w83627ehf.c 50.2 KB
Newer Older
1 2 3 4
/*
    w83627ehf - Driver for the hardware monitoring functionality of
                the Winbond W83627EHF Super-I/O chip
    Copyright (C) 2005  Jean Delvare <khali@linux-fr.org>
J
Jean Delvare 已提交
5
    Copyright (C) 2006  Yuan Mu (Winbond),
6
                        Rudolf Marek <r.marek@assembler.cz>
7
                        David Hubbard <david.c.hubbard@gmail.com>
8 9 10 11 12 13 14

    Shamelessly ripped from the w83627hf driver
    Copyright (C) 2003  Mark Studebaker

    Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
    in testing and debugging this driver.

15 16 17
    This driver also supports the W83627EHG, which is the lead-free
    version of the W83627EHF.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


    Supports the following chips:

35 36 37 38
    Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
    w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
                                               0x8860 0xa1
    w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
39
    w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
40 41 42 43 44
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
45 46
#include <linux/jiffies.h>
#include <linux/platform_device.h>
47
#include <linux/hwmon.h>
48
#include <linux/hwmon-sysfs.h>
49
#include <linux/hwmon-vid.h>
50
#include <linux/err.h>
51
#include <linux/mutex.h>
52
#include <linux/acpi.h>
53 54 55
#include <asm/io.h>
#include "lm75.h"

56
enum kinds { w83627ehf, w83627dhg, w83667hg };
57

58 59 60 61
/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
static const char * w83627ehf_device_names[] = {
	"w83627ehf",
	"w83627dhg",
62
	"w83667hg",
63 64
};

65 66 67 68
static unsigned short force_id;
module_param(force_id, ushort, 0);
MODULE_PARM_DESC(force_id, "Override the detected device ID");

69
#define DRVNAME "w83627ehf"
70

71
/*
72
 * Super-I/O constants and functions
73
 */
74 75

#define W83627EHF_LD_HWM	0x0b
76
#define W83667HG_LD_VID 	0x0d
77 78 79

#define SIO_REG_LDSEL		0x07	/* Logical device select */
#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
80
#define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
81 82
#define SIO_REG_ENABLE		0x30	/* Logical device enable */
#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
83 84
#define SIO_REG_VID_CTRL	0xF0	/* VID control */
#define SIO_REG_VID_DATA	0xF1	/* VID data */
85

86 87 88
#define SIO_W83627EHF_ID	0x8850
#define SIO_W83627EHG_ID	0x8860
#define SIO_W83627DHG_ID	0xa020
89
#define SIO_W83667HG_ID 	0xa510
90
#define SIO_ID_MASK		0xFFF0
91 92

static inline void
93
superio_outb(int ioreg, int reg, int val)
94
{
95 96
	outb(reg, ioreg);
	outb(val, ioreg + 1);
97 98 99
}

static inline int
100
superio_inb(int ioreg, int reg)
101
{
102 103
	outb(reg, ioreg);
	return inb(ioreg + 1);
104 105 106
}

static inline void
107
superio_select(int ioreg, int ld)
108
{
109 110
	outb(SIO_REG_LDSEL, ioreg);
	outb(ld, ioreg + 1);
111 112 113
}

static inline void
114
superio_enter(int ioreg)
115
{
116 117
	outb(0x87, ioreg);
	outb(0x87, ioreg);
118 119 120
}

static inline void
121
superio_exit(int ioreg)
122
{
123 124
	outb(0x02, ioreg);
	outb(0x02, ioreg + 1);
125 126 127 128 129 130
}

/*
 * ISA constants
 */

131 132 133
#define IOREGION_ALIGNMENT	~7
#define IOREGION_OFFSET		5
#define IOREGION_LENGTH		2
134 135
#define ADDR_REG_OFFSET		0
#define DATA_REG_OFFSET		1
136 137 138

#define W83627EHF_REG_BANK		0x4E
#define W83627EHF_REG_CONFIG		0x40
139 140 141 142 143 144

/* Not currently used:
 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
 * REG_MAN_ID is at port 0x4f
 * REG_CHIP_ID is at port 0x58 */
145 146 147 148

static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };

