ohci.c 75.0 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
235 236
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

237 238 239
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
240
#define QUIRK_NO_1394A			8
241
#define QUIRK_NO_MSI			16
242 243 244 245 246

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
247
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
248 249
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
250 251
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
252
	{PCI_VENDOR_ID_JMICRON,	PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
253 254 255 256 257
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

258 259 260 261 262 263 264
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
265
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
266
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
267 268
	")");

269
#define OHCI_PARAM_DEBUG_AT_AR		1
270
#define OHCI_PARAM_DEBUG_SELFIDS	2
271 272
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
273

274 275
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

276 277 278 279
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
280 281 282
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
283 284 285 286
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
287 288 289 290 291 292
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
293 294
		return;

295
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
296 297 298 299 300 301 302 303 304
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
305
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
306 307 308 309 310 311
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
312
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
313
		    OHCI1394_regAccessFail | OHCI1394_busReset)
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

331
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
332 333 334 335
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

336 337
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
338 339 340

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
341 342 343 344 345 346
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
347
		else
348 349 350 351
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

399
	if (evt == OHCI1394_evt_bus_reset) {
400 401
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
402 403 404
		return;
	}

405
	if (header[0] == ~header[1]) {
406 407
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
426
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
427 428
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
429 430 431 432 433 434
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
435 436
		break;
	default:
437 438 439 440 441 442
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
443 444 445 446 447
	}
}

#else

448 449 450 451
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
452 453 454

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
455
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
456 457 458 459
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
460
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
461 462 463 464
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
465
static inline void flush_writes(const struct fw_ohci *ohci)
466 467 468 469 470
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

471
static int read_phy_reg(struct fw_ohci *ohci, int addr)
472
{
473
	u32 val;
474
	int i;
475 476

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
477 478 479 480 481 482
	for (i = 0; i < 10; i++) {
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

		msleep(1);
483
	}
484
	fw_error("failed to read phy reg\n");
485

486 487
	return -EBUSY;
}
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;

	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, val));
	for (i = 0; i < 100; i++) {
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;

		msleep(1);
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
505 506 507 508 509 510
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
511
	int ret;
512

513 514 515
	ret = read_phy_reg(ohci, addr);
	if (ret < 0)
		return ret;
516

517 518 519 520 521 522 523
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

524
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
525 526
}

527
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
528
{
529
	int ret;
530

531 532 533
	ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
	if (ret < 0)
		return ret;
534

535
	return read_phy_reg(ohci, addr);
536 537
}

538
static int ar_context_add_page(struct ar_context *ctx)
539
{
540 541
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
542
	dma_addr_t uninitialized_var(ab_bus);
543 544
	size_t offset;

545
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
546 547 548
	if (ab == NULL)
		return -ENOMEM;

549
	ab->next = NULL;
550
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
551 552 553
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
554 555 556 557 558 559
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

560
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
561 562 563
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

564
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
565
	flush_writes(ctx->ohci);
566 567

	return 0;
568 569
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

585 586
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
587
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
588 589 590 591
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

592
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
593 594
{
	struct fw_ohci *ohci = ctx->ohci;
595 596
	struct fw_packet p;
	u32 status, length, tcode;
597
	int evt;
598

599 600 601
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
602 603 604 605 606

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
607
		p.header[3] = (__force __u32) buffer[3];
608
		p.header_length = 16;
609
		p.payload_length = 0;
610 611 612
		break;

	case TCODE_READ_BLOCK_REQUEST :
613
		p.header[3] = cond_le32_to_cpu(buffer[3]);
614 615 616 617 618
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
619 620 621
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
622
		p.header[3] = cond_le32_to_cpu(buffer[3]);
623
		p.header_length = 16;
624
		p.payload_length = p.header[3] >> 16;
625 626 627 628
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
629
	case OHCI_TCODE_PHY_PACKET:
630
		p.header_length = 12;
631
		p.payload_length = 0;
632
		break;
633 634 635 636 637

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
638
	}
639

640 641 642 643
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
644
	status = cond_le32_to_cpu(buffer[length]);
645
	evt    = (status >> 16) & 0x1f;
646

647
	p.ack        = evt - 16;
648 649 650
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
651

