;
1498 1499
}

1500 1501 1502 1503
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1504 1505 1506 1507 1508 1509 1510 1511 1512
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1513 1514
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1515 1516
		return;

1517
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1518 1519 1520 1521 1522 1523 1524 1525
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

1526 1527
	SUB_STATS_COUNTER(alloced_io_mem, size);

1528
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1529

1530
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1531
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1532 1533
		dma_dom->need_flush = false;
	}
1534 1535
}

1536 1537 1538
/*
 * The exported map_single function for dma_ops.
 */
1539 1540 1541 1542
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1543 1544 1545 1546 1547 1548
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1549
	u64 dma_mask;
1550
	phys_addr_t paddr = page_to_phys(page) + offset;
1551

1552 1553
	INC_STATS_COUNTER(cnt_map_single);

1554 1555 1556
	if (!check_device(dev))
		return bad_dma_address;

1557
	dma_mask = *dev->dma_mask;
1558 1559 1560 1561

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1562
		/* device not handled by any AMD IOMMU */
1563 1564
		return (dma_addr_t)paddr;

1565 1566 1567
	if (!dma_ops_domain(domain))
		return bad_dma_address;

1568
	spin_lock_irqsave(&domain->lock, flags);
1569 1570
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1571 1572 1573
	if (addr == bad_dma_address)
		goto out;

1574
	iommu_completion_wait(iommu);
1575 1576 1577 1578 1579 1580 1581

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1582 1583 1584
/*
 * The exported unmap_single function for dma_ops.
 */
1585 1586
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
1587 1588 1589 1590 1591 1592
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1593 1594
	INC_STATS_COUNTER(cnt_unmap_single);

1595 1596
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1597
		/* device not handled by any AMD IOMMU */
1598 1599
		return;

1600 1601 1602
	if (!dma_ops_domain(domain))
		return;

1603 1604 1605 1606
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1607
	iommu_completion_wait(iommu);
1608 1609 1610 1611

	spin_unlock_irqrestore(&domain->lock, flags);
}

1612 1613 1614 1615
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1630 1631 1632 1633
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1634
static int map_sg(struct device *dev, struct scatterlist *sglist,
1635 1636
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
1637 1638 1639 1640 1641 1642 1643 1644 1645
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1646
	u64 dma_mask;
1647

1648 1649
	INC_STATS_COUNTER(cnt_map_sg);

1650 1651 1652
	if (!check_device(dev))
		return 0;

1653
	dma_mask = *dev->dma_mask;
1654 1655 1656 1657 1658 1659

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

1660 1661 1662
	if (!dma_ops_domain(domain))
		return 0;

1663 1664 1665 1666 1667 1668
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1669 1670
					      paddr, s->length, dir, false,
					      dma_mask);
1671 1672 1673 1674 1675 1676 1677 1678

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1679
	iommu_completion_wait(iommu);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1698 1699 1700 1701
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1702
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1703 1704
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
1705 1706 1707 1708 1709 1710 1711 1712
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1713 1714
	INC_STATS_COUNTER(cnt_unmap_sg);

1715 1716
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1717 1718
		return;

1719 1720 1721
	if (!dma_ops_domain(domain))
		return;

1722 1723 1724 1725 1726 1727 1728 1729
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1730
	iommu_completion_wait(iommu);
1731 1732 1733 1734

	spin_unlock_irqrestore(&domain->lock, flags);
}

1735 1736 1737
/*
 * The exported alloc_coherent function for dma_ops.
 */
1738 1739 1740 1741 1742 1743 1744 1745 1746
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1747
	u64 dma_mask = dev->coherent_dma_mask;
1748

1749 1750
	INC_STATS_COUNTER(cnt_alloc_coherent);

1751 1752
	if (!check_device(dev))
		return NULL;
1753

1754 1755
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1756

1757
	flag |= __GFP_ZERO;
1758 1759
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
1760
		return NULL;
1761 1762 1763 1764 1765 1766 1767 1768

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1769 1770 1771
	if (!dma_ops_domain(domain))
		goto out_free;

1772 1773 1774
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1775 1776 1777
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1778
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1779

J
Jiri Slaby 已提交
1780 1781
	if (*dma_addr == bad_dma_address) {
		spin_unlock_irqrestore(&domain->lock, flags);
1782
		goto out_free;
J
Jiri Slaby 已提交
1783
	}
1784

1785
	iommu_completion_wait(iommu);
1786 1787 1788 1789

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
1790 1791 1792 1793 1794 1795

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
1796 1797
}

1798 1799 1800
/*
 * The exported free_coherent function for dma_ops.
 */
1801 1802 1803 1804 1805 1806 1807 1808
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1809 1810
	INC_STATS_COUNTER(cnt_free_coherent);

1811 1812 1813
	if (!check_device(dev))
		return;

1814 1815 1816 1817 1818
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

1819 1820 1821
	if (!dma_ops_domain(domain))
		goto free_mem;