149 150 151 152 153 154 155 156
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
					 (0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
					 (0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
					 (0x550 + (nr) - 7))

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define W83627EHF_REG_TEMP1		0x27
#define W83627EHF_REG_TEMP1_HYST	0x3a
#define W83627EHF_REG_TEMP1_OVER	0x39
static const u16 W83627EHF_REG_TEMP[] = { 0x150, 0x250 };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x153, 0x253 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x155, 0x255 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0x152, 0x252 };

/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1		0x47
#define W83627EHF_REG_FANDIV2		0x4B
#define W83627EHF_REG_VBAT		0x5D
#define W83627EHF_REG_DIODE		0x59
#define W83627EHF_REG_SMI_OVT		0x4C

172 173 174 175
#define W83627EHF_REG_ALARM1		0x459
#define W83627EHF_REG_ALARM2		0x45A
#define W83627EHF_REG_ALARM3		0x45B

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/* SmartFan registers */
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
	0x04,			/* SYS FAN0 output mode and PWM mode */
	0x04,			/* CPU FAN0 output mode and PWM mode */
	0x12,			/* AUX FAN mode */
	0x62,			/* CPU fan1 mode */
};

static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };

/* FAN Duty Cycle, be used to control */
static const u8 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u8 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };


/* Advanced Fan control, some values are common for all fans */
static const u8 W83627EHF_REG_FAN_MIN_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u8 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0C, 0x0D, 0x17, 0x66 };

198 199 200 201
/*
 * Conversions
 */

202 203 204 205 206 207 208 209 210 211 212 213
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
	return mode ? 100 * reg : 400 * reg;
}

static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
	return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
						(msec + 200) / 400), 1, 255);
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static inline unsigned int
fan_from_reg(u8 reg, unsigned int div)
{
	if (reg == 0 || reg == 255)
		return 0;
	return 1350000U / (reg * div);
}

static inline unsigned int
div_from_reg(u8 reg)
{
	return 1 << reg;
}

static inline int
temp1_from_reg(s8 reg)
{
	return reg * 1000;
}

static inline s8
235
temp1_to_reg(long temp, int min, int max)
236
{
237 238 239 240
	if (temp <= min)
		return min / 1000;
	if (temp >= max)
		return max / 1000;
241 242 243 244 245
	if (temp < 0)
		return (temp - 500) / 1000;
	return (temp + 500) / 1000;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259
/* Some of analog inputs have internal scaling (2x), 8mV is ADC LSB */

static u8 scale_in[10] = { 8, 8, 16, 16, 8, 8, 8, 16, 16, 8 };

static inline long in_from_reg(u8 reg, u8 nr)
{
	return reg * scale_in[nr];
}

static inline u8 in_to_reg(u32 val, u8 nr)
{
	return SENSORS_LIMIT(((val + (scale_in[nr] / 2)) / scale_in[nr]), 0, 255);
}

260 261 262 263 264
/*
 * Data structures and manipulation thereof
 */

struct w83627ehf_data {
265 266 267
	int addr;	/* IO base of hw monitor block */
	const char *name;

268
	struct device *hwmon_dev;
269
	struct mutex lock;
270

271
	struct mutex update_lock;
272 273 274 275
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	/* Register values */
276
	u8 in_num;		/* number of in inputs we have */
277 278 279
	u8 in[10];		/* Register value */
	u8 in_max[10];		/* Register value */
	u8 in_min[10];		/* Register value */
280 281 282 283
	u8 fan[5];
	u8 fan_min[5];
	u8 fan_div[5];
	u8 has_fan;		/* some fan inputs can be disabled */
284
	u8 temp_type[3];
285 286 287 288 289 290
	s8 temp1;
	s8 temp1_max;
	s8 temp1_max_hyst;
	s16 temp[2];
	s16 temp_max[2];
	s16 temp_max_hyst[2];
291
	u32 alarms;
292 293 294 295