652
	log_ar_at_event('R', p.speed, p.header, evt);
653

654 655
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
656 657 658 659 660
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
661
	 * request.
662 663 664 665
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
666
	 */
667
	if (evt == OHCI1394_evt_bus_reset) {
668
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
669 670
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
671
		fw_core_handle_request(&ohci->card, &p);
672
	} else {
673
		fw_core_handle_response(&ohci->card, &p);
674
	}
675

676 677
	return buffer + length + 1;
}
678

679 680 681 682 683 684 685 686 687 688 689 690 691
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
692 693
		dma_addr_t start_bus;
		void *start;
694

695 696
		/*
		 * This descriptor is finished and we may have a
697
		 * packet split across this and the next buffer. We
698 699
		 * reuse the page for reassembling the split packet.
		 */
700 701

		offset = offsetof(struct ar_buffer, data);
702 703
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
704 705 706 707 708 709 710 711 712 713 714 715 716 717

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

718
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
719
				  start, start_bus);
720 721 722 723 724 725 726 727 728
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
729 730
}

731 732
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
733
{
734
	struct ar_buffer ab;
735

736 737 738
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
739 740
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

741 742 743 744 745
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

746 747 748 749 750 751 752 753 754 755
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
756
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
757 758

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
759
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
760
	flush_writes(ctx->ohci);
761
}
S
Stefan Richter 已提交
762

763
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
764 765 766 767 768 769 770 771 772 773 774 775 776
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

777 778 779 780 781 782
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
783
	struct descriptor_buffer *desc;
784

785 786 787
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
788
	while (last->branch_address != 0) {
789
		struct descriptor_buffer *old_desc = desc;
790 791
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
792 793 794 795 796 797 798 799 800
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
801
		last = find_branch_descriptor(d, z);
802 803 804 805

		if (!ctx->callback(ctx, d, last))
			break;

806 807 808 809 810 811 812 813 814 815
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
816 817 818
	}
}

819 820 821 822
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
823
static int context_add_buffer(struct context *ctx)
824 825
{
	struct descriptor_buffer *desc;
826
	dma_addr_t uninitialized_var(bus_addr);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

852 853
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
854 855 856
{
	ctx->ohci = ohci;
	ctx->regs = regs;
857 858 859 860
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
861 862
		return -ENOMEM;

863 864 865
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

866 867 868
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

869 870
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
871
	 * branch address and looks like it's been sent.  That way we
872
	 * have a descriptor to append DMA programs to.
873
	 */
874 875 876 877 878 879
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
880 881 882 883

	return 0;
}

884
static void context_release(struct context *ctx)
885 886
{
	struct fw_card *card = &ctx->ohci->card;
887
	struct descriptor_buffer *desc, *tmp;
888

889 890 891 892
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
893 894
}

895
/* Must be called with ohci->lock held */
896 897
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
898
{
899 900 901 902 903 904 905 906 907
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
908

909 910 911 912 913 914 915 916 917 918
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
919

920
	d = desc->buffer + desc->used / sizeof(*d);
921
	memset(d, 0, z * sizeof(*d));
922
	*d_bus = desc->buffer_bus + desc->used;
923 924 925 926

	return d;
}

927
static void context_run(struct context *ctx, u32 extra)
928 929 930
{
	struct fw_ohci *ohci = ctx->ohci;

931
	reg_write(ohci, COMMAND_PTR(ctx->regs),
932
		  le32_to_cpu(ctx->last->branch_address));
933 934
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
935 936 937 938 939 940 941
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
942
	struct descriptor_buffer *desc = ctx->buffer_tail;
943

944
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
945

946 947 948
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
949

950
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
951 952 953 954 955 956
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
957
	int i;
958

959
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
960
	flush_writes(ctx->ohci);
961

962
	for (i = 0; i < 10; i++) {
963
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
964
		if ((reg & CONTEXT_ACTIVE) == 0)
965
			return;
966

967
		mdelay(1);
968
	}
969
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
970
}
971

