ste_dma40.c 83.2 KB
Newer Older
1
/*
2 3
 * Copyright (C) Ericsson AB 2007-2008
 * Copyright (C) ST-Ericsson SA 2008-2010
4
 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5
 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 7 8
 * License terms: GNU General Public License (GPL) version 2
 */

9
#include <linux/dma-mapping.h>
10 11
#include <linux/kernel.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
17 18
#include <linux/pm.h>
#include <linux/pm_runtime.h>
19
#include <linux/err.h>
20
#include <linux/amba/bus.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

#include <plat/ste_dma40.h>

#include "ste_dma40_ll.h"

#define D40_NAME "dma40"

#define D40_PHY_CHAN -1

/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan)  (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))

/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500

37 38 39
/* Milliseconds */
#define DMA40_AUTOSUSPEND_DELAY	100

40 41
/* Hardware requirement on LCLA alignment */
#define LCLA_ALIGNMENT 0x40000
42 43 44 45 46

/* Max number of links per event group */
#define D40_LCLA_LINK_PER_EVENT_GRP 128
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP

47 48 49 50
/* Attempts before giving up to trying to get pages that are aligned */
#define MAX_LCLA_ALLOC_ATTEMPTS 256

/* Bit markings for allocation map */
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#define D40_ALLOC_FREE		(1 << 31)
#define D40_ALLOC_PHY		(1 << 30)
#define D40_ALLOC_LOG_FREE	0

/**
 * enum 40_command - The different commands and/or statuses.
 *
 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 */
enum d40_command {
	D40_DMA_STOP		= 0,
	D40_DMA_RUN		= 1,
	D40_DMA_SUSPEND_REQ	= 2,
	D40_DMA_SUSPENDED	= 3
};

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
 * These are the registers that has to be saved and later restored
 * when the DMA hw is powered off.
 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 */
static u32 d40_backup_regs[] = {
	D40_DREG_LCPA,
	D40_DREG_LCLA,
	D40_DREG_PRMSE,
	D40_DREG_PRMSO,
	D40_DREG_PRMOE,
	D40_DREG_PRMOO,
};

#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)

/* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
static u32 d40_backup_regs_v3[] = {
	D40_DREG_PSEG1,
	D40_DREG_PSEG2,
	D40_DREG_PSEG3,
	D40_DREG_PSEG4,
	D40_DREG_PCEG1,
	D40_DREG_PCEG2,
	D40_DREG_PCEG3,
	D40_DREG_PCEG4,
	D40_DREG_RSEG1,
	D40_DREG_RSEG2,
	D40_DREG_RSEG3,
	D40_DREG_RSEG4,
	D40_DREG_RCEG1,
	D40_DREG_RCEG2,
	D40_DREG_RCEG3,
	D40_DREG_RCEG4,
};

#define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)

static u32 d40_backup_regs_chan[] = {
	D40_CHAN_REG_SSCFG,
	D40_CHAN_REG_SSELT,
	D40_CHAN_REG_SSPTR,
	D40_CHAN_REG_SSLNK,
	D40_CHAN_REG_SDCFG,
	D40_CHAN_REG_SDELT,
	D40_CHAN_REG_SDPTR,
	D40_CHAN_REG_SDLNK,
};

119 120 121 122 123 124
/**
 * struct d40_lli_pool - Structure for keeping LLIs in memory
 *
 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 * pre_alloc_lli is used.
125
 * @dma_addr: DMA address, if mapped
126 127 128 129 130 131
 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 * one buffer to one buffer.
 */
struct d40_lli_pool {
	void	*base;
132
	int	 size;
133
	dma_addr_t	dma_addr;
134
	/* Space for dst and src, plus an extra for padding */
135
	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
136 137 138 139 140 141 142 143 144 145
};

/**
 * struct d40_desc - A descriptor is one DMA job.
 *
 * @lli_phy: LLI settings for physical channel. Both src and dst=
 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 * lli_len equals one.
 * @lli_log: Same as above but for logical channels.
 * @lli_pool: The pool with two entries pre-allocated.
146
 * @lli_len: Number of llis of current descriptor.
L
Lucas De Marchi 已提交
147
 * @lli_current: Number of transferred llis.
148
 * @lcla_alloc: Number of LCLA entries allocated.
149 150 151 152
 * @txd: DMA engine struct. Used for among other things for communication
 * during a transfer.
 * @node: List entry.
 * @is_in_client_list: true if the client owns this descriptor.
153
 * @cyclic: true if this is a cyclic job
154 155 156 157 158 159 160 161 162 163
 *
 * This descriptor is used for both logical and physical transfers.
 */
struct d40_desc {
	/* LLI physical */
	struct d40_phy_lli_bidir	 lli_phy;
	/* LLI logical */
	struct d40_log_lli_bidir	 lli_log;

	struct d40_lli_pool		 lli_pool;
164
	int				 lli_len;
165 166
	int				 lli_current;
	int				 lcla_alloc;
167 168 169 170 171

	struct dma_async_tx_descriptor	 txd;
	struct list_head		 node;

	bool				 is_in_client_list;
R
Rabin Vincent 已提交
172
	bool				 cyclic;
173 174 175 176 177
};

/**
 * struct d40_lcla_pool - LCLA pool settings and data.
 *
178 179 180 181 182
 * @base: The virtual address of LCLA. 18 bit aligned.
 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 * This pointer is only there for clean-up on error.
 * @pages: The number of pages needed for all physical channels.
 * Only used later for clean-up on error
183
 * @lock: Lock to protect the content in this struct.
184
 * @alloc_map: big map over which LCLA entry is own by which job.
185 186 187
 */
struct d40_lcla_pool {
	void		*base;
188
	dma_addr_t	dma_addr;
189 190
	void		*base_unaligned;
	int		 pages;
191
	spinlock_t	 lock;
192
	struct d40_desc	**alloc_map;
193 194 195 196 197 198 199
};

/**
 * struct d40_phy_res - struct for handling eventlines mapped to physical
 * channels.
 *
 * @lock: A lock protection this entity.
200
 * @reserved: True if used by secure world or otherwise.
201 202 203 204 205
 * @num: The physical channel number of this entity.
 * @allocated_src: Bit mapped to show which src event line's are mapped to
 * this physical channel. Can also be free or physically allocated.
 * @allocated_dst: Same as for src but is dst.
 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
206
 * event line number.
207 208 209
 */
struct d40_phy_res {
	spinlock_t lock;
210
	bool	   reserved;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	int	   num;
	u32	   allocated_src;
	u32	   allocated_dst;
};

struct d40_base;

/**
 * struct d40_chan - Struct that describes a channel.
 *
 * @lock: A spinlock to protect this struct.
 * @log_num: The logical number, if any of this channel.
 * @completed: Starts with 1, after first interrupt it is set to dma engine's
 * current cookie.
 * @pending_tx: The number of pending transfers. Used between interrupt handler
 * and tasklet.
 * @busy: Set to true when transfer is ongoing on this channel.
228 229
 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 * point is NULL, then the channel is not allocated.
230 231 232 233
 * @chan: DMA engine handle.
 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 * transfer and call client callback.
 * @client: Cliented owned descriptor list.
234
 * @pending_queue: Submitted jobs, to be issued by issue_pending()
235 236
 * @active: Active descriptor.
 * @queue: Queued jobs.
237
 * @prepare_queue: Prepared jobs.
238
 * @dma_cfg: The client configuration of this dma channel.
239
 * @configured: whether the dma_cfg configuration is valid
240 241 242 243 244
 * @base: Pointer to the device instance struct.
 * @src_def_cfg: Default cfg register setting for src.
 * @dst_def_cfg: Default cfg register setting for dst.
 * @log_def: Default logical channel settings.
 * @lcpa: Pointer to dst and src lcpa settings.
245 246
 * @runtime_addr: runtime configured address.
 * @runtime_direction: runtime configured direction.
247 248 249 250 251 252 253 254 255 256 257 258 259 260
 *
 * This struct can either "be" a logical or a physical channel.
 */
struct d40_chan {
	spinlock_t			 lock;
	int				 log_num;
	/* ID of the most recent completed transfer */
	int				 completed;
	int				 pending_tx;
	bool				 busy;
	struct d40_phy_res		*phy_chan;
	struct dma_chan			 chan;
	struct tasklet_struct		 tasklet;
	struct list_head		 client;
261
	struct list_head		 pending_queue;
262 263
	struct list_head		 active;
	struct list_head		 queue;
264
	struct list_head		 prepare_queue;
265
	struct stedma40_chan_cfg	 dma_cfg;
266
	bool				 configured;
267 268 269 270 271 272
	struct d40_base			*base;
	/* Default register configurations */
	u32				 src_def_cfg;
	u32				 dst_def_cfg;
	struct d40_def_lcsp		 log_def;
	struct d40_log_lli_full		*lcpa;
273 274
	/* Runtime reconfiguration */
	dma_addr_t			runtime_addr;
275
	enum dma_transfer_direction	runtime_direction;
276 277 278 279 280 281 282 283 284 285
};

/**
 * struct d40_base - The big global struct, one for each probe'd instance.
 *
 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 * @execmd_lock: Lock for execute command usage since several channels share
 * the same physical register.
 * @dev: The device structure.
 * @virtbase: The virtual base address of the DMA's register.
286
 * @rev: silicon revision detected.
287 288 289 290 291 292 293 294 295 296 297 298
 * @clk: Pointer to the DMA clock structure.
 * @phy_start: Physical memory start of the DMA registers.
 * @phy_size: Size of the DMA register map.
 * @irq: The IRQ number.
 * @num_phy_chans: The number of physical channels. Read from HW. This
 * is the number of available channels for this driver, not counting "Secure
 * mode" allocated physical channels.
 * @num_log_chans: The number of logical channels. Calculated from
 * num_phy_chans.
 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 * @dma_slave: dma_device channels that can do only do slave transfers.
 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
299
 * @phy_chans: Room for all possible physical channels in system.
300 301 302 303 304 305 306
 * @log_chans: Room for all possible logical channels in system.
 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 * to log_chans entries.
 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 * to phy_chans entries.
 * @plat_data: Pointer to provided platform_data which is the driver
 * configuration.
307
 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
308 309 310 311 312
 * @phy_res: Vector containing all physical channels.
 * @lcla_pool: lcla pool settings and data.
 * @lcpa_base: The virtual mapped address of LCPA.
 * @phy_lcpa: The physical address of the LCPA.
 * @lcpa_size: The size of the LCPA area.
313
 * @desc_slab: cache for descriptors.
314 315 316 317 318 319 320
 * @reg_val_backup: Here the values of some hardware registers are stored
 * before the DMA is powered off. They are restored when the power is back on.
 * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
 * later.
 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 * @initialized: true if the dma has been initialized
321 322 323 324 325 326
 */
struct d40_base {
	spinlock_t			 interrupt_lock;
	spinlock_t			 execmd_lock;
	struct device			 *dev;
	void __iomem			 *virtbase;
327
	u8				  rev:4;
328 329 330 331 332 333 334 335 336 337 338 339 340 341
	struct clk			 *clk;
	phys_addr_t			  phy_start;
	resource_size_t			  phy_size;
	int				  irq;
	int				  num_phy_chans;
	int				  num_log_chans;
	struct dma_device		  dma_both;
	struct dma_device		  dma_slave;
	struct dma_device		  dma_memcpy;
	struct d40_chan			 *phy_chans;
	struct d40_chan			 *log_chans;
	struct d40_chan			**lookup_log_chans;
	struct d40_chan			**lookup_phy_chans;
	struct stedma40_platform_data	 *plat_data;
342
	struct regulator		 *lcpa_regulator;
343 344 345 346 347 348
	/* Physical half channels */
	struct d40_phy_res		 *phy_res;
	struct d40_lcla_pool		  lcla_pool;
	void				 *lcpa_base;
	dma_addr_t			  phy_lcpa;
	resource_size_t			  lcpa_size;
349
	struct kmem_cache		 *desc_slab;
350 351 352 353 354
	u32				  reg_val_backup[BACKUP_REGS_SZ];
	u32				  reg_val_backup_v3[BACKUP_REGS_SZ_V3];
	u32				 *reg_val_backup_chan;
	u16				  gcc_pwr_off_mask;
	bool				  initialized;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
};