	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
	u8 pwm_enable[4]; /* 1->manual
			     2->thermal cruise (also called SmartFan I) */
296
	u8 pwm_num;		/* number of pwm */
297 298 299 300 301 302
	u8 pwm[4];
	u8 target_temp[4];
	u8 tolerance[4];

	u8 fan_min_output[4]; /* minimum fan speed */
	u8 fan_stop_time[4];
303 304 305

	u8 vid;
	u8 vrm;
306 307
};

308 309 310 311 312
struct w83627ehf_sio_data {
	int sioreg;
	enum kinds kind;
};

313 314 315 316 317 318 319 320 321
static inline int is_word_sized(u16 reg)
{
	return (((reg & 0xff00) == 0x100
	      || (reg & 0xff00) == 0x200)
	     && ((reg & 0x00ff) == 0x50
	      || (reg & 0x00ff) == 0x53
	      || (reg & 0x00ff) == 0x55));
}

322
/* Registers 0x50-0x5f are banked */
323
static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
324
{
325
	if ((reg & 0x00f0) == 0x50) {
326 327
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(reg >> 8, data->addr + DATA_REG_OFFSET);
328 329 330
	}
}

331
/* Not strictly necessary, but play it safe for now */
332
static inline void w83627ehf_reset_bank(struct w83627ehf_data *data, u16 reg)
333 334
{
	if (reg & 0xff00) {
335 336
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(0, data->addr + DATA_REG_OFFSET);
337 338 339
	}
}

340
static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
341 342 343
{
	int res, word_sized = is_word_sized(reg);

344
	mutex_lock(&data->lock);
345

346 347 348
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
	res = inb_p(data->addr + DATA_REG_OFFSET);
349 350
	if (word_sized) {
		outb_p((reg & 0xff) + 1,
351 352
		       data->addr + ADDR_REG_OFFSET);
		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
353
	}
354
	w83627ehf_reset_bank(data, reg);
355

356
	mutex_unlock(&data->lock);
357 358 359 360

	return res;
}

361
static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg, u16 value)
362 363 364
{
	int word_sized = is_word_sized(reg);

365
	mutex_lock(&data->lock);
366

367 368
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
369
	if (word_sized) {
370
		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
371
		outb_p((reg & 0xff) + 1,
372
		       data->addr + ADDR_REG_OFFSET);
373
	}
374 375
	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
	w83627ehf_reset_bank(data, reg);
376

377
	mutex_unlock(&data->lock);
378 379 380 381
	return 0;
}

/* This function assumes that the caller holds data->update_lock */
382
static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
383 384 385 386 387
{
	u8 reg;

	switch (nr) {
	case 0:
388
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
389
		    | ((data->fan_div[0] & 0x03) << 4);
390 391
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
392 393
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
394
		    | ((data->fan_div[0] & 0x04) << 3);
395
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
396 397
		break;
	case 1:
398
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
399
		    | ((data->fan_div[1] & 0x03) << 6);
400 401
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
402 403
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
404
		    | ((data->fan_div[1] & 0x04) << 4);
405
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
406 407
		break;
	case 2:
408
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
409
		    | ((data->fan_div[2] & 0x03) << 6);
410 411
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
412
		    | ((data->fan_div[2] & 0x04) << 5);
413
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
414 415
		break;
	case 3:
416
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
417
		    | (data->fan_div[3] & 0x03);
418 419
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
420
		    | ((data->fan_div[3] & 0x04) << 5);
421
		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
422 423
		break;
	case 4:
424
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
425
		    | ((data->fan_div[4] & 0x03) << 2)
426
		    | ((data->fan_div[4] & 0x04) << 5);
427
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
428 429 430 431
		break;
	}
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
{
	int i;

	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
	data->fan_div[0] = (i >> 4) & 0x03;
	data->fan_div[1] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
	data->fan_div[2] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	data->fan_div[0] |= (i >> 3) & 0x04;
	data->fan_div[1] |= (i >> 4) & 0x04;
	data->fan_div[2] |= (i >> 5) & 0x04;
	if (data->has_fan & ((1 << 3) | (1 << 4))) {
		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
		data->fan_div[3] = i & 0x03;
		data->fan_div[4] = ((i >> 2) & 0x03)
				 | ((i >> 5) & 0x04);
	}
	if (data->has_fan & (1 << 3)) {
		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
		data->fan_div[3] |= (i >> 5) & 0x04;
	}
}