972 973 974
struct driver_data {
	struct fw_packet *packet;
};
975

976 977
/*
 * This function apppends a packet to the DMA queue for transmission.
978
 * Must always be called with the ochi->lock held to ensure proper
979 980
 * generation handling and locking around packet queue manipulation.
 */
981 982
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
983 984
{
	struct fw_ohci *ohci = ctx->ohci;
985
	dma_addr_t d_bus, uninitialized_var(payload_bus);
986 987 988
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
989
	int z, tcode;
990
	u32 reg;
991

992 993 994 995
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
996 997
	}

998
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
999 1000
	d[0].res_count = cpu_to_le16(packet->timestamp);

1001 1002
	/*
	 * The DMA format for asyncronous link packets is different
1003 1004
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
1005 1006
	 * which we need to prepend an extra quadlet.
	 */
1007 1008

	header = (__le32 *) &d[1];
1009 1010 1011
	switch (packet->header_length) {
	case 16:
	case 12:
1012 1013 1014 1015 1016
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1017 1018 1019

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1020
			header[3] = cpu_to_le32(packet->header[3]);
1021
		else
1022 1023 1024
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1025 1026 1027
		break;

	case 8:
1028 1029 1030 1031 1032
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1046 1047
	}

1048 1049
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1050
	packet->driver_data = driver_data;
1051

1052 1053 1054 1055
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1056
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1057 1058 1059
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1060 1061
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1062 1063 1064 1065 1066

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1067
	} else {
1068 1069
		last = &d[0];
		z = 2;
1070 1071
	}

1072 1073 1074
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1089
		if (packet->payload_mapped)
1090 1091
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1092 1093 1094 1095 1096
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1097

1098
	/* If the context isn't already running, start it up. */
1099
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1100
	if ((reg & CONTEXT_RUN) == 0)
1101 1102 1103
		context_run(ctx, 0);

	return 0;
1104 1105
}

1106 1107 1108
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1109
{
1110
	struct driver_data *driver_data;
1111
	struct fw_packet *packet;
1112
	struct fw_ohci *ohci = context->ohci;
1113 1114
	int evt;

1115 1116 1117
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1118

1119 1120 1121 1122 1123
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1124

1125
	if (packet->payload_mapped)
1126
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1127 1128
				 packet->payload_length, DMA_TO_DEVICE);

1129 1130
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1131

1132 1133
	log_ar_at_event('T', packet->speed, packet->header, evt);

1134 1135 1136 1137 1138
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1139

1140
	case OHCI1394_evt_flushed:
1141 1142 1143 1144
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1145 1146
		packet->ack = RCODE_GENERATION;
		break;
1147

1148
	case OHCI1394_evt_missing_ack:
1149 1150 1151 1152
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1153 1154
		packet->ack = RCODE_NO_ACK;
		break;
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1165

1166 1167 1168 1169
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1170

1171
	packet->callback(packet, &ohci->card, packet->ack);
1172

1173
	return 1;
1174 1175
}

1176 1177 1178 1179 1180
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1181

1182 1183
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1184 1185 1186 1187
{
	struct fw_packet response;
	int tcode, length, i;

1188
	tcode = HEADER_GET_TCODE(packet->header[0]);
1189
	if (TCODE_IS_BLOCK_PACKET(tcode))
1190
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1209 1210
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1211 1212 1213 1214 1215 1216
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1217 1218
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1219
	payload = packet->payload;
1220
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1246
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1247 1248 1249 1250
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1251
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1252 1253 1254 1255
{
	u64 offset;
	u32 csr;

1256 1257 1258 1259
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1260 1261 1262

	offset =
		((unsigned long long)
1263
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1284 1285 1286 1287 1288

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1289
}
1290

1291
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1292 1293
{
	unsigned long flags;
1294
	int ret;
1295 1296 1297

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1298
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1299
	    ctx->ohci->generation == packet->generation) {
1300 1301 1302
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1303
	}
1304

1305
	ret = at_context_queue_packet(ctx, packet);
1306 1307
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1308
	if (ret < 0)
1309
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1310

1311 1312 1313 1314 1315
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1316
	int self_id_count, i, j, reg;
1317 1318
	int generation, new_generation;
	unsigned long flags;
1319 1320
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1321 1322 1323

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1324
		fw_notify("node ID not valid, new bus reset in progress\n");
1325 1326
		return;
	}
1327 1328 1329 1330 1331 1332
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1333