/**
 * struct d40_interrupt_lookup - lookup table for interrupt handler
 *
 * @src: Interrupt mask register.
 * @clr: Interrupt clear register.
 * @is_error: true if this is an error interrupt.
 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 */
struct d40_interrupt_lookup {
	u32 src;
	u32 clr;
	bool is_error;
	int offset;
};

/**
 * struct d40_reg_val - simple lookup struct
 *
 * @reg: The register.
 * @val: The value that belongs to the register in reg.
 */
struct d40_reg_val {
	unsigned int reg;
	unsigned int val;
};

384 385 386 387 388
static struct device *chan2dev(struct d40_chan *d40c)
{
	return &d40c->chan.dev->device;
}

389 390 391 392 393 394 395 396 397 398
static bool chan_is_physical(struct d40_chan *chan)
{
	return chan->log_num == D40_PHY_CHAN;
}

static bool chan_is_logical(struct d40_chan *chan)
{
	return !chan_is_physical(chan);
}

399 400 401 402 403 404
static void __iomem *chan_base(struct d40_chan *chan)
{
	return chan->base->virtbase + D40_DREG_PCBASE +
	       chan->phy_chan->num * D40_DREG_PCDELTA;
}

405 406 407 408 409 410
#define d40_err(dev, format, arg...)		\
	dev_err(dev, "[%s] " format, __func__, ## arg)

#define chan_err(d40c, format, arg...)		\
	d40_err(chan2dev(d40c), format, ## arg)

411
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
412
			      int lli_len)
413
{
414
	bool is_log = chan_is_logical(d40c);
415 416 417 418 419 420 421 422 423 424 425 426 427
	u32 align;
	void *base;

	if (is_log)
		align = sizeof(struct d40_log_lli);
	else
		align = sizeof(struct d40_phy_lli);

	if (lli_len == 1) {
		base = d40d->lli_pool.pre_alloc_lli;
		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
		d40d->lli_pool.base = NULL;
	} else {
428
		d40d->lli_pool.size = lli_len * 2 * align;
429 430 431 432 433 434 435 436 437

		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
		d40d->lli_pool.base = base;

		if (d40d->lli_pool.base == NULL)
			return -ENOMEM;
	}

	if (is_log) {
R
Rabin Vincent 已提交
438
		d40d->lli_log.src = PTR_ALIGN(base, align);
439
		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
440 441

		d40d->lli_pool.dma_addr = 0;
442
	} else {
R
Rabin Vincent 已提交
443
		d40d->lli_phy.src = PTR_ALIGN(base, align);
444
		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
445 446 447 448 449 450 451 452 453 454 455 456 457

		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
							 d40d->lli_phy.src,
							 d40d->lli_pool.size,
							 DMA_TO_DEVICE);

		if (dma_mapping_error(d40c->base->dev,
				      d40d->lli_pool.dma_addr)) {
			kfree(d40d->lli_pool.base);
			d40d->lli_pool.base = NULL;
			d40d->lli_pool.dma_addr = 0;
			return -ENOMEM;
		}
458 459 460 461 462
	}

	return 0;
}

463
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
464
{
465 466 467 468
	if (d40d->lli_pool.dma_addr)
		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
				 d40d->lli_pool.size, DMA_TO_DEVICE);

469 470 471 472 473 474 475 476 477
	kfree(d40d->lli_pool.base);
	d40d->lli_pool.base = NULL;
	d40d->lli_pool.size = 0;
	d40d->lli_log.src = NULL;
	d40d->lli_log.dst = NULL;
	d40d->lli_phy.src = NULL;
	d40d->lli_phy.dst = NULL;
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
static int d40_lcla_alloc_one(struct d40_chan *d40c,
			      struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;
	int p;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;

	/*
	 * Allocate both src and dst at the same time, therefore the half
	 * start on 1 since 0 can't be used since zero is used as end marker.
	 */
	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
			d40d->lcla_alloc++;
			ret = i;
			break;
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;
}

static int d40_lcla_free_all(struct d40_chan *d40c,
			     struct d40_desc *d40d)
{
	unsigned long flags;
	int i;
	int ret = -EINVAL;

515
	if (chan_is_physical(d40c))
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return 0;

	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);

	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
			d40d->lcla_alloc--;
			if (d40d->lcla_alloc == 0) {
				ret = 0;
				break;
			}
		}
	}

	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);

	return ret;

}

539 540 541 542 543 544 545
static void d40_desc_remove(struct d40_desc *d40d)
{
	list_del(&d40d->node);
}

static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
R
Rabin Vincent 已提交
546
	struct d40_desc *desc = NULL;
547 548

	if (!list_empty(&d40c->client)) {
R
Rabin Vincent 已提交
549 550 551
		struct d40_desc *d;
		struct d40_desc *_d;

552
		list_for_each_entry_safe(d, _d, &d40c->client, node) {
553 554
			if (async_tx_test_ack(&d->txd)) {
				d40_desc_remove(d);
R
Rabin Vincent 已提交
555 556
				desc = d;
				memset(desc, 0, sizeof(*desc));
557
				break;
558
			}
559
		}
560
	}
R
Rabin Vincent 已提交
561 562 563 564 565 566 567 568

	if (!desc)
		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);

	if (desc)
		INIT_LIST_HEAD(&desc->node);

	return desc;
569 570 571 572
}

static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
573

574
	d40_pool_lli_free(d40c, d40d);
575
	d40_lcla_free_all(d40c, d40d);
576
	kmem_cache_free(d40c->base->desc_slab, d40d);
577 578 579 580 581 582 583
}

static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
	list_add_tail(&desc->node, &d40c->active);
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
{
	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
	struct d40_phy_lli *lli_src = desc->lli_phy.src;
	void __iomem *base = chan_base(chan);

	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);

	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
}

601
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
602
{
603 604 605 606
	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
	struct d40_log_lli_bidir *lli = &desc->lli_log;
	int lli_current = desc->lli_current;
	int lli_len = desc->lli_len;
R
Rabin Vincent 已提交
607
	bool cyclic = desc->cyclic;
608
	int curr_lcla = -EINVAL;
R
Rabin Vincent 已提交
609
	int first_lcla = 0;
610
	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
R
Rabin Vincent 已提交
611
	bool linkback;
612

R
Rabin Vincent 已提交
613 614 615 616 617 618 619 620 621 622 623
	/*
	 * We may have partially running cyclic transfers, in case we did't get
	 * enough LCLA entries.
	 */
	linkback = cyclic && lli_current == 0;

	/*
	 * For linkback, we need one LCLA even with only one link, because we
	 * can't link back to the one in LCPA space
	 */
	if (linkback || (lli_len - lli_current > 1)) {
624
		curr_lcla = d40_lcla_alloc_one(chan, desc);
R
Rabin Vincent 已提交
625 626 627 628 629 630 631 632 633 634 635
		first_lcla = curr_lcla;
	}

	/*
	 * For linkback, we normally load the LCPA in the loop since we need to
	 * link it to the second LCLA and not the first.  However, if we
	 * couldn't even get a first LCLA, then we have to run in LCPA and
	 * reload manually.
	 */
	if (!linkback || curr_lcla == -EINVAL) {
		unsigned int flags = 0;
636

R
Rabin Vincent 已提交
637 638
		if (curr_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
639

R
Rabin Vincent 已提交
640 641 642 643 644 645 646
		d40_log_lli_lcpa_write(chan->lcpa,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
				       curr_lcla,
				       flags);
		lli_current++;
	}
647 648 649 650

	if (curr_lcla < 0)
		goto out;

651 652 653 654
	for (; lli_current < lli_len; lli_current++) {
		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
					   8 * curr_lcla * 2;
		struct d40_log_lli *lcla = pool->base + lcla_offset;
R
Rabin Vincent 已提交
655
		unsigned int flags = 0;
656 657 658 659 660
		int next_lcla;

		if (lli_current + 1 < lli_len)
			next_lcla = d40_lcla_alloc_one(chan, desc);
		else
R
Rabin Vincent 已提交
661 662 663 664
			next_lcla = linkback ? first_lcla : -EINVAL;

		if (cyclic || next_lcla == -EINVAL)
			flags |= LLI_TERM_INT;
665

R
Rabin Vincent 已提交
666 667 668 669 670 671 672 673 674 675 676 677
		if (linkback && curr_lcla == first_lcla) {
			/* First link goes in both LCPA and LCLA */
			d40_log_lli_lcpa_write(chan->lcpa,
					       &lli->dst[lli_current],
					       &lli->src[lli_current],
					       next_lcla, flags);
		}

		/*
		 * One unused LCLA in the cyclic case if the very first
		 * next_lcla fails...
		 */
678 679 680
		d40_log_lli_lcla_write(lcla,
				       &lli->dst[lli_current],
				       &lli->src[lli_current],
R
Rabin Vincent 已提交
681
				       next_lcla, flags);
682

683 684 685 686 687 688 689 690 691 692
		/*
		 * Cache maintenance is not needed if lcla is
		 * mapped in esram
		 */
		if (!use_esram_lcla) {
			dma_sync_single_range_for_device(chan->base->dev,
						pool->dma_addr, lcla_offset,
						2 * sizeof(struct d40_log_lli),
						DMA_TO_DEVICE);
		}
693 694
		curr_lcla = next_lcla;

R
Rabin Vincent 已提交
695
		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
696 697 698 699 700
			lli_current++;
			break;
		}
	}

701
out:
702 703
	desc->lli_current = lli_current;
}
704

705 706
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
707
	if (chan_is_physical(d40c)) {
708
		d40_phy_lli_load(d40c, d40d);
709
		d40d->lli_current = d40d->lli_len;
710 711
	} else
		d40_log_lli_to_lcxa(d40c, d40d);
712 713
}

714 715 716 717 718 719 720 721 722 723 724 725 726
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->active))
		return NULL;

	d = list_first_entry(&d40c->active,
			     struct d40_desc,
			     node);
	return d;
}