457 458
static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
459
	struct w83627ehf_data *data = dev_get_drvdata(dev);
460
	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
461 462
	int i;

463
	mutex_lock(&data->update_lock);
464

465
	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
466 467
	 || !data->valid) {
		/* Fan clock dividers */
468
		w83627ehf_update_fan_div(data);
469

470
		/* Measured voltages and limits */
471 472
		for (i = 0; i < data->in_num; i++) {
			data->in[i] = w83627ehf_read_value(data,
473
				      W83627EHF_REG_IN(i));
474
			data->in_min[i] = w83627ehf_read_value(data,
475
					  W83627EHF_REG_IN_MIN(i));
476
			data->in_max[i] = w83627ehf_read_value(data,
477 478 479
					  W83627EHF_REG_IN_MAX(i));
		}

480 481 482 483 484
		/* Measured fan speeds and limits */
		for (i = 0; i < 5; i++) {
			if (!(data->has_fan & (1 << i)))
				continue;

485
			data->fan[i] = w83627ehf_read_value(data,
486
				       W83627EHF_REG_FAN[i]);
487
			data->fan_min[i] = w83627ehf_read_value(data,
488 489 490 491 492 493 494
					   W83627EHF_REG_FAN_MIN[i]);

			/* If we failed to measure the fan speed and clock
			   divider can be increased, let's try that for next
			   time */
			if (data->fan[i] == 0xff
			 && data->fan_div[i] < 0x07) {
495
			 	dev_dbg(dev, "Increasing fan%d "
496
					"clock divider from %u to %u\n",
497
					i + 1, div_from_reg(data->fan_div[i]),
498 499
					div_from_reg(data->fan_div[i] + 1));
				data->fan_div[i]++;
500
				w83627ehf_write_fan_div(data, i);
501 502 503
				/* Preserve min limit if possible */
				if (data->fan_min[i] >= 2
				 && data->fan_min[i] != 255)
504
					w83627ehf_write_value(data,
505 506 507 508 509
						W83627EHF_REG_FAN_MIN[i],
						(data->fan_min[i] /= 2));
			}
		}

510
		for (i = 0; i < 4; i++) {
J
Jean Delvare 已提交
511
			/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
512
			if (i != 1) {
513
				pwmcfg = w83627ehf_read_value(data,
514
						W83627EHF_REG_PWM_ENABLE[i]);
515
				tolerance = w83627ehf_read_value(data,
516 517 518 519 520 521 522 523
						W83627EHF_REG_TOLERANCE[i]);
			}
			data->pwm_mode[i] =
				((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1)
				? 0 : 1;
			data->pwm_enable[i] =
					((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
						& 3) + 1;
524
			data->pwm[i] = w83627ehf_read_value(data,
525
						W83627EHF_REG_PWM[i]);
526
			data->fan_min_output[i] = w83627ehf_read_value(data,
527
						W83627EHF_REG_FAN_MIN_OUTPUT[i]);
528
			data->fan_stop_time[i] = w83627ehf_read_value(data,
529 530
						W83627EHF_REG_FAN_STOP_TIME[i]);
			data->target_temp[i] =
531
				w83627ehf_read_value(data,
532 533 534 535 536 537
					W83627EHF_REG_TARGET[i]) &
					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
			data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0))
									& 0x0f;
		}

538
		/* Measured temperatures and limits */
539
		data->temp1 = w83627ehf_read_value(data,
540
			      W83627EHF_REG_TEMP1);
541
		data->temp1_max = w83627ehf_read_value(data,
542
				  W83627EHF_REG_TEMP1_OVER);
543
		data->temp1_max_hyst = w83627ehf_read_value(data,
544 545
				       W83627EHF_REG_TEMP1_HYST);
		for (i = 0; i < 2; i++) {
546
			data->temp[i] = w83627ehf_read_value(data,
547
					W83627EHF_REG_TEMP[i]);
548
			data->temp_max[i] = w83627ehf_read_value(data,
549
					    W83627EHF_REG_TEMP_OVER[i]);
550
			data->temp_max_hyst[i] = w83627ehf_read_value(data,
551 552 553
						 W83627EHF_REG_TEMP_HYST[i]);
		}