1334 1335 1336 1337 1338
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1339 1340
	/*
	 * The count in the SelfIDCount register is the number of
1341 1342
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1343 1344
	 * bit extra to get the actual number of self IDs.
	 */
1345 1346
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1347 1348 1349
		fw_notify("inconsistent self IDs\n");
		return;
	}
1350
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1351
	rmb();
1352 1353

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1354 1355 1356 1357
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1358 1359
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1360
	}
1361
	rmb();
1362

1363 1364
	/*
	 * Check the consistency of the self IDs we just read.  The
1365 1366 1367 1368 1369 1370 1371 1372 1373
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1374 1375
	 * of self IDs.
	 */
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1388 1389
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1390 1391
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1392
	if (ohci->quirks & QUIRK_RESET_PACKET)
1393 1394
		ohci->request_generation = generation;

1395 1396
	/*
	 * This next bit is unrelated to the AT context stuff but we
1397 1398 1399 1400
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1401 1402
	 * next_config_rom pointer so a new udpate can take place.
	 */
1403 1404

	if (ohci->next_config_rom != NULL) {
1405 1406 1407 1408
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1409 1410 1411 1412
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1413 1414
		/*
		 * Restore config_rom image and manually update
1415 1416
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1417 1418
		 * do that last.
		 */
1419 1420
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1421 1422 1423
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1424 1425
	}

1426 1427 1428 1429 1430
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1431 1432
	spin_unlock_irqrestore(&ohci->lock, flags);

1433 1434 1435 1436
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1437 1438
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1439

1440
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1441 1442 1443 1444 1445 1446
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1447
	u32 event, iso_event;
1448 1449 1450 1451
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1452
	if (!event || !~event)
1453 1454
		return IRQ_NONE;

1455 1456
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1457
	log_irqs(event);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1474
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1475 1476 1477 1478
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1479
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1480 1481 1482
		iso_event &= ~(1 << i);
	}

1483
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1484 1485 1486 1487
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1488
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1489 1490 1491
		iso_event &= ~(1 << i);
	}

1492 1493 1494 1495
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1496 1497 1498
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1499 1500 1501 1502 1503 1504 1505
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1517 1518 1519
	return IRQ_HANDLED;
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1545 1546 1547
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1548
	int ret, clear, set, offset;
1549 1550 1551 1552 1553 1554 1555 1556

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1557 1558 1559 1560 1561 1562 1563 1564
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
1579 1580 1581
	ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
	if (ret < 0)
		return ret;
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1596 1597
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1598 1599 1600
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1601
	u32 lps, irqs;
1602
	int i, ret;
1603

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1614 1615
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1616 1617 1618 1619 1620
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1632 1633 1634 1635

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1636
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1637 1638
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

1656 1657 1658
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
1659

1660
	/* Activate link_on bit and contender bit in our self ID packets.*/
1661 1662 1663
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
1664

1665 1666
	/*
	 * When the link is not yet enabled, the atomic config rom
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1684 1685 1686 1687 1688 1689 1690
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1691

1692
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1693 1694 1695 1696 1697 1698 1699 1700
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1701

1702
	ohci->next_header = ohci->next_config_rom[0];
1703 1704
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1705 1706
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1707 1708 1709 1710
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

1711 1712
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
1713
	if (request_irq(dev->irq, irq_handler,
1714 1715 1716 1717
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
1718 1719 1720 1721 1722
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
		OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

1735 1736 1737 1738 1739
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1740 1741 1742 1743
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1744 1745 1746 1747 1748 1749

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1750
static int ohci_set_config_rom(struct fw_card *card,
1751
			       const __be32 *config_rom, size_t length)
1752 1753 1754
{
	struct fw_ohci *ohci;
	unsigned long flags;
1755
	int ret = -EBUSY;
1756
	__be32 *next_config_rom;
1757
	dma_addr_t uninitialized_var(next_config_rom_bus);
1758 1759 1760

	ohci = fw_ohci(card);

1761 1762
	/*
	 * When the OHCI controller is enabled, the config rom update
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1800
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1801 1802 1803 1804 1805 1806