727
/* remove desc from current queue and add it to the pending_queue */
728 729
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
730 731
	d40_desc_remove(desc);
	desc->is_in_client_list = false;
732 733 734 735 736 737 738 739 740 741 742 743 744 745
	list_add_tail(&desc->node, &d40c->pending_queue);
}

static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->pending_queue))
		return NULL;

	d = list_first_entry(&d40c->pending_queue,
			     struct d40_desc,
			     node);
	return d;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
}

static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
	struct d40_desc *d;

	if (list_empty(&d40c->queue))
		return NULL;

	d = list_first_entry(&d40c->queue,
			     struct d40_desc,
			     node);
	return d;
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static int d40_psize_2_burst_size(bool is_log, int psize)
{
	if (is_log) {
		if (psize == STEDMA40_PSIZE_LOG_1)
			return 1;
	} else {
		if (psize == STEDMA40_PSIZE_PHY_1)
			return 1;
	}

	return 2 << psize;
}

/*
 * The dma only supports transmitting packages up to
 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
 * dma elements required to send the entire sg list
 */
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
{
	int dmalen;
	u32 max_w = max(data_width1, data_width2);
	u32 min_w = min(data_width1, data_width2);
	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);

	if (seg_max > STEDMA40_MAX_SEG_SIZE)
		seg_max -= (1 << max_w);

	if (!IS_ALIGNED(size, 1 << max_w))
		return -EINVAL;

	if (size <= seg_max)
		dmalen = 1;
	else {
		dmalen = size / seg_max;
		if (dmalen * seg_max < size)
			dmalen++;
	}
	return dmalen;
}

static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
			   u32 data_width1, u32 data_width2)
{
	struct scatterlist *sg;
	int i;
	int len = 0;
	int ret;

	for_each_sg(sgl, sg, sg_len, i) {
		ret = d40_size_2_dmalen(sg_dma_len(sg),
					data_width1, data_width2);
		if (ret < 0)
			return ret;
		len += ret;
	}
	return len;
}
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
			 u32 *regaddr, int num, bool save)
{
	int i;

	for (i = 0; i < num; i++) {
		void __iomem *addr = baseaddr + regaddr[i];

		if (save)
			backup[i] = readl_relaxed(addr);
		else
			writel_relaxed(backup[i], addr);
	}
}

static void d40_save_restore_registers(struct d40_base *base, bool save)
{
	int i;

	/* Save/Restore channel specific registers */
	for (i = 0; i < base->num_phy_chans; i++) {
		void __iomem *addr;
		int idx;

		if (base->phy_res[i].reserved)
			continue;

		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
		idx = i * ARRAY_SIZE(d40_backup_regs_chan);

		dma40_backup(addr, &base->reg_val_backup_chan[idx],
			     d40_backup_regs_chan,
			     ARRAY_SIZE(d40_backup_regs_chan),
			     save);
	}

	/* Save/Restore global registers */
	dma40_backup(base->virtbase, base->reg_val_backup,
		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
		     save);

	/* Save/Restore registers only existing on dma40 v3 and later */
	if (base->rev >= 3)
		dma40_backup(base->virtbase, base->reg_val_backup_v3,
			     d40_backup_regs_v3,
			     ARRAY_SIZE(d40_backup_regs_v3),
			     save);
}
#else
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
}
#endif
875 876 877 878

static int d40_channel_execute_command(struct d40_chan *d40c,
				       enum d40_command command)
{
879 880
	u32 status;
	int i;
881 882 883
	void __iomem *active_reg;
	int ret = 0;
	unsigned long flags;
884
	u32 wmask;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

	spin_lock_irqsave(&d40c->base->execmd_lock, flags);

	if (d40c->phy_chan->num % 2 == 0)
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
	else
		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

	if (command == D40_DMA_SUSPEND_REQ) {
		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);

		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			goto done;
	}

902 903 904
	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
	       active_reg);
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	if (command == D40_DMA_SUSPEND_REQ) {

		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
			status = (readl(active_reg) &
				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
				D40_CHAN_POS(d40c->phy_chan->num);

			cpu_relax();
			/*
			 * Reduce the number of bus accesses while
			 * waiting for the DMA to suspend.
			 */
			udelay(3);

			if (status == D40_DMA_STOP ||
			    status == D40_DMA_SUSPENDED)
				break;
		}

		if (i == D40_SUSPEND_MAX_IT) {
926 927 928
			chan_err(d40c,
				"unable to suspend the chl %d (log: %d) status %x\n",
				d40c->phy_chan->num, d40c->log_num,
929 930 931 932 933 934 935 936 937 938 939 940 941 942
				status);
			dump_stack();
			ret = -EBUSY;
		}

	}
done:
	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
	return ret;
}

static void d40_term_all(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
943
	struct d40_desc *_d;
944 945 946 947 948 949 950 951 952 953 954 955 956

	/* Release active descriptors */
	while ((d40d = d40_first_active_get(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

	/* Release queued descriptors waiting for transfer */
	while ((d40d = d40_first_queued(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}

957 958 959 960 961
	/* Release pending descriptors */
	while ((d40d = d40_first_pending(d40c))) {
		d40_desc_remove(d40d);
		d40_desc_free(d40c, d40d);
	}
962

963 964 965 966 967 968 969
	/* Release client owned descriptors */
	if (!list_empty(&d40c->client))
		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}

970 971 972 973 974 975 976
	/* Release descriptors in prepare queue */
	if (!list_empty(&d40c->prepare_queue))
		list_for_each_entry_safe(d40d, _d,
					 &d40c->prepare_queue, node) {
			d40_desc_remove(d40d);
			d40_desc_free(d40c, d40d);
		}
977

978 979 980 981
	d40c->pending_tx = 0;
	d40c->busy = false;
}

982 983 984
static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
				   u32 event, int reg)
{
985
	void __iomem *addr = chan_base(d40c) + reg;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	int tries;

	if (!enable) {
		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);
		return;
	}

	/*
	 * The hardware sometimes doesn't register the enable when src and dst
	 * event lines are active on the same logical channel.  Retry to ensure
	 * it does.  Usually only one retry is sufficient.
	 */
	tries = 100;
	while (--tries) {
		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
		       | ~D40_EVENTLINE_MASK(event), addr);

		if (readl(addr) & D40_EVENTLINE_MASK(event))
			break;
	}

	if (tries != 99)
		dev_dbg(chan2dev(d40c),
			"[%s] workaround enable S%cLNK (%d tries)\n",
			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
			100 - tries);

	WARN_ON(!tries);
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
	unsigned long flags;

	spin_lock_irqsave(&d40c->phy_chan->lock, flags);

	/* Enable event line connected to device (or memcpy) */
	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);

1028 1029
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SSLNK);
1030
	}
1031

1032 1033 1034
	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);

1035 1036
		__d40_config_set_event(d40c, do_enable, event,
				       D40_CHAN_REG_SDLNK);
1037 1038 1039 1040 1041
	}

	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}

1042
static u32 d40_chan_has_events(struct d40_chan *d40c)
1043
{
1044
	void __iomem *chanbase = chan_base(d40c);
1045
	u32 val;
1046

1047 1048
	val = readl(chanbase + D40_CHAN_REG_SSLNK);
	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1049

1050
	return val;
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static u32 d40_get_prmo(struct d40_chan *d40c)
{
	static const unsigned int phy_map[] = {
		[STEDMA40_PCHAN_BASIC_MODE]
			= D40_DREG_PRMO_PCHAN_BASIC,
		[STEDMA40_PCHAN_MODULO_MODE]
			= D40_DREG_PRMO_PCHAN_MODULO,
		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
	};
	static const unsigned int log_map[] = {
		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
	};

1072
	if (chan_is_physical(d40c))
1073 1074 1075 1076 1077
		return phy_map[d40c->dma_cfg.mode_opt];
	else
		return log_map[d40c->dma_cfg.mode_opt];
}

1078
static void d40_config_write(struct d40_chan *d40c)
1079 1080 1081 1082 1083 1084 1085
{
	u32 addr_base;
	u32 var;

	/* Odd addresses are even addresses + 4 */
	addr_base = (d40c->phy_chan->num % 2) * 4;
	/* Setup channel mode to logical or physical */
1086
	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1087 1088 1089 1090
		D40_CHAN_POS(d40c->phy_chan->num);
	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);

	/* Setup operational mode option register */
1091
	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1092 1093 1094

	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);

1095
	if (chan_is_logical(d40c)) {
1096 1097 1098 1099
		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
			   & D40_SREG_ELEM_LOG_LIDX_MASK;
		void __iomem *chanbase = chan_base(d40c);

1100
		/* Set default config for CFG reg */
1101 1102
		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1103

1104
		/* Set LIDX for lcla */
1105 1106
		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1107 1108 1109
	}
}

1110 1111 1112 1113
static u32 d40_residue(struct d40_chan *d40c)
{
	u32 num_elt;

1114
	if (chan_is_logical(d40c))
1115 1116
		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
			>> D40_MEM_LCSP2_ECNT_POS;
1117 1118 1119 1120 1121 1122
	else {
		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
			  >> D40_SREG_ELEM_PHY_ECNT_POS;
	}

1123 1124 1125 1126 1127 1128 1129
	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}

static bool d40_tx_is_linked(struct d40_chan *d40c)
{
	bool is_link;

1130
	if (chan_is_logical(d40c))
1131 1132
		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
	else
1133 1134 1135
		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
			  & D40_SREG_LNK_PHYS_LNK_MASK;

1136 1137 1138
	return is_link;
}

1139
static int d40_pause(struct d40_chan *d40c)
1140 1141 1142 1143
{
	int res = 0;
	unsigned long flags;

1144 1145 1146
	if (!d40c->busy)
		return 0;

1147
	pm_runtime_get_sync(d40c->base->dev);
1148 1149 1150 1151
	spin_lock_irqsave(&d40c->lock, flags);

	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res == 0) {
1152
		if (chan_is_logical(d40c)) {
1153 1154 1155 1156 1157 1158 1159
			d40_config_set_event(d40c, false);
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c))
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
		}
	}
1160 1161
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1162 1163 1164 1165
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1166
static int d40_resume(struct d40_chan *d40c)
1167 1168 1169 1170
{
	int res = 0;
	unsigned long flags;

1171 1172 1173
	if (!d40c->busy)
		return 0;

1174
	spin_lock_irqsave(&d40c->lock, flags);
1175
	pm_runtime_get_sync(d40c->base->dev);
1176
	if (d40c->base->rev == 0)
1177
		if (chan_is_logical(d40c)) {
1178 1179 1180 1181 1182 1183 1184 1185
			res = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			goto no_suspend;
		}

	/* If bytes left to transfer or linked tx resume job */
	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {

1186
		if (chan_is_logical(d40c))
1187 1188 1189 1190 1191 1192
			d40_config_set_event(d40c, true);

		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
	}

no_suspend:
1193 1194
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
1195 1196 1197 1198
	spin_unlock_irqrestore(&d40c->lock, flags);
	return res;
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static int d40_terminate_all(struct d40_chan *chan)
{
	unsigned long flags;
	int ret = 0;

	ret = d40_pause(chan);
	if (!ret && chan_is_physical(chan))
		ret = d40_channel_execute_command(chan, D40_DMA_STOP);

	spin_lock_irqsave(&chan->lock, flags);
	d40_term_all(chan);
	spin_unlock_irqrestore(&chan->lock, flags);

	return ret;
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct d40_chan *d40c = container_of(tx->chan,
					     struct d40_chan,
					     chan);
	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);

1225 1226 1227 1228 1229 1230 1231
	d40c->chan.cookie++;

	if (d40c->chan.cookie < 0)
		d40c->chan.cookie = 1;

	d40d->txd.cookie = d40c->chan.cookie;