554
		data->alarms = w83627ehf_read_value(data,
555
					W83627EHF_REG_ALARM1) |
556
			       (w83627ehf_read_value(data,
557
					W83627EHF_REG_ALARM2) << 8) |
558
			       (w83627ehf_read_value(data,
559 560
					W83627EHF_REG_ALARM3) << 16);

561 562 563 564
		data->last_updated = jiffies;
		data->valid = 1;
	}

565
	mutex_unlock(&data->update_lock);
566 567 568 569 570 571
	return data;
}

/*
 * Sysfs callback functions
 */
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr)); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)

#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg (struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
591
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
592 593 594 595 596 597
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
	mutex_lock(&data->update_lock); \
	data->in_##reg[nr] = in_to_reg(val, nr); \
598
	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(nr), \
599 600 601 602 603 604 605 606
			      data->in_##reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

store_in_reg(MIN, min)
store_in_reg(MAX, max)

607 608 609 610 611 612 613 614
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
}

615 616 617 618 619 620 621 622 623 624 625 626 627
static struct sensor_device_attribute sda_in_input[] = {
	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};

628 629 630 631 632 633 634 635 636 637 638 639 640
static struct sensor_device_attribute sda_in_alarm[] = {
	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
};

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static struct sensor_device_attribute sda_in_min[] = {
       SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
       SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
       SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
       SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
       SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
       SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
       SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
       SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
       SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
       SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};

static struct sensor_device_attribute sda_in_max[] = {
       SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
       SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
       SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
       SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
       SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
       SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
       SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
       SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
       SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
       SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};

667 668
#define show_fan_reg(reg) \
static ssize_t \
669 670
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
671 672
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
673 674
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
675 676 677 678 679 680 681 682
	return sprintf(buf, "%d\n", \
		       fan_from_reg(data->reg[nr], \
				    div_from_reg(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);

static ssize_t
683 684
show_fan_div(struct device *dev, struct device_attribute *attr,
	     char *buf)
685 686
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
687 688 689
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
690 691 692
}

static ssize_t
693 694
store_fan_min(struct device *dev, struct device_attribute *attr,
	      const char *buf, size_t count)
695
{
696
	struct w83627ehf_data *data = dev_get_drvdata(dev);
697 698
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
699 700 701 702
	unsigned int val = simple_strtoul(buf, NULL, 10);
	unsigned int reg;
	u8 new_div;

703
	mutex_lock(&data->update_lock);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	if (!val) {
		/* No min limit, alarm disabled */
		data->fan_min[nr] = 255;
		new_div = data->fan_div[nr]; /* No change */
		dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
	} else if ((reg = 1350000U / val) >= 128 * 255) {
		/* Speed below this value cannot possibly be represented,
		   even with the highest divider (128) */
		data->fan_min[nr] = 254;
		new_div = 7; /* 128 == (1 << 7) */
		dev_warn(dev, "fan%u low limit %u below minimum %u, set to "
			 "minimum\n", nr + 1, val, fan_from_reg(254, 128));
	} else if (!reg) {
		/* Speed above this value cannot possibly be represented,
		   even with the lowest divider (1) */
		data->fan_min[nr] = 1;
		new_div = 0; /* 1 == (1 << 0) */
		dev_warn(dev, "fan%u low limit %u above maximum %u, set to "
722
			 "maximum\n", nr + 1, val, fan_from_reg(1, 1));
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	} else {
		/* Automatically pick the best divider, i.e. the one such
		   that the min limit will correspond to a register value
		   in the 96..192 range */
		new_div = 0;
		while (reg > 192 && new_div < 7) {
			reg >>= 1;
			new_div++;
		}
		data->fan_min[nr] = reg;
	}

	/* Write both the fan clock divider (if it changed) and the new
	   fan min (unconditionally) */
	if (new_div != data->fan_div[nr]) {
738 739 740 741 742 743 744 745 746
		/* Preserve the fan speed reading */
		if (data->fan[nr] != 0xff) {
			if (new_div > data->fan_div[nr])
				data->fan[nr] >>= new_div - data->fan_div[nr];
			else if (data->fan[nr] & 0x80)
				data->fan[nr] = 0xff;
			else
				data->fan[nr] <<= data->fan_div[nr] - new_div;
		}
747 748 749 750 751