1822 1823 1824 1825
	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1826
	iommu_completion_wait(iommu);
1827 1828 1829 1830 1831 1832 1833

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1858
/*
1859 1860
 * The function for pre-allocating protection domains.
 *
1861 1862 1863 1864
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
1865
static void prealloc_protection_domains(void)
1866 1867 1868 1869 1870 1871 1872
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1873
		devid = calc_devid(dev->bus->number, dev->devfn);
1874
		if (devid > amd_iommu_last_bdf)
1875 1876 1877 1878 1879 1880 1881
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
1882
		dma_dom = dma_ops_domain_alloc(iommu);
1883 1884 1885
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1886 1887 1888
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1889 1890 1891
	}
}

1892
static struct dma_map_ops amd_iommu_dma_ops = {
1893 1894
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
1895 1896
	.map_page = map_page,
	.unmap_page = unmap_page,
1897 1898
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1899
	.dma_supported = amd_iommu_dma_supported,
1900 1901
};

1902 1903 1904
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1905 1906 1907 1908 1909
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

1910 1911 1912 1913 1914
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1915
	for_each_iommu(iommu) {
1916
		iommu->default_dom = dma_ops_domain_alloc(iommu);
1917 1918
		if (iommu->default_dom == NULL)
			return -ENOMEM;
1919
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1920 1921 1922 1923 1924
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1925 1926 1927 1928
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1929 1930 1931 1932 1933 1934
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1935
#ifdef CONFIG_GART_IOMMU
1936 1937
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1938
#endif
1939

1940
	/* Make the driver finally visible to the drivers */
1941 1942
	dma_ops = &amd_iommu_dma_ops;

1943 1944
	register_iommu(&amd_iommu_ops);

1945 1946
	bus_register_notifier(&pci_bus_type, &device_nb);

1947 1948
	amd_iommu_stats_init();

1949 1950 1951 1952
	return 0;

free_domains:

1953
	for_each_iommu(iommu) {
1954 1955 1956 1957 1958 1959
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
	unsigned long flags;
	u16 devid;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
		if (amd_iommu_pd_table[devid] == domain)
			__detach_device(domain, devid);

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return -ENOMEM;

	spin_lock_init(&domain->lock);
	domain->mode = PAGE_MODE_3_LEVEL;
	domain->id = domain_id_alloc();
	if (!domain->id)
		goto out_free;
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
	kfree(domain);

	return -ENOMEM;
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

	domain_id_free(domain->id);

	kfree(domain);

	dom->priv = NULL;
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid > 0)
		detach_device(domain, devid);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_queue_inv_dev_entry(iommu, devid);
	iommu_completion_wait(iommu);
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
	struct protection_domain *old_domain;
	struct amd_iommu *iommu;
	struct pci_dev *pdev;
	u16 devid;

	if (dev->bus != &pci_bus_type)
		return -EINVAL;

	pdev = to_pci_dev(dev);

	devid = calc_devid(pdev->bus->number, pdev->devfn);

	if (devid >= amd_iommu_last_bdf ||
			devid != amd_iommu_alias_table[devid])
		return -EINVAL;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

	old_domain = domain_for_device(devid);
	if (old_domain)
2085
		detach_device(old_domain, devid);
2086 2087 2088 2089 2090 2091 2092 2093

	attach_device(iommu, domain, devid);

	iommu_completion_wait(iommu);

	return 0;
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
static int amd_iommu_map_range(struct iommu_domain *dom,
			       unsigned long iova, phys_addr_t paddr,
			       size_t size, int iommu_prot)
{
	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE);
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

	iova  &= PAGE_MASK;
	paddr &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		ret = iommu_map_page(domain, iova, paddr, prot);
		if (ret)
			return ret;

		iova  += PAGE_SIZE;
		paddr += PAGE_SIZE;
	}

	return 0;
}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static void amd_iommu_unmap_range(struct iommu_domain *dom,
				  unsigned long iova, size_t size)
{

	struct protection_domain *domain = dom->priv;
	unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE);

	iova  &= PAGE_MASK;

	for (i = 0; i < npages; ++i) {
		iommu_unmap_page(domain, iova);
		iova  += PAGE_SIZE;
	}

	iommu_flush_domain(domain->id);
}

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
	unsigned long offset = iova & ~PAGE_MASK;
	phys_addr_t paddr;
	u64 *pte;

	pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(iova)];

	if (!IOMMU_PTE_PRESENT(*pte))
		return 0;

	paddr  = *pte & IOMMU_PAGE_MASK;
	paddr |= offset;

	return paddr;
}

S
Sheng Yang 已提交
2171 2172 2173 2174 2175 2176
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2177 2178 2179 2180 2181 2182 2183 2184
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
	.map = amd_iommu_map_range,
	.unmap = amd_iommu_unmap_range,
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2185
	.domain_has_cap = amd_iommu_domain_has_cap,
2186 2187
};