1232 1233 1234 1235 1236 1237 1238 1239 1240
	d40_desc_queue(d40c, d40d);

	spin_unlock_irqrestore(&d40c->lock, flags);

	return tx->cookie;
}

static int d40_start(struct d40_chan *d40c)
{
1241 1242 1243
	if (d40c->base->rev == 0) {
		int err;

1244
		if (chan_is_logical(d40c)) {
1245 1246 1247 1248 1249 1250 1251
			err = d40_channel_execute_command(d40c,
							  D40_DMA_SUSPEND_REQ);
			if (err)
				return err;
		}
	}

1252
	if (chan_is_logical(d40c))
1253 1254
		d40_config_set_event(d40c, true);

1255
	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
}

static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
	struct d40_desc *d40d;
	int err;

	/* Start queued jobs, if any */
	d40d = d40_first_queued(d40c);

	if (d40d != NULL) {
1267 1268 1269 1270
		if (!d40c->busy)
			d40c->busy = true;

		pm_runtime_get_sync(d40c->base->dev);
1271 1272 1273 1274 1275 1276 1277

		/* Remove from queue */
		d40_desc_remove(d40d);

		/* Add to active queue */
		d40_desc_submit(d40c, d40d);

1278 1279
		/* Initiate DMA job */
		d40_desc_load(d40c, d40d);
1280

1281 1282
		/* Start dma job */
		err = d40_start(d40c);
1283

1284 1285
		if (err)
			return NULL;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	}

	return d40d;
}

/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
	struct d40_desc *d40d;

	/* Get first active entry from list */
	d40d = d40_first_active_get(d40c);

	if (d40d == NULL)
		return;

R
Rabin Vincent 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	if (d40d->cyclic) {
		/*
		 * If this was a paritially loaded list, we need to reloaded
		 * it, and only when the list is completed.  We need to check
		 * for done because the interrupt will hit for every link, and
		 * not just the last one.
		 */
		if (d40d->lli_current < d40d->lli_len
		    && !d40_tx_is_linked(d40c)
		    && !d40_residue(d40c)) {
			d40_lcla_free_all(d40c, d40d);
			d40_desc_load(d40c, d40d);
			(void) d40_start(d40c);
1315

R
Rabin Vincent 已提交
1316 1317 1318 1319 1320
			if (d40d->lli_current == d40d->lli_len)
				d40d->lli_current = 0;
		}
	} else {
		d40_lcla_free_all(d40c, d40d);
1321

R
Rabin Vincent 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
		if (d40d->lli_current < d40d->lli_len) {
			d40_desc_load(d40c, d40d);
			/* Start dma job */
			(void) d40_start(d40c);
			return;
		}

		if (d40_queue_start(d40c) == NULL)
			d40c->busy = false;
1331 1332
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
R
Rabin Vincent 已提交
1333
	}
1334 1335 1336 1337 1338 1339 1340 1341 1342

	d40c->pending_tx++;
	tasklet_schedule(&d40c->tasklet);

}

static void dma_tasklet(unsigned long data)
{
	struct d40_chan *d40c = (struct d40_chan *) data;
1343
	struct d40_desc *d40d;
1344 1345 1346 1347 1348 1349 1350
	unsigned long flags;
	dma_async_tx_callback callback;
	void *callback_param;

	spin_lock_irqsave(&d40c->lock, flags);

	/* Get first active entry from list */
1351 1352
	d40d = d40_first_active_get(d40c);
	if (d40d == NULL)
1353 1354
		goto err;

R
Rabin Vincent 已提交
1355 1356
	if (!d40d->cyclic)
		d40c->completed = d40d->txd.cookie;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

	/*
	 * If terminating a channel pending_tx is set to zero.
	 * This prevents any finished active jobs to return to the client.
	 */
	if (d40c->pending_tx == 0) {
		spin_unlock_irqrestore(&d40c->lock, flags);
		return;
	}

	/* Callback to client */
1368 1369 1370
	callback = d40d->txd.callback;
	callback_param = d40d->txd.callback_param;

R
Rabin Vincent 已提交
1371 1372
	if (!d40d->cyclic) {
		if (async_tx_test_ack(&d40d->txd)) {
1373
			d40_desc_remove(d40d);
R
Rabin Vincent 已提交
1374 1375 1376 1377 1378 1379 1380 1381
			d40_desc_free(d40c, d40d);
		} else {
			if (!d40d->is_in_client_list) {
				d40_desc_remove(d40d);
				d40_lcla_free_all(d40c, d40d);
				list_add_tail(&d40d->node, &d40c->client);
				d40d->is_in_client_list = true;
			}
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		}
	}

	d40c->pending_tx--;

	if (d40c->pending_tx)
		tasklet_schedule(&d40c->tasklet);

	spin_unlock_irqrestore(&d40c->lock, flags);

1392
	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1393 1394 1395 1396 1397
		callback(callback_param);

	return;

 err:
L
Lucas De Marchi 已提交
1398
	/* Rescue manoeuvre if receiving double interrupts */
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	if (d40c->pending_tx > 0)
		d40c->pending_tx--;
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
	static const struct d40_interrupt_lookup il[] = {
		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
	};

	int i;
	u32 regs[ARRAY_SIZE(il)];
	u32 idx;
	u32 row;
	long chan = -1;
	struct d40_chan *d40c;
	unsigned long flags;
	struct d40_base *base = data;

	spin_lock_irqsave(&base->interrupt_lock, flags);

	/* Read interrupt status of both logical and physical channels */
	for (i = 0; i < ARRAY_SIZE(il); i++)
		regs[i] = readl(base->virtbase + il[i].src);

	for (;;) {

		chan = find_next_bit((unsigned long *)regs,
				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);

		/* No more set bits found? */
		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
			break;

		row = chan / BITS_PER_LONG;
		idx = chan & (BITS_PER_LONG - 1);

		/* ACK interrupt */
1447
		writel(1 << idx, base->virtbase + il[row].clr);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		if (il[row].offset == D40_PHY_CHAN)
			d40c = base->lookup_phy_chans[idx];
		else
			d40c = base->lookup_log_chans[il[row].offset + idx];
		spin_lock(&d40c->lock);

		if (!il[row].is_error)
			dma_tc_handle(d40c);
		else
1458 1459
			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
				chan, il[row].offset, idx);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

		spin_unlock(&d40c->lock);
	}

	spin_unlock_irqrestore(&base->interrupt_lock, flags);

	return IRQ_HANDLED;
}

static int d40_validate_conf(struct d40_chan *d40c,
			     struct stedma40_chan_cfg *conf)
{
	int res = 0;
	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1475
	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1476

1477
	if (!conf->dir) {
1478
		chan_err(d40c, "Invalid direction.\n");
1479 1480 1481 1482 1483 1484 1485
		res = -EINVAL;
	}

	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {

1486 1487
		chan_err(d40c, "Invalid TX channel address (%d)\n",
			 conf->dst_dev_type);
1488 1489 1490 1491 1492 1493
		res = -EINVAL;
	}

	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
	    d40c->runtime_addr == 0) {
1494 1495
		chan_err(d40c, "Invalid RX channel address (%d)\n",
			conf->src_dev_type);
1496 1497 1498 1499
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1500
	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1501
		chan_err(d40c, "Invalid dst\n");
1502 1503 1504
		res = -EINVAL;
	}

1505
	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1506
	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1507
		chan_err(d40c, "Invalid src\n");
1508 1509 1510 1511 1512
		res = -EINVAL;
	}

	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1513
		chan_err(d40c, "No event line\n");
1514 1515 1516 1517 1518
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
	    (src_event_group != dst_event_group)) {
1519
		chan_err(d40c, "Invalid event group\n");
1520 1521 1522 1523 1524 1525 1526 1527
		res = -EINVAL;
	}

	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
		/*
		 * DMAC HW supports it. Will be added to this driver,
		 * in case any dma client requires it.
		 */
1528
		chan_err(d40c, "periph to periph not supported\n");
1529 1530 1531
		res = -EINVAL;
	}

1532 1533 1534 1535 1536 1537 1538 1539 1540
	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
	    (1 << conf->src_info.data_width) !=
	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
	    (1 << conf->dst_info.data_width)) {
		/*
		 * The DMAC hardware only supports
		 * src (burst x width) == dst (burst x width)
		 */

1541
		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1542 1543 1544
		res = -EINVAL;
	}

1545 1546 1547 1548
	return res;
}

static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1549
			       int log_event_line, bool is_log)
1550 1551 1552
{
	unsigned long flags;
	spin_lock_irqsave(&phy->lock, flags);
1553
	if (!is_log) {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		/* Physical interrupts are masked per physical full channel */
		if (phy->allocated_src == D40_ALLOC_FREE &&
		    phy->allocated_dst == D40_ALLOC_FREE) {
			phy->allocated_dst = D40_ALLOC_PHY;
			phy->allocated_src = D40_ALLOC_PHY;
			goto found;
		} else
			goto not_found;
	}

	/* Logical channel */
	if (is_src) {
		if (phy->allocated_src == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_src == D40_ALLOC_FREE)
			phy->allocated_src = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_src & (1 << log_event_line))) {
			phy->allocated_src |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	} else {
		if (phy->allocated_dst == D40_ALLOC_PHY)
			goto not_found;

		if (phy->allocated_dst == D40_ALLOC_FREE)
			phy->allocated_dst = D40_ALLOC_LOG_FREE;

		if (!(phy->allocated_dst & (1 << log_event_line))) {
			phy->allocated_dst |= 1 << log_event_line;
			goto found;
		} else
			goto not_found;
	}

not_found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return false;
found:
	spin_unlock_irqrestore(&phy->lock, flags);
	return true;
}

static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
			       int log_event_line)
{
	unsigned long flags;
	bool is_free = false;

	spin_lock_irqsave(&phy->lock, flags);
	if (!log_event_line) {
		phy->allocated_dst = D40_ALLOC_FREE;
		phy->allocated_src = D40_ALLOC_FREE;
		is_free = true;
		goto out;
	}

	/* Logical channel */
	if (is_src) {
		phy->allocated_src &= ~(1 << log_event_line);
		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
			phy->allocated_src = D40_ALLOC_FREE;
	} else {
		phy->allocated_dst &= ~(1 << log_event_line);
		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
			phy->allocated_dst = D40_ALLOC_FREE;
	}

	is_free = ((phy->allocated_src | phy->allocated_dst) ==
		   D40_ALLOC_FREE);

out:
	spin_unlock_irqrestore(&phy->lock, flags);

	return is_free;
}

static int d40_allocate_channel(struct d40_chan *d40c)
{
	int dev_type;
	int event_group;
	int event_line;
	struct d40_phy_res *phys;
	int i;
	int j;
	int log_num;
	bool is_src;
1643
	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	phys = d40c->base->phy_res;

	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		dev_type = d40c->dma_cfg.src_dev_type;
		log_num = 2 * dev_type;
		is_src = true;
	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		/* dst event lines are used for logical memcpy */
		dev_type = d40c->dma_cfg.dst_dev_type;
		log_num = 2 * dev_type + 1;
		is_src = false;
	} else
		return -EINVAL;

	event_group = D40_TYPE_TO_GROUP(dev_type);
	event_line = D40_TYPE_TO_EVENT(dev_type);

	if (!is_log) {
		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
			/* Find physical half channel */
			for (i = 0; i < d40c->base->num_phy_chans; i++) {