		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
			nr + 1, div_from_reg(data->fan_div[nr]),
			div_from_reg(new_div));
		data->fan_div[nr] = new_div;
752
		w83627ehf_write_fan_div(data, nr);
753 754
		/* Give the chip time to sample a new speed value */
		data->last_updated = jiffies;
755
	}
756
	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[nr],
757
			      data->fan_min[nr]);
758
	mutex_unlock(&data->update_lock);
759 760 761 762

	return count;
}

763 764 765 766 767 768 769
static struct sensor_device_attribute sda_fan_input[] = {
	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
770

771 772 773 774 775 776 777 778
static struct sensor_device_attribute sda_fan_alarm[] = {
	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
};

779 780 781 782 783 784 785 786 787 788 789 790
static struct sensor_device_attribute sda_fan_min[] = {
	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 0),
	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 1),
	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 2),
	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 3),
	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 4),
};
791

792 793 794 795 796 797 798 799
static struct sensor_device_attribute sda_fan_div[] = {
	SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
	SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
	SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
	SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
	SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
};

800 801
#define show_temp1_reg(reg) \
static ssize_t \
802 803
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
804 805 806 807 808 809 810 811 812 813
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg)); \
}
show_temp1_reg(temp1);
show_temp1_reg(temp1_max);
show_temp1_reg(temp1_max_hyst);

#define store_temp1_reg(REG, reg) \
static ssize_t \
814 815
store_temp1_##reg(struct device *dev, struct device_attribute *attr, \
		  const char *buf, size_t count) \
816
{ \
817
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
818
	long val = simple_strtol(buf, NULL, 10); \
819
 \
820
	mutex_lock(&data->update_lock); \
821
	data->temp1_##reg = temp1_to_reg(val, -128000, 127000); \
822
	w83627ehf_write_value(data, W83627EHF_REG_TEMP1_##REG, \
823
			      data->temp1_##reg); \
824
	mutex_unlock(&data->update_lock); \
825 826 827 828 829 830 831
	return count; \
}
store_temp1_reg(OVER, max);
store_temp1_reg(HYST, max_hyst);

#define show_temp_reg(reg) \
static ssize_t \
832 833
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
834 835
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
836 837
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
838 839 840 841 842 843 844 845 846
	return sprintf(buf, "%d\n", \
		       LM75_TEMP_FROM_REG(data->reg[nr])); \
}
show_temp_reg(temp);
show_temp_reg(temp_max);
show_temp_reg(temp_max_hyst);

#define store_temp_reg(REG, reg) \
static ssize_t \
847 848
store_##reg(struct device *dev, struct device_attribute *attr, \
	    const char *buf, size_t count) \
849
{ \
850
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
851 852
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
853
	long val = simple_strtol(buf, NULL, 10); \
854
 \
855
	mutex_lock(&data->update_lock); \
856
	data->reg[nr] = LM75_TEMP_TO_REG(val); \
857
	w83627ehf_write_value(data, W83627EHF_REG_TEMP_##REG[nr], \
858
			      data->reg[nr]); \
859
	mutex_unlock(&data->update_lock); \
860 861 862 863 864
	return count; \
}
store_temp_reg(OVER, temp_max);
store_temp_reg(HYST, temp_max_hyst);