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1807
		ret = 0;
1808 1809 1810 1811
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1812 1813
	/*
	 * Now initiate a bus reset to have the changes take
1814 1815 1816
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1817 1818
	 * takes effect.
	 */
1819
	if (ret == 0)
1820
		fw_core_initiate_bus_reset(&ohci->card, 1);
1821 1822 1823
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1824

1825
	return ret;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1842 1843 1844
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1845 1846
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1847
	int ret = -ENOENT;
1848

1849
	tasklet_disable(&ctx->tasklet);
1850

1851 1852
	if (packet->ack != 0)
		goto out;
1853

1854
	if (packet->payload_mapped)
1855 1856 1857
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1858
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1859 1860 1861
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1862
	ret = 0;
1863 1864
 out:
	tasklet_enable(&ctx->tasklet);
1865

1866
	return ret;
1867 1868
}

1869 1870
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1871
{
1872 1873 1874
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1875 1876
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1877
	int n, ret = 0;
1878

1879 1880 1881 1882
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1883 1884 1885 1886

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1887
		ret = -ESTALE;
1888 1889 1890
		goto out;
	}

1891 1892 1893 1894
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1895 1896 1897 1898 1899 1900 1901

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1902 1903
	flush_writes(ohci);
 out:
1904
	spin_unlock_irqrestore(&ohci->lock, flags);
1905 1906

	return ret;
1907
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1908
}
S
Stefan Richter 已提交
1909

1910
static u32 cycle_timer_ticks(u32 cycle_timer)
1911 1912 1913 1914 1915 1916
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1917

1918 1919 1920
	return ticks;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1936
static u32 ohci_get_cycle_time(struct fw_card *card)
1937 1938
{
	struct fw_ohci *ohci = fw_ohci(card);
1939 1940 1941
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1942
	int i;
1943

1944 1945
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1946
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1947 1948
		i = 0;
		c1 = c2;
1949 1950
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1951 1952
			c0 = c1;
			c1 = c2;
1953 1954 1955 1956 1957 1958
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1959 1960 1961
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1962
	}
1963

1964
	return c2;
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1989 1990 1991 1992 1993 1994
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1995
	struct descriptor *pd;
1996
	__le32 *ir_header;
1997
	void *p;
1998

1999 2000 2001 2002 2003
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
2004 2005 2006
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2007 2008
	p = last + 1;
	copy_iso_headers(ctx, p);
2009

2010 2011
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2022 2023 2024
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2025
{
2026 2027
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2028 2029
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2030

2031 2032 2033 2034 2035
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2036 2037
		return 0;

2038 2039 2040 2041 2042 2043 2044 2045 2046
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2047
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2048 2049 2050 2051
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2052
	return 1;
2053 2054
}

2055
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2056
				int type, int channel, size_t header_size)
2057 2058 2059
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2060
	descriptor_callback_t callback;
2061
	u64 *channels, dont_care = ~0ULL;
2062
	u32 *mask, regs;
2063
	unsigned long flags;
2064
	int index, ret = -ENOMEM;
2065 2066

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2067
		channels = &dont_care;
2068 2069
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2070
		callback = handle_it_packet;
2071
	} else {
2072
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2073 2074
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2075
		callback = handle_ir_packet_per_buffer;
2076 2077 2078
	}

	spin_lock_irqsave(&ohci->lock, flags);
2079 2080 2081
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2082
		*mask &= ~(1 << index);
2083
	}
2084 2085 2086 2087 2088
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2089 2090 2091 2092 2093
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2094
	ctx = &list[index];
2095
	memset(ctx, 0, sizeof(*ctx));
2096 2097 2098 2099 2100
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2101 2102
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2103
		goto out_with_header;
2104 2105

	return &ctx->base;
2106 2107 2108 2109 2110 2111 2112 2113

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2114
	return ERR_PTR(ret);
2115 2116
}

2117 2118
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2119
{
S
Stefan Richter 已提交
2120
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2121
	struct fw_ohci *ohci = ctx->context.ohci;
2122
	u32 control, match;
2123 2124
	int index;

2125 2126
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2127 2128 2129
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2130
				(cycle & 0x7fff) << 16;
2131

2132 2133
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2134
		context_run(&ctx->context, match);
2135 2136
	} else {
		index = ctx - ohci->ir_context_list;
2137
		control = IR_CONTEXT_ISOCH_HEADER;
2138 2139 2140 2141 2142
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2143