1668 1669
				if (d40_alloc_mask_set(&phys[i], is_src,
						       0, is_log))
1670 1671 1672 1673 1674 1675
					goto found_phy;
			}
		} else
			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
				int phy_num = j  + event_group * 2;
				for (i = phy_num; i < phy_num + 2; i++) {
1676 1677 1678 1679
					if (d40_alloc_mask_set(&phys[i],
							       is_src,
							       0,
							       is_log))
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
						goto found_phy;
				}
			}
		return -EINVAL;
found_phy:
		d40c->phy_chan = &phys[i];
		d40c->log_num = D40_PHY_CHAN;
		goto out;
	}
	if (dev_type == -1)
		return -EINVAL;

	/* Find logical channel */
	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
		int phy_num = j + event_group * 2;
		/*
		 * Spread logical channels across all available physical rather
		 * than pack every logical channel at the first available phy
		 * channels.
		 */
		if (is_src) {
			for (i = phy_num; i < phy_num + 2; i++) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1703
						       event_line, is_log))
1704 1705 1706 1707 1708
					goto found_log;
			}
		} else {
			for (i = phy_num + 1; i >= phy_num; i--) {
				if (d40_alloc_mask_set(&phys[i], is_src,
1709
						       event_line, is_log))
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
					goto found_log;
			}
		}
	}
	return -EINVAL;

found_log:
	d40c->phy_chan = &phys[i];
	d40c->log_num = log_num;
out:

	if (is_log)
		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
	else
		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;

	return 0;

}

static int d40_config_memcpy(struct d40_chan *d40c)
{
	dma_cap_mask_t cap = d40c->chan.device->cap_mask;

	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
			memcpy[d40c->chan.chan_id];

	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
		   dma_has_cap(DMA_SLAVE, cap)) {
		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
	} else {
1744
		chan_err(d40c, "No memcpy\n");
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		return -EINVAL;
	}

	return 0;
}


static int d40_free_dma(struct d40_chan *d40c)
{

	int res = 0;
1756
	u32 event;
1757 1758 1759 1760 1761 1762 1763
	struct d40_phy_res *phy = d40c->phy_chan;
	bool is_src;

	/* Terminate all queued and active transfers */
	d40_term_all(d40c);

	if (phy == NULL) {
1764
		chan_err(d40c, "phy == null\n");
1765 1766 1767 1768 1769
		return -EINVAL;
	}

	if (phy->allocated_src == D40_ALLOC_FREE &&
	    phy->allocated_dst == D40_ALLOC_FREE) {
1770
		chan_err(d40c, "channel already free\n");
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		return -EINVAL;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
		is_src = false;
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
		is_src = true;
	} else {
1782
		chan_err(d40c, "Unknown direction\n");
1783 1784 1785
		return -EINVAL;
	}

1786
	pm_runtime_get_sync(d40c->base->dev);
1787 1788
	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
	if (res) {
1789
		chan_err(d40c, "suspend failed\n");
1790
		goto out;
1791 1792
	}

1793
	if (chan_is_logical(d40c)) {
1794
		/* Release logical channel, deactivate the event line */
1795

1796
		d40_config_set_event(d40c, false);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		d40c->base->lookup_log_chans[d40c->log_num] = NULL;

		/*
		 * Check if there are more logical allocation
		 * on this phy channel.
		 */
		if (!d40_alloc_mask_free(phy, is_src, event)) {
			/* Resume the other logical channels if any */
			if (d40_chan_has_events(d40c)) {
				res = d40_channel_execute_command(d40c,
								  D40_DMA_RUN);
1808
				if (res)
1809 1810
					chan_err(d40c,
						"Executing RUN command\n");
1811
			}
1812
			goto out;
1813
		}
1814 1815 1816
	} else {
		(void) d40_alloc_mask_free(phy, is_src, 0);
	}
1817 1818 1819 1820

	/* Release physical channel */
	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
	if (res) {
1821
		chan_err(d40c, "Failed to stop channel\n");
1822
		goto out;
1823
	}
1824 1825 1826 1827 1828 1829 1830

	if (d40c->busy) {
		pm_runtime_mark_last_busy(d40c->base->dev);
		pm_runtime_put_autosuspend(d40c->base->dev);
	}

	d40c->busy = false;
1831
	d40c->phy_chan = NULL;
1832
	d40c->configured = false;
1833
	d40c->base->lookup_phy_chans[phy->num] = NULL;
1834
out:
1835

1836 1837 1838
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
	return res;
1839 1840
}

1841 1842
static bool d40_is_paused(struct d40_chan *d40c)
{
1843
	void __iomem *chanbase = chan_base(d40c);
1844 1845 1846 1847 1848 1849 1850 1851
	bool is_paused = false;
	unsigned long flags;
	void __iomem *active_reg;
	u32 status;
	u32 event;

	spin_lock_irqsave(&d40c->lock, flags);

1852
	if (chan_is_physical(d40c)) {
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		if (d40c->phy_chan->num % 2 == 0)
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
		else
			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;

		status = (readl(active_reg) &
			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
			D40_CHAN_POS(d40c->phy_chan->num);
		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
			is_paused = true;

		goto _exit;
	}

	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1868
	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1869
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1870
		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1871
	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1872
		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1873
		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1874
	} else {
1875
		chan_err(d40c, "Unknown direction\n");
1876 1877
		goto _exit;
	}
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	status = (status & D40_EVENTLINE_MASK(event)) >>
		D40_EVENTLINE_POS(event);

	if (status != D40_DMA_RUN)
		is_paused = true;
_exit:
	spin_unlock_irqrestore(&d40c->lock, flags);
	return is_paused;

}


1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static u32 stedma40_residue(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	u32 bytes_left;
	unsigned long flags;

	spin_lock_irqsave(&d40c->lock, flags);
	bytes_left = d40_residue(d40c);
	spin_unlock_irqrestore(&d40c->lock, flags);

	return bytes_left;
}

1905 1906 1907
static int
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
1908 1909
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
1910 1911 1912 1913
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1914
	int ret;
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	ret = d40_log_sg_to_lli(sg_src, sg_len,
				src_dev_addr,
				desc->lli_log.src,
				chan->log_def.lcsp1,
				src_info->data_width,
				dst_info->data_width);

	ret = d40_log_sg_to_lli(sg_dst, sg_len,
				dst_dev_addr,
				desc->lli_log.dst,
				chan->log_def.lcsp3,
				dst_info->data_width,
				src_info->data_width);

	return ret < 0 ? ret : 0;
1931 1932 1933 1934 1935
}

static int
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
		struct scatterlist *sg_src, struct scatterlist *sg_dst,
R
Rabin Vincent 已提交
1936 1937
		unsigned int sg_len, dma_addr_t src_dev_addr,
		dma_addr_t dst_dev_addr)
1938 1939 1940 1941
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct stedma40_half_channel_info *src_info = &cfg->src_info;
	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
R
Rabin Vincent 已提交
1942
	unsigned long flags = 0;
1943 1944
	int ret;

R
Rabin Vincent 已提交
1945 1946 1947
	if (desc->cyclic)
		flags |= LLI_CYCLIC | LLI_TERM_INT;

1948 1949 1950 1951
	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
				desc->lli_phy.src,
				virt_to_phys(desc->lli_phy.src),
				chan->src_def_cfg,
R
Rabin Vincent 已提交
1952
				src_info, dst_info, flags);
1953 1954 1955 1956 1957

	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
				desc->lli_phy.dst,
				virt_to_phys(desc->lli_phy.dst),
				chan->dst_def_cfg,
R
Rabin Vincent 已提交
1958
				dst_info, src_info, flags);
1959 1960 1961 1962 1963 1964 1965 1966

	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
				   desc->lli_pool.size, DMA_TO_DEVICE);

	return ret < 0 ? ret : 0;
}


1967 1968 1969 1970 1971 1972
static struct d40_desc *
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
	      unsigned int sg_len, unsigned long dma_flags)
{
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
	struct d40_desc *desc;
1973
	int ret;
1974 1975 1976 1977 1978 1979 1980 1981 1982

	desc = d40_desc_get(chan);
	if (!desc)
		return NULL;

	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
					cfg->dst_info.data_width);
	if (desc->lli_len < 0) {
		chan_err(chan, "Unaligned size\n");
1983 1984
		goto err;
	}
1985

1986 1987 1988 1989
	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
	if (ret < 0) {
		chan_err(chan, "Could not allocate lli\n");
		goto err;
1990 1991
	}

1992

1993 1994 1995 1996 1997 1998 1999
	desc->lli_current = 0;
	desc->txd.flags = dma_flags;
	desc->txd.tx_submit = d40_tx_submit;

	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);

	return desc;
2000 2001 2002 2003

err:
	d40_desc_free(chan, desc);
	return NULL;
2004 2005
}

2006
static dma_addr_t
2007
d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2008
{
2009 2010
	struct stedma40_platform_data *plat = chan->base->plat_data;
	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2011
	dma_addr_t addr = 0;
2012 2013 2014 2015

	if (chan->runtime_addr)
		return chan->runtime_addr;

2016
	if (direction == DMA_DEV_TO_MEM)
2017
		addr = plat->dev_rx[cfg->src_dev_type];
2018
	else if (direction == DMA_MEM_TO_DEV)
2019 2020 2021 2022 2023 2024 2025 2026
		addr = plat->dev_tx[cfg->dst_dev_type];

	return addr;
}

static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
	    struct scatterlist *sg_dst, unsigned int sg_len,
2027
	    enum dma_transfer_direction direction, unsigned long dma_flags)
2028 2029
{
	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
R
Rabin Vincent 已提交
2030 2031
	dma_addr_t src_dev_addr = 0;
	dma_addr_t dst_dev_addr = 0;
2032
	struct d40_desc *desc;
2033
	unsigned long flags;
2034
	int ret;
2035

2036 2037 2038
	if (!chan->phy_chan) {
		chan_err(chan, "Cannot prepare unallocated channel\n");
		return NULL;
2039 2040
	}

R
Rabin Vincent 已提交
2041

2042
	spin_lock_irqsave(&chan->lock, flags);
2043

2044 2045
	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
	if (desc == NULL)
2046 2047
		goto err;

R
Rabin Vincent 已提交
2048 2049 2050
	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
		desc->cyclic = true;

R
Rabin Vincent 已提交
2051 2052 2053
	if (direction != DMA_NONE) {
		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);

2054
		if (direction == DMA_DEV_TO_MEM)
R
Rabin Vincent 已提交
2055
			src_dev_addr = dev_addr;
2056
		else if (direction == DMA_MEM_TO_DEV)
R
Rabin Vincent 已提交
2057 2058
			dst_dev_addr = dev_addr;
	}
2059 2060 2061

	if (chan_is_logical(chan))
		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2062
				      sg_len, src_dev_addr, dst_dev_addr);
2063 2064
	else
		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
R
Rabin Vincent 已提交
2065
				      sg_len, src_dev_addr, dst_dev_addr);
2066 2067 2068 2069 2070

	if (ret) {
		chan_err(chan, "Failed to prepare %s sg job: %d\n",
			 chan_is_logical(chan) ? "log" : "phy", ret);
		goto err;
2071 2072
	}

2073 2074 2075 2076 2077 2078
	/*
	 * add descriptor to the prepare queue in order to be able
	 * to free them later in terminate_all
	 */
	list_add_tail(&desc->node, &chan->prepare_queue);