865 866 867 868 869 870 871 872 873
static ssize_t
show_temp_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%d\n", (int)data->temp_type[nr]);
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static struct sensor_device_attribute sda_temp[] = {
	SENSOR_ATTR(temp1_input, S_IRUGO, show_temp1, NULL, 0),
	SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0),
	SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 1),
	SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp1_max,
		    store_temp1_max, 0),
	SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 0),
	SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 1),
	SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1_max_hyst,
		    store_temp1_max_hyst, 0),
	SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 0),
	SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 1),
890 891 892
	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
893 894 895
	SENSOR_ATTR(temp1_type, S_IRUGO, show_temp_type, NULL, 0),
	SENSOR_ATTR(temp2_type, S_IRUGO, show_temp_type, NULL, 1),
	SENSOR_ATTR(temp3_type, S_IRUGO, show_temp_type, NULL, 2),
896
};
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
#define show_pwm_reg(reg) \
static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}

show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)

static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
916
	struct w83627ehf_data *data = dev_get_drvdata(dev);
917 918 919 920 921 922 923 924
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (val > 1)
		return -EINVAL;
	mutex_lock(&data->update_lock);
925
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
926 927 928 929
	data->pwm_mode[nr] = val;
	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
	if (!val)
		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
930
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
931 932 933 934 935 936 937 938
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
939
	struct w83627ehf_data *data = dev_get_drvdata(dev);
940 941 942 943 944 945
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255);

	mutex_lock(&data->update_lock);
	data->pwm[nr] = val;
946
	w83627ehf_write_value(data, W83627EHF_REG_PWM[nr], val);
947 948 949 950 951 952 953 954
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
955
	struct w83627ehf_data *data = dev_get_drvdata(dev);
956 957 958 959 960 961 962 963
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (!val || (val > 2))	/* only modes 1 and 2 are supported */
		return -EINVAL;
	mutex_lock(&data->update_lock);
964
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
965 966 967
	data->pwm_enable[nr] = val;
	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
968
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	mutex_unlock(&data->update_lock);
	return count;
}


#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg[nr])); \
}

show_tol_temp(tolerance)
show_tol_temp(target_temp)

static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
991
	struct w83627ehf_data *data = dev_get_drvdata(dev);
992 993 994 995 996 997
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 127000);

	mutex_lock(&data->update_lock);
	data->target_temp[nr] = val;
998
	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
999 1000 1001 1002 1003 1004 1005 1006
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
1007
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1008 1009 1010 1011 1012 1013 1014
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u16 reg;
	/* Limit the temp to 0C - 15C */
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 15000);

	mutex_lock(&data->update_lock);
1015
	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
1016 1017 1018 1019 1020
	data->tolerance[nr] = val;
	if (nr == 1)
		reg = (reg & 0x0f) | (val << 4);
	else
		reg = (reg & 0xf0) | val;
1021
	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	mutex_unlock(&data->update_lock);
	return count;
}

static struct sensor_device_attribute sda_pwm[] = {
	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
};

static struct sensor_device_attribute sda_pwm_mode[] = {
	SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 0),
	SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 1),
	SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 2),
	SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 3),
};

static struct sensor_device_attribute sda_pwm_enable[] = {
	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 0),
	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 1),
	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 2),
	SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 3),
};

static struct sensor_device_attribute sda_target_temp[] = {
	SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 0),
	SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 1),
	SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 2),
	SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 3),
};

static struct sensor_device_attribute sda_tolerance[] = {
	SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 0),
	SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 1),
	SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 2),
	SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 3),
};

/* Smart Fan registers */

#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		       char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			    const char *buf, size_t count) \
{\
1092
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1093 1094 1095 1096 1097
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 1, 255); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1098
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	mutex_unlock(&data->update_lock); \
	return count; \
}

fan_functions(fan_min_output, FAN_MIN_OUTPUT)

#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", \
			step_time_from_reg(data->reg[nr], data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
1120
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1121 1122 1123 1124 1125 1126
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u8 val = step_time_to_reg(simple_strtoul(buf, NULL, 10), \
					data->pwm_mode[nr]); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1127
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1128 1129 1130 1131 1132 1133
	mutex_unlock(&data->update_lock); \
	return count; \
} \

fan_time_functions(fan_stop_time, FAN_STOP_TIME)

1134 1135 1136 1137 1138 1139 1140 1141
static ssize_t show_name(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
	SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 3),
	SENSOR_ATTR(pwm4_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 3),
};

static struct sensor_device_attribute sda_sf3_arrays[] = {
	SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 0),
	SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 1),
	SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 2),
	SENSOR_ATTR(pwm1_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 0),
	SENSOR_ATTR(pwm2_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 1),
	SENSOR_ATTR(pwm3_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 2),
};