2144 2145
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2146
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2147
		context_run(&ctx->context, control);
2148
	}
2149 2150 2151 2152

	return 0;
}

2153 2154 2155
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2156
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2172 2173 2174
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2175
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2176 2177 2178
	unsigned long flags;
	int index;

2179 2180
	ohci_stop_iso(base);
	context_release(&ctx->context);
2181
	free_page((unsigned long)ctx->header);
2182

2183 2184 2185 2186 2187 2188 2189 2190
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2191
		ohci->ir_context_channels |= 1ULL << base->channel;
2192 2193 2194 2195 2196
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2197 2198 2199 2200
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2201
{
S
Stefan Richter 已提交
2202
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2203
	struct descriptor *d, *last, *pd;
2204 2205
	struct fw_iso_packet *p;
	__le32 *header;
2206
	dma_addr_t d_bus, page_bus;
2207 2208
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2209
	int page, end_page, i, length, offset;
2210 2211

	p = packet;
2212
	payload_index = payload;
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2231
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2232

2233 2234 2235
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2236 2237

	if (!p->skip) {
2238
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2239
		d[0].req_count = cpu_to_le16(8);
2240 2241 2242 2243 2244 2245 2246 2247
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2248 2249

		header = (__le32 *) &d[1];
2250 2251 2252 2253 2254
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2255
		header[1] =
2256
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2257 2258 2259 2260 2261
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2262
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2275 2276 2277

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2278 2279 2280 2281 2282

		payload_index += length;
	}

	if (p->interrupt)
2283
		irq = DESCRIPTOR_IRQ_ALWAYS;
2284
	else
2285
		irq = DESCRIPTOR_NO_IRQ;
2286

2287
	last = z == 2 ? d : d + z - 1;
2288 2289 2290
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2291
				     irq);
2292

2293
	context_append(&ctx->context, d, z, header_z);
2294 2295 2296

	return 0;
}
S
Stefan Richter 已提交
2297

2298 2299 2300 2301
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2302 2303
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2304
	struct descriptor *d, *pd;
2305
	struct fw_iso_packet *p = packet;
2306 2307
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2308 2309
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2310 2311

	/*
2312 2313
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2314 2315
	 */
	packet_count = p->header_length / ctx->base.header_size;
2316
	header_size  = max(ctx->base.header_size, (size_t)8);
2317 2318 2319 2320 2321

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2322
	payload_per_buffer = p->payload_length / packet_count;
2323 2324 2325

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2326
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2327
		d = context_get_descriptors(&ctx->context,
2328
				z + header_z, &d_bus);
2329 2330 2331
		if (d == NULL)
			return -ENOMEM;

2332 2333 2334 2335
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2336 2337
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2338
		d->transfer_status = 0;
2339 2340
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2341
		rest = payload_per_buffer;
2342
		pd = d;
2343
		for (j = 1; j < z; j++) {
2344
			pd++;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2364 2365 2366
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2367
		if (p->interrupt && i == packet_count - 1)
2368 2369 2370 2371 2372 2373 2374 2375
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2376 2377 2378 2379
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2380
{
2381
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2382
	unsigned long flags;
2383
	int ret;
2384

2385
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2386
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2387
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2388
	else
2389 2390
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2391 2392
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2393
	return ret;
2394 2395
}

2396
static const struct fw_card_driver ohci_driver = {
2397 2398 2399 2400 2401
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2402
	.cancel_packet		= ohci_cancel_packet,
2403
	.enable_phys_dma	= ohci_enable_phys_dma,
2404
	.get_cycle_time		= ohci_get_cycle_time,
2405 2406 2407 2408

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2409
	.start_iso		= ohci_start_iso,
2410
	.stop_iso		= ohci_stop_iso,
2411 2412
};

2413
#ifdef CONFIG_PPC_PMAC
2414
static void pmac_ohci_on(struct pci_dev *dev)
2415
{
2416 2417 2418 2419 2420 2421 2422 2423
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2424 2425
}

2426
static void pmac_ohci_off(struct pci_dev *dev)
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
2438 2439
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
2440 2441
#endif /* CONFIG_PPC_PMAC */