2079 2080 2081
	spin_unlock_irqrestore(&chan->lock, flags);

	return &desc->txd;
2082 2083

err:
2084 2085 2086
	if (desc)
		d40_desc_free(chan, desc);
	spin_unlock_irqrestore(&chan->lock, flags);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	return NULL;
}

bool stedma40_filter(struct dma_chan *chan, void *data)
{
	struct stedma40_chan_cfg *info = data;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;

	if (data) {
		err = d40_validate_conf(d40c, info);
		if (!err)
			d40c->dma_cfg = *info;
	} else
		err = d40_config_memcpy(d40c);

2104 2105 2106
	if (!err)
		d40c->configured = true;

2107 2108 2109 2110
	return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
{
	bool realtime = d40c->dma_cfg.realtime;
	bool highprio = d40c->dma_cfg.high_priority;
	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
	u32 event = D40_TYPE_TO_EVENT(dev_type);
	u32 group = D40_TYPE_TO_GROUP(dev_type);
	u32 bit = 1 << event;

	/* Destination event lines are stored in the upper halfword */
	if (!src)
		bit <<= 16;

	writel(bit, d40c->base->virtbase + prioreg + group * 4);
	writel(bit, d40c->base->virtbase + rtreg + group * 4);
}

static void d40_set_prio_realtime(struct d40_chan *d40c)
{
	if (d40c->base->rev < 3)
		return;

	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);

	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
}

2143 2144 2145 2146 2147 2148 2149
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
	int err;
	unsigned long flags;
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
2150
	bool is_free_phy;
2151 2152 2153 2154
	spin_lock_irqsave(&d40c->lock, flags);

	d40c->completed = chan->cookie = 1;

2155 2156
	/* If no dma configuration is set use default configuration (memcpy) */
	if (!d40c->configured) {
2157
		err = d40_config_memcpy(d40c);
2158
		if (err) {
2159
			chan_err(d40c, "Failed to configure memcpy channel\n");
2160 2161
			goto fail;
		}
2162
	}
2163
	is_free_phy = (d40c->phy_chan == NULL);
2164 2165 2166

	err = d40_allocate_channel(d40c);
	if (err) {
2167
		chan_err(d40c, "Failed to allocate channel\n");
2168
		d40c->configured = false;
2169
		goto fail;
2170 2171
	}

2172
	pm_runtime_get_sync(d40c->base->dev);
2173 2174
	/* Fill in basic CFG register values */
	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2175
		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2176

2177 2178
	d40_set_prio_realtime(d40c);

2179
	if (chan_is_logical(d40c)) {
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		d40_log_cfg(&d40c->dma_cfg,
			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);

		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
		else
			d40c->lcpa = d40c->base->lcpa_base +
			  d40c->dma_cfg.dst_dev_type *
			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
	}

	/*
	 * Only write channel configuration to the DMA if the physical
	 * resource is free. In case of multiple logical channels
	 * on the same physical resource, only the first write is necessary.
	 */
2197 2198
	if (is_free_phy)
		d40_config_write(d40c);
2199
fail:
2200 2201
	pm_runtime_mark_last_busy(d40c->base->dev);
	pm_runtime_put_autosuspend(d40c->base->dev);
2202
	spin_unlock_irqrestore(&d40c->lock, flags);
2203
	return err;
2204 2205 2206 2207 2208 2209 2210 2211 2212
}

static void d40_free_chan_resources(struct dma_chan *chan)
{
	struct d40_chan *d40c =
		container_of(chan, struct d40_chan, chan);
	int err;
	unsigned long flags;

2213
	if (d40c->phy_chan == NULL) {
2214
		chan_err(d40c, "Cannot free unallocated channel\n");
2215 2216 2217 2218
		return;
	}


2219 2220 2221 2222 2223
	spin_lock_irqsave(&d40c->lock, flags);

	err = d40_free_dma(d40c);

	if (err)
2224
		chan_err(d40c, "Failed to free channel\n");
2225 2226 2227 2228 2229 2230 2231
	spin_unlock_irqrestore(&d40c->lock, flags);
}

static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
						       dma_addr_t dst,
						       dma_addr_t src,
						       size_t size,
2232
						       unsigned long dma_flags)
2233
{
2234 2235
	struct scatterlist dst_sg;
	struct scatterlist src_sg;
2236

2237 2238
	sg_init_table(&dst_sg, 1);
	sg_init_table(&src_sg, 1);
2239

2240 2241
	sg_dma_address(&dst_sg) = dst;
	sg_dma_address(&src_sg) = src;
2242

2243 2244
	sg_dma_len(&dst_sg) = size;
	sg_dma_len(&src_sg) = size;
2245

2246
	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2247 2248
}

2249
static struct dma_async_tx_descriptor *
2250 2251 2252 2253
d40_prep_memcpy_sg(struct dma_chan *chan,
		   struct scatterlist *dst_sg, unsigned int dst_nents,
		   struct scatterlist *src_sg, unsigned int src_nents,
		   unsigned long dma_flags)
2254 2255 2256 2257
{
	if (dst_nents != src_nents)
		return NULL;

2258
	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2259 2260
}

2261 2262 2263
static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
2264
							 enum dma_transfer_direction direction,
2265
							 unsigned long dma_flags)
2266
{
2267
	if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2268 2269
		return NULL;

2270
	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2271 2272
}

R
Rabin Vincent 已提交
2273 2274 2275
static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
		     size_t buf_len, size_t period_len,
2276
		     enum dma_transfer_direction direction)
R
Rabin Vincent 已提交
2277 2278 2279 2280 2281 2282
{
	unsigned int periods = buf_len / period_len;
	struct dma_async_tx_descriptor *txd;
	struct scatterlist *sg;
	int i;

2283
	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
R
Rabin Vincent 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	for (i = 0; i < periods; i++) {
		sg_dma_address(&sg[i]) = dma_addr;
		sg_dma_len(&sg[i]) = period_len;
		dma_addr += period_len;
	}

	sg[periods].offset = 0;
	sg[periods].length = 0;
	sg[periods].page_link =
		((unsigned long)sg | 0x01) & ~0x02;

	txd = d40_prep_sg(chan, sg, sg, periods, direction,
			  DMA_PREP_INTERRUPT);

	kfree(sg);

	return txd;
}

2303 2304 2305 2306 2307 2308 2309 2310 2311
static enum dma_status d40_tx_status(struct dma_chan *chan,
				     dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	int ret;

2312
	if (d40c->phy_chan == NULL) {
2313
		chan_err(d40c, "Cannot read status of unallocated channel\n");
2314 2315 2316
		return -EINVAL;
	}

2317 2318 2319
	last_complete = d40c->completed;
	last_used = chan->cookie;

2320 2321 2322 2323
	if (d40_is_paused(d40c))
		ret = DMA_PAUSED;
	else
		ret = dma_async_is_complete(cookie, last_complete, last_used);
2324

2325 2326
	dma_set_tx_state(txstate, last_complete, last_used,
			 stedma40_residue(chan));
2327 2328 2329 2330 2331 2332 2333 2334 2335

	return ret;
}

static void d40_issue_pending(struct dma_chan *chan)
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	unsigned long flags;

2336
	if (d40c->phy_chan == NULL) {
2337
		chan_err(d40c, "Channel is not allocated!\n");
2338 2339 2340
		return;
	}

2341 2342
	spin_lock_irqsave(&d40c->lock, flags);

2343 2344 2345
	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);

	/* Busy means that queued jobs are already being processed */
2346 2347 2348 2349 2350 2351
	if (!d40c->busy)
		(void) d40_queue_start(d40c);

	spin_unlock_irqrestore(&d40c->lock, flags);
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static int
dma40_config_to_halfchannel(struct d40_chan *d40c,
			    struct stedma40_half_channel_info *info,
			    enum dma_slave_buswidth width,
			    u32 maxburst)
{
	enum stedma40_periph_data_width addr_width;
	int psize;

	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		addr_width = STEDMA40_BYTE_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		addr_width = STEDMA40_HALFWORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		addr_width = STEDMA40_WORD_WIDTH;
		break;
	case DMA_SLAVE_BUSWIDTH_8_BYTES:
		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
		break;
	default:
		dev_err(d40c->base->dev,
			"illegal peripheral address width "
			"requested (%d)\n",
			width);
		return -EINVAL;
	}

	if (chan_is_logical(d40c)) {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_LOG_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_LOG_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_LOG_4;
		else
			psize = STEDMA40_PSIZE_LOG_1;
	} else {
		if (maxburst >= 16)
			psize = STEDMA40_PSIZE_PHY_16;
		else if (maxburst >= 8)
			psize = STEDMA40_PSIZE_PHY_8;
		else if (maxburst >= 4)
			psize = STEDMA40_PSIZE_PHY_4;
		else
			psize = STEDMA40_PSIZE_PHY_1;
	}

	info->data_width = addr_width;
	info->psize = psize;
	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;

	return 0;
}

2409
/* Runtime reconfiguration extension */
2410 2411
static int d40_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
2412 2413 2414
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2415
	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2416
	dma_addr_t config_addr;
2417 2418 2419 2420 2421 2422 2423
	u32 src_maxburst, dst_maxburst;
	int ret;

	src_addr_width = config->src_addr_width;
	src_maxburst = config->src_maxburst;
	dst_addr_width = config->dst_addr_width;
	dst_maxburst = config->dst_maxburst;
2424

2425
	if (config->direction == DMA_DEV_TO_MEM) {
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		dma_addr_t dev_addr_rx =
			d40c->base->plat_data->dev_rx[cfg->src_dev_type];

		config_addr = config->src_addr;
		if (dev_addr_rx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired RX address %08x "
				"overriding with %08x\n",
				dev_addr_rx, config_addr);
		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
			dev_dbg(d40c->base->dev,
				"channel was not configured for peripheral "
				"to memory transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_PERIPH_TO_MEM;

2442 2443 2444 2445 2446
		/* Configure the memory side */
		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			dst_addr_width = src_addr_width;
		if (dst_maxburst == 0)
			dst_maxburst = src_maxburst;
2447

2448
	} else if (config->direction == DMA_MEM_TO_DEV) {
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		dma_addr_t dev_addr_tx =
			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];

		config_addr = config->dst_addr;
		if (dev_addr_tx)
			dev_dbg(d40c->base->dev,
				"channel has a pre-wired TX address %08x "
				"overriding with %08x\n",
				dev_addr_tx, config_addr);
		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
			dev_dbg(d40c->base->dev,
				"channel was not configured for memory "
				"to peripheral transfer (%d) overriding\n",
				cfg->dir);
		cfg->dir = STEDMA40_MEM_TO_PERIPH;

2465 2466 2467 2468 2469
		/* Configure the memory side */
		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
			src_addr_width = dst_addr_width;
		if (src_maxburst == 0)
			src_maxburst = dst_maxburst;
2470 2471 2472 2473
	} else {
		dev_err(d40c->base->dev,
			"unrecognized channel direction %d\n",
			config->direction);
2474
		return -EINVAL;
2475 2476
	}

2477
	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2478
		dev_err(d40c->base->dev,
2479 2480 2481 2482 2483 2484
			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
			src_maxburst,
			src_addr_width,
			dst_maxburst,
			dst_addr_width);
		return -EINVAL;
2485 2486
	}

2487 2488 2489 2490 2491
	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
					  src_addr_width,
					  src_maxburst);
	if (ret)
		return ret;
2492