2442 2443
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2444 2445
{
	struct fw_ohci *ohci;
2446
	u32 bus_options, max_receive, link_speed, version, link_enh;
2447
	u64 guid;
2448
	int i, err, n_ir, n_it;
2449 2450
	size_t size;

2451
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2452
	if (ohci == NULL) {
2453 2454
		err = -ENOMEM;
		goto fail;
2455 2456 2457 2458
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2459
	pmac_ohci_on(dev);
2460

2461 2462
	err = pci_enable_device(dev);
	if (err) {
2463
		fw_error("Failed to enable OHCI hardware\n");
2464
		goto fail_free;
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2476 2477
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2478
		fw_error("MMIO resource unavailable\n");
2479
		goto fail_disable;
2480 2481 2482 2483 2484
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2485 2486
		err = -ENXIO;
		goto fail_iomem;
2487 2488
	}

2489 2490 2491 2492 2493 2494 2495
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2496 2497
	if (param_quirks)
		ohci->quirks = param_quirks;
2498

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
	if (dev->vendor == PCI_VENDOR_ID_TI) {
		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);

		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
		link_enh |= TI_LinkEnh_atx_thresh_1_7K;

		/* use priority arbitration for asynchronous responses */
		link_enh |= TI_LinkEnh_enab_unfair;

		/* required for aPhyEnhanceEnable to work */
		link_enh |= TI_LinkEnh_enab_accel;

		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
	}

2516 2517 2518 2519 2520 2521
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2522
	context_init(&ohci->at_request_ctx, ohci,
2523
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2524

2525
	context_init(&ohci->at_response_ctx, ohci,
2526
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2527 2528

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2529 2530
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2531
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2532 2533
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2534
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2535 2536

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2537
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2538
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2539 2540
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2541
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2542 2543

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2544
		err = -ENOMEM;
2545
		goto fail_contexts;
2546 2547 2548 2549 2550 2551 2552 2553
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2554
		err = -ENOMEM;
2555
		goto fail_contexts;
2556 2557 2558 2559 2560 2561 2562 2563
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2564
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2565
	if (err)
2566
		goto fail_self_id;
2567

2568 2569 2570 2571 2572
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2573

2574
	return 0;
2575 2576 2577 2578

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2579
 fail_contexts:
2580
	kfree(ohci->ir_context_list);
2581 2582 2583 2584 2585
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2586 2587 2588 2589 2590
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2591 2592
 fail_free:
	kfree(&ohci->card);
2593
	pmac_ohci_off(dev);
2594 2595 2596
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2597 2598

	return err;
2599 2600 2601 2602 2603 2604 2605
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2606 2607
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2608 2609
	fw_core_remove_card(&ohci->card);

2610 2611 2612 2613
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2614 2615 2616

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2617 2618 2619 2620 2621 2622 2623

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2624 2625
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2626 2627 2628 2629
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2630 2631
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
2632
	pci_disable_msi(dev);
2633 2634 2635
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2636
	kfree(&ohci->card);
2637
	pmac_ohci_off(dev);
2638

2639 2640 2641
	fw_notify("Removed fw-ohci device.\n");
}

2642
#ifdef CONFIG_PM
2643
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2644
{
2645
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2646 2647 2648
	int err;

	software_reset(ohci);
2649
	free_irq(dev->irq, ohci);
2650
	pci_disable_msi(dev);
2651
	err = pci_save_state(dev);
2652
	if (err) {
2653
		fw_error("pci_save_state failed\n");
2654 2655
		return err;
	}
2656
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2657 2658
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2659
	pmac_ohci_off(dev);
2660

2661 2662 2663
	return 0;
}

2664
static int pci_resume(struct pci_dev *dev)
2665
{
2666
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2667 2668
	int err;

2669
	pmac_ohci_on(dev);
2670 2671 2672
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2673
	if (err) {
2674
		fw_error("pci_enable_device failed\n");
2675 2676 2677
		return err;
	}

2678
	return ohci_enable(&ohci->card, NULL, 0);
2679 2680 2681
}
#endif

2682
static const struct pci_device_id pci_table[] = {
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2694 2695 2696 2697
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2698 2699 2700 2701 2702 2703
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2704 2705 2706 2707 2708
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);