2493 2494 2495 2496 2497
	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
					  dst_addr_width,
					  dst_maxburst);
	if (ret)
		return ret;
2498

2499
	/* Fill in register values */
2500
	if (chan_is_logical(d40c))
2501 2502 2503 2504 2505
		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
	else
		d40_phy_cfg(cfg, &d40c->src_def_cfg,
			    &d40c->dst_def_cfg, false);

2506 2507 2508 2509
	/* These settings will take precedence later */
	d40c->runtime_addr = config_addr;
	d40c->runtime_direction = config->direction;
	dev_dbg(d40c->base->dev,
2510 2511
		"configured channel %s for %s, data width %d/%d, "
		"maxburst %d/%d elements, LE, no flow control\n",
2512
		dma_chan_name(chan),
2513
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2514 2515 2516 2517
		src_addr_width, dst_addr_width,
		src_maxburst, dst_maxburst);

	return 0;
2518 2519
}

2520 2521
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
		       unsigned long arg)
2522 2523 2524
{
	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);

2525
	if (d40c->phy_chan == NULL) {
2526
		chan_err(d40c, "Channel is not allocated!\n");
2527 2528 2529
		return -EINVAL;
	}

2530 2531
	switch (cmd) {
	case DMA_TERMINATE_ALL:
2532
		return d40_terminate_all(d40c);
2533
	case DMA_PAUSE:
2534
		return d40_pause(d40c);
2535
	case DMA_RESUME:
2536
		return d40_resume(d40c);
2537
	case DMA_SLAVE_CONFIG:
2538
		return d40_set_runtime_config(chan,
2539 2540 2541
			(struct dma_slave_config *) arg);
	default:
		break;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	}

	/* Other commands are unimplemented */
	return -ENXIO;
}

/* Initialization functions */

static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
				 struct d40_chan *chans, int offset,
				 int num_chans)
{
	int i = 0;
	struct d40_chan *d40c;

	INIT_LIST_HEAD(&dma->channels);

	for (i = offset; i < offset + num_chans; i++) {
		d40c = &chans[i];
		d40c->base = base;
		d40c->chan.device = dma;

		spin_lock_init(&d40c->lock);

		d40c->log_num = D40_PHY_CHAN;

		INIT_LIST_HEAD(&d40c->active);
		INIT_LIST_HEAD(&d40c->queue);
2570
		INIT_LIST_HEAD(&d40c->pending_queue);
2571
		INIT_LIST_HEAD(&d40c->client);
2572
		INIT_LIST_HEAD(&d40c->prepare_queue);
2573 2574 2575 2576 2577 2578 2579 2580 2581

		tasklet_init(&d40c->tasklet, dma_tasklet,
			     (unsigned long) d40c);

		list_add_tail(&d40c->chan.device_node,
			      &dma->channels);
	}
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
{
	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
		dev->device_prep_slave_sg = d40_prep_slave_sg;

	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
		dev->device_prep_dma_memcpy = d40_prep_memcpy;

		/*
		 * This controller can only access address at even
		 * 32bit boundaries, i.e. 2^2
		 */
		dev->copy_align = 2;
	}

	if (dma_has_cap(DMA_SG, dev->cap_mask))
		dev->device_prep_dma_sg = d40_prep_memcpy_sg;

R
Rabin Vincent 已提交
2600 2601 2602
	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;

2603 2604 2605 2606 2607 2608 2609 2610
	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
	dev->device_free_chan_resources = d40_free_chan_resources;
	dev->device_issue_pending = d40_issue_pending;
	dev->device_tx_status = d40_tx_status;
	dev->device_control = d40_control;
	dev->dev = base->dev;
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static int __init d40_dmaengine_init(struct d40_base *base,
				     int num_reserved_chans)
{
	int err ;

	d40_chan_init(base, &base->dma_slave, base->log_chans,
		      0, base->num_log_chans);

	dma_cap_zero(base->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
R
Rabin Vincent 已提交
2621
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2622

2623
	d40_ops_init(base, &base->dma_slave);
2624 2625 2626 2627

	err = dma_async_device_register(&base->dma_slave);

	if (err) {
2628
		d40_err(base->dev, "Failed to register slave channels\n");
2629 2630 2631 2632 2633 2634 2635 2636
		goto failure1;
	}

	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
		      base->num_log_chans, base->plat_data->memcpy_len);

	dma_cap_zero(base->dma_memcpy.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2637 2638 2639
	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);

	d40_ops_init(base, &base->dma_memcpy);
2640 2641 2642 2643

	err = dma_async_device_register(&base->dma_memcpy);

	if (err) {
2644 2645
		d40_err(base->dev,
			"Failed to regsiter memcpy only channels\n");
2646 2647 2648 2649 2650 2651 2652 2653 2654
		goto failure2;
	}

	d40_chan_init(base, &base->dma_both, base->phy_chans,
		      0, num_reserved_chans);

	dma_cap_zero(base->dma_both.cap_mask);
	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2655
	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
R
Rabin Vincent 已提交
2656
	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2657 2658

	d40_ops_init(base, &base->dma_both);
2659 2660 2661
	err = dma_async_device_register(&base->dma_both);

	if (err) {
2662 2663
		d40_err(base->dev,
			"Failed to register logical and physical capable channels\n");
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		goto failure3;
	}
	return 0;
failure3:
	dma_async_device_unregister(&base->dma_memcpy);
failure2:
	dma_async_device_unregister(&base->dma_slave);
failure1:
	return err;
}

2675 2676 2677 2678
/* Suspend resume functionality */
#ifdef CONFIG_PM
static int dma40_pm_suspend(struct device *dev)
{
2679 2680 2681
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;
2682 2683 2684
	if (!pm_runtime_suspended(dev))
		return -EBUSY;

2685 2686 2687
	if (base->lcpa_regulator)
		ret = regulator_disable(base->lcpa_regulator);
	return ret;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
}

static int dma40_runtime_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	d40_save_restore_registers(base, true);

	/* Don't disable/enable clocks for v1 due to HW bugs */
	if (base->rev != 1)
		writel_relaxed(base->gcc_pwr_off_mask,
			       base->virtbase + D40_DREG_GCC);

	return 0;
}

static int dma40_runtime_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);

	if (base->initialized)
		d40_save_restore_registers(base, false);

	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
		       base->virtbase + D40_DREG_GCC);
	return 0;
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
static int dma40_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct d40_base *base = platform_get_drvdata(pdev);
	int ret = 0;

	if (base->lcpa_regulator)
		ret = regulator_enable(base->lcpa_regulator);

	return ret;
}
2729 2730 2731 2732 2733

static const struct dev_pm_ops dma40_pm_ops = {
	.suspend		= dma40_pm_suspend,
	.runtime_suspend	= dma40_runtime_suspend,
	.runtime_resume		= dma40_runtime_resume,
2734
	.resume			= dma40_resume,
2735 2736 2737 2738 2739 2740
};
#define DMA40_PM_OPS	(&dma40_pm_ops)
#else
#define DMA40_PM_OPS	NULL
#endif

2741 2742 2743 2744 2745 2746 2747 2748
/* Initialization functions. */

static int __init d40_phy_res_init(struct d40_base *base)
{
	int i;
	int num_phy_chans_avail = 0;
	u32 val[2];
	int odd_even_bit = -2;
2749
	int gcc = D40_DREG_GCC_ENA;
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760

	val[0] = readl(base->virtbase + D40_DREG_PRSME);
	val[1] = readl(base->virtbase + D40_DREG_PRSMO);

	for (i = 0; i < base->num_phy_chans; i++) {
		base->phy_res[i].num = i;
		odd_even_bit += 2 * ((i % 2) == 0);
		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
			/* Mark security only channels as occupied */
			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2761 2762 2763 2764 2765 2766 2767
			base->phy_res[i].reserved = true;
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_SRC);
			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
						       D40_DREG_GCC_DST);


2768 2769 2770
		} else {
			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2771
			base->phy_res[i].reserved = false;
2772 2773 2774 2775
			num_phy_chans_avail++;
		}
		spin_lock_init(&base->phy_res[i].lock);
	}
2776 2777 2778

	/* Mark disabled channels as occupied */
	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2779 2780 2781 2782
		int chan = base->plat_data->disabled_channels[i];

		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2783 2784 2785 2786 2787
		base->phy_res[chan].reserved = true;
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_SRC);
		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
					       D40_DREG_GCC_DST);
2788
		num_phy_chans_avail--;
2789 2790
	}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	dev_info(base->dev, "%d of %d physical DMA channels available\n",
		 num_phy_chans_avail, base->num_phy_chans);

	/* Verify settings extended vs standard */
	val[0] = readl(base->virtbase + D40_DREG_PRTYP);

	for (i = 0; i < base->num_phy_chans; i++) {

		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
		    (val[0] & 0x3) != 1)
			dev_info(base->dev,
				 "[%s] INFO: channel %d is misconfigured (%d)\n",
				 __func__, i, val[0] & 0x3);

		val[0] = val[0] >> 2;
	}

2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * To keep things simple, Enable all clocks initially.
	 * The clocks will get managed later post channel allocation.
	 * The clocks for the event lines on which reserved channels exists
	 * are not managed here.
	 */
	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
	base->gcc_pwr_off_mask = gcc;

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	return num_phy_chans_avail;
}

static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
	struct stedma40_platform_data *plat_data;
	struct clk *clk = NULL;
	void __iomem *virtbase = NULL;
	struct resource *res = NULL;
	struct d40_base *base = NULL;
	int num_log_chans = 0;
	int num_phy_chans;
	int i;
2830 2831 2832
	u32 pid;
	u32 cid;
	u8 rev;
2833 2834 2835 2836

	clk = clk_get(&pdev->dev, NULL);

	if (IS_ERR(clk)) {
2837
		d40_err(&pdev->dev, "No matching clock found\n");
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		goto failure;
	}

	clk_enable(clk);

	/* Get IO for DMAC base address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
	if (!res)
		goto failure;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O base") == NULL)
		goto failure;

	virtbase = ioremap(res->start, resource_size(res));
	if (!virtbase)
		goto failure;

2856 2857 2858 2859 2860 2861 2862
	/* This is just a regular AMBA PrimeCell ID actually */
	for (pid = 0, i = 0; i < 4; i++)
		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
			& 255) << (i * 8);
	for (cid = 0, i = 0; i < 4; i++)
		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
			& 255) << (i * 8);
2863

2864 2865 2866 2867 2868
	if (cid != AMBA_CID) {
		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
		goto failure;
	}
	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2869
		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2870 2871
			AMBA_MANF_BITS(pid),
			AMBA_VENDOR_ST);
2872 2873
		goto failure;
	}
2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * HW revision:
	 * DB8500ed has revision 0
	 * ? has revision 1
	 * DB8500v1 has revision 2
	 * DB8500v2 has revision 3
	 */
	rev = AMBA_REV_BITS(pid);
2882

2883 2884 2885 2886
	/* The number of physical channels on this HW */
	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;

	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2887
		 rev, res->start);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904

	plat_data = pdev->dev.platform_data;

	/* Count the number of logical channels in use */
	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_rx[i] != 0)
			num_log_chans++;

	for (i = 0; i < plat_data->dev_len; i++)
		if (plat_data->dev_tx[i] != 0)
			num_log_chans++;

	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
		       sizeof(struct d40_chan), GFP_KERNEL);

	if (base == NULL) {
2905
		d40_err(&pdev->dev, "Out of memory\n");
2906 2907 2908
		goto failure;
	}

2909
	base->rev = rev;
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	base->clk = clk;
	base->num_phy_chans = num_phy_chans;
	base->num_log_chans = num_log_chans;
	base->phy_start = res->start;
	base->phy_size = resource_size(res);
	base->virtbase = virtbase;
	base->plat_data = plat_data;
	base->dev = &pdev->dev;
	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
	base->log_chans = &base->phy_chans[num_phy_chans];

	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
				GFP_KERNEL);
	if (!base->phy_res)
		goto failure;

	base->lookup_phy_chans = kzalloc(num_phy_chans *
					 sizeof(struct d40_chan *),
					 GFP_KERNEL);
	if (!base->lookup_phy_chans)
		goto failure;

	if (num_log_chans + plat_data->memcpy_len) {
		/*
		 * The max number of logical channels are event lines for all
		 * src devices and dst devices
		 */
		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
						 sizeof(struct d40_chan *),
						 GFP_KERNEL);
		if (!base->lookup_log_chans)
			goto failure;
	}
2943

2944 2945
	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
					    sizeof(d40_backup_regs_chan),
2946
					    GFP_KERNEL);
2947 2948 2949 2950 2951 2952
	if (!base->reg_val_backup_chan)
		goto failure;

	base->lcla_pool.alloc_map =
		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
2953 2954 2955
	if (!base->lcla_pool.alloc_map)
		goto failure;

2956 2957 2958 2959 2960 2961
	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
					    0, SLAB_HWCACHE_ALIGN,
					    NULL);
	if (base->desc_slab == NULL)
		goto failure;

2962 2963 2964
	return base;

failure:
2965
	if (!IS_ERR(clk)) {
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		clk_disable(clk);
		clk_put(clk);
	}
	if (virtbase)
		iounmap(virtbase);
	if (res)
		release_mem_region(res->start,
				   resource_size(res));
	if (virtbase)
		iounmap(virtbase);

	if (base) {
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

	return NULL;
}

static void __init d40_hw_init(struct d40_base *base)
{

2991
	static struct d40_reg_val dma_init_reg[] = {
2992
		/* Clock every part of the DMA block from start */
2993
		{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

		/* Interrupts on all logical channels */
		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
	};
	int i;
	u32 prmseo[2] = {0, 0};
	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
	u32 pcmis = 0;
	u32 pcicr = 0;

	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
		writel(dma_init_reg[i].val,
		       base->virtbase + dma_init_reg[i].reg);

	/* Configure all our dma channels to default settings */
	for (i = 0; i < base->num_phy_chans; i++) {

		activeo[i % 2] = activeo[i % 2] << 2;

		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
		    == D40_ALLOC_PHY) {
			activeo[i % 2] |= 3;
			continue;
		}

		/* Enable interrupt # */
		pcmis = (pcmis << 1) | 1;

		/* Clear interrupt # */
		pcicr = (pcicr << 1) | 1;

		/* Set channel to physical mode */
		prmseo[i % 2] = prmseo[i % 2] << 2;
		prmseo[i % 2] |= 1;

	}

	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);

	/* Write which interrupt to enable */
	writel(pcmis, base->virtbase + D40_DREG_PCMIS);

	/* Write which interrupt to clear */
	writel(pcicr, base->virtbase + D40_DREG_PCICR);

}

3055 3056
static int __init d40_lcla_allocate(struct d40_base *base)
{
3057
	struct d40_lcla_pool *pool = &base->lcla_pool;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	unsigned long *page_list;
	int i, j;
	int ret = 0;

	/*
	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
	 * To full fill this hardware requirement without wasting 256 kb
	 * we allocate pages until we get an aligned one.
	 */
	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
			    GFP_KERNEL);

	if (!page_list) {
		ret = -ENOMEM;
		goto failure;
	}

	/* Calculating how many pages that are required */
	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;

	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
		page_list[i] = __get_free_pages(GFP_KERNEL,
						base->lcla_pool.pages);
		if (!page_list[i]) {

3083 3084
			d40_err(base->dev, "Failed to allocate %d pages.\n",
				base->lcla_pool.pages);
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

			for (j = 0; j < i; j++)
				free_pages(page_list[j], base->lcla_pool.pages);
			goto failure;
		}

		if ((virt_to_phys((void *)page_list[i]) &
		     (LCLA_ALIGNMENT - 1)) == 0)
			break;
	}

	for (j = 0; j < i; j++)
		free_pages(page_list[j], base->lcla_pool.pages);

	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
		base->lcla_pool.base = (void *)page_list[i];
	} else {
3102 3103 3104 3105
		/*
		 * After many attempts and no succees with finding the correct
		 * alignment, try with allocating a big buffer.
		 */
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
		dev_warn(base->dev,
			 "[%s] Failed to get %d pages @ 18 bit align.\n",
			 __func__, base->lcla_pool.pages);
		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
							 base->num_phy_chans +
							 LCLA_ALIGNMENT,
							 GFP_KERNEL);
		if (!base->lcla_pool.base_unaligned) {
			ret = -ENOMEM;
			goto failure;
		}

		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
						 LCLA_ALIGNMENT);
	}

3122 3123 3124 3125 3126 3127 3128 3129 3130
	pool->dma_addr = dma_map_single(base->dev, pool->base,
					SZ_1K * base->num_phy_chans,
					DMA_TO_DEVICE);
	if (dma_mapping_error(base->dev, pool->dma_addr)) {
		pool->dma_addr = 0;
		ret = -ENOMEM;
		goto failure;
	}

3131 3132 3133 3134 3135 3136 3137
	writel(virt_to_phys(base->lcla_pool.base),
	       base->virtbase + D40_DREG_LCLA);
failure:
	kfree(page_list);
	return ret;
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static int __init d40_probe(struct platform_device *pdev)
{
	int err;
	int ret = -ENOENT;
	struct d40_base *base;
	struct resource *res = NULL;
	int num_reserved_chans;
	u32 val;

	base = d40_hw_detect_init(pdev);

	if (!base)
		goto failure;

	num_reserved_chans = d40_phy_res_init(base);

	platform_set_drvdata(pdev, base);

	spin_lock_init(&base->interrupt_lock);
	spin_lock_init(&base->execmd_lock);

	/* Get IO for logical channel parameter address */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
	if (!res) {
		ret = -ENOENT;
3163
		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3164 3165 3166 3167 3168 3169 3170 3171
		goto failure;
	}
	base->lcpa_size = resource_size(res);
	base->phy_lcpa = res->start;

	if (request_mem_region(res->start, resource_size(res),
			       D40_NAME " I/O lcpa") == NULL) {
		ret = -EBUSY;
3172 3173 3174
		d40_err(&pdev->dev,
			"Failed to request LCPA region 0x%x-0x%x\n",
			res->start, res->end);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		goto failure;
	}

	/* We make use of ESRAM memory for this. */
	val = readl(base->virtbase + D40_DREG_LCPA);
	if (res->start != val && val != 0) {
		dev_warn(&pdev->dev,
			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
			 __func__, val, res->start);
	} else
		writel(res->start, base->virtbase + D40_DREG_LCPA);

	base->lcpa_base = ioremap(res->start, resource_size(res));
	if (!base->lcpa_base) {
		ret = -ENOMEM;
3190
		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3191 3192
		goto failure;
	}
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	/* If lcla has to be located in ESRAM we don't need to allocate */
	if (base->plat_data->use_esram_lcla) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
							"lcla_esram");
		if (!res) {
			ret = -ENOENT;
			d40_err(&pdev->dev,
				"No \"lcla_esram\" memory resource\n");
			goto failure;
		}
		base->lcla_pool.base = ioremap(res->start,
						resource_size(res));
		if (!base->lcla_pool.base) {
			ret = -ENOMEM;
			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
			goto failure;
		}
		writel(res->start, base->virtbase + D40_DREG_LCLA);
3211

3212 3213 3214 3215 3216 3217
	} else {
		ret = d40_lcla_allocate(base);
		if (ret) {
			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
			goto failure;
		}
3218 3219 3220 3221 3222 3223 3224 3225
	}

	spin_lock_init(&base->lcla_pool.lock);

	base->irq = platform_get_irq(pdev, 0);

	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
	if (ret) {
3226
		d40_err(&pdev->dev, "No IRQ defined\n");
3227 3228 3229
		goto failure;
	}

3230 3231 3232 3233 3234
	pm_runtime_irq_safe(base->dev);
	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(base->dev);
	pm_runtime_enable(base->dev);
	pm_runtime_resume(base->dev);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

	if (base->plat_data->use_esram_lcla) {

		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
		if (IS_ERR(base->lcpa_regulator)) {
			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
			base->lcpa_regulator = NULL;
			goto failure;
		}

		ret = regulator_enable(base->lcpa_regulator);
		if (ret) {
			d40_err(&pdev->dev,
				"Failed to enable lcpa_regulator\n");
			regulator_put(base->lcpa_regulator);
			base->lcpa_regulator = NULL;
			goto failure;
		}
	}

3255
	base->initialized = true;
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	err = d40_dmaengine_init(base, num_reserved_chans);
	if (err)
		goto failure;

	d40_hw_init(base);

	dev_info(base->dev, "initialized\n");
	return 0;

failure:
	if (base) {
3267 3268
		if (base->desc_slab)
			kmem_cache_destroy(base->desc_slab);
3269 3270
		if (base->virtbase)
			iounmap(base->virtbase);
3271

3272 3273 3274 3275 3276
		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
			iounmap(base->lcla_pool.base);
			base->lcla_pool.base = NULL;
		}

3277 3278 3279 3280 3281
		if (base->lcla_pool.dma_addr)
			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
					 SZ_1K * base->num_phy_chans,
					 DMA_TO_DEVICE);

3282 3283 3284
		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
			free_pages((unsigned long)base->lcla_pool.base,
				   base->lcla_pool.pages);
3285 3286 3287

		kfree(base->lcla_pool.base_unaligned);

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
		if (base->phy_lcpa)
			release_mem_region(base->phy_lcpa,
					   base->lcpa_size);
		if (base->phy_start)
			release_mem_region(base->phy_start,
					   base->phy_size);
		if (base->clk) {
			clk_disable(base->clk);
			clk_put(base->clk);
		}

3299 3300 3301 3302 3303
		if (base->lcpa_regulator) {
			regulator_disable(base->lcpa_regulator);
			regulator_put(base->lcpa_regulator);
		}

3304 3305 3306 3307 3308 3309 3310
		kfree(base->lcla_pool.alloc_map);
		kfree(base->lookup_log_chans);
		kfree(base->lookup_phy_chans);
		kfree(base->phy_res);
		kfree(base);
	}

3311
	d40_err(&pdev->dev, "probe failed\n");
3312 3313 3314 3315 3316 3317 3318
	return ret;
}

static struct platform_driver d40_driver = {
	.driver = {
		.owner = THIS_MODULE,
		.name  = D40_NAME,
3319
		.pm = DMA40_PM_OPS,
3320 3321 3322
	},
};

R
Rabin Vincent 已提交
3323
static int __init stedma40_init(void)
3324 3325 3326
{
	return platform_driver_probe(&d40_driver, d40_probe);
}
L
Linus Walleij 已提交
3327
subsys_initcall(stedma40_init);