1165 1166 1167 1168 1169 1170 1171 1172
static ssize_t
show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);

1173
/*
1174
 * Driver and device management
1175 1176
 */

1177 1178 1179 1180 1181
static void w83627ehf_device_remove_files(struct device *dev)
{
	/* some entries in the following arrays may not have been used in
	 * device_create_file(), but device_remove_file() will ignore them */
	int i;
1182
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1183 1184 1185 1186 1187

	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
		device_remove_file(dev, &sda_sf3_arrays[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
		device_remove_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);
1188
	for (i = 0; i < data->in_num; i++) {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		device_remove_file(dev, &sda_in_input[i].dev_attr);
		device_remove_file(dev, &sda_in_alarm[i].dev_attr);
		device_remove_file(dev, &sda_in_min[i].dev_attr);
		device_remove_file(dev, &sda_in_max[i].dev_attr);
	}
	for (i = 0; i < 5; i++) {
		device_remove_file(dev, &sda_fan_input[i].dev_attr);
		device_remove_file(dev, &sda_fan_alarm[i].dev_attr);
		device_remove_file(dev, &sda_fan_div[i].dev_attr);
		device_remove_file(dev, &sda_fan_min[i].dev_attr);
	}
1200
	for (i = 0; i < data->pwm_num; i++) {
1201 1202 1203 1204 1205 1206 1207 1208 1209
		device_remove_file(dev, &sda_pwm[i].dev_attr);
		device_remove_file(dev, &sda_pwm_mode[i].dev_attr);
		device_remove_file(dev, &sda_pwm_enable[i].dev_attr);
		device_remove_file(dev, &sda_target_temp[i].dev_attr);
		device_remove_file(dev, &sda_tolerance[i].dev_attr);
	}
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
		device_remove_file(dev, &sda_temp[i].dev_attr);

1210
	device_remove_file(dev, &dev_attr_name);
1211
	device_remove_file(dev, &dev_attr_cpu0_vid);
1212
}
1213

1214 1215
/* Get the monitoring functions started */
static inline void __devinit w83627ehf_init_device(struct w83627ehf_data *data)
1216 1217
{
	int i;
1218
	u8 tmp, diode;
1219 1220

	/* Start monitoring is needed */
1221
	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1222
	if (!(tmp & 0x01))
1223
		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1224 1225 1226 1227
				      tmp | 0x01);

	/* Enable temp2 and temp3 if needed */
	for (i = 0; i < 2; i++) {
1228
		tmp = w83627ehf_read_value(data,
1229 1230
					   W83627EHF_REG_TEMP_CONFIG[i]);
		if (tmp & 0x01)
1231
			w83627ehf_write_value(data,
1232 1233 1234
					      W83627EHF_REG_TEMP_CONFIG[i],
					      tmp & 0xfe);
	}
1235 1236 1237 1238 1239

	/* Enable VBAT monitoring if needed */
	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	if (!(tmp & 0x01))
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1240 1241 1242 1243 1244 1245 1246 1247 1248

	/* Get thermal sensor types */
	diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
	for (i = 0; i < 3; i++) {
		if ((tmp & (0x02 << i)))
			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 2;
		else
			data->temp_type[i] = 4; /* thermistor */
	}
1249 1250
}

1251
static int __devinit w83627ehf_probe(struct platform_device *pdev)
1252
{
1253 1254
	struct device *dev = &pdev->dev;
	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1255
	struct w83627ehf_data *data;
1256
	struct resource *res;
1257
	u8 fan4pin, fan5pin, en_vrm10;
1258 1259
	int i, err = 0;

1260 1261
	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1262
		err = -EBUSY;
1263 1264 1265
		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
			(unsigned long)res->start,
			(unsigned long)res->start + IOREGION_LENGTH - 1);
1266 1267 1268
		goto exit;
	}

D
Deepak Saxena 已提交
1269
	if (!(data = kzalloc(sizeof(struct w83627ehf_data), GFP_KERNEL))) {
1270 1271 1272 1273
		err = -ENOMEM;
		goto exit_release;
	}

1274
	data->addr = res->start;
1275 1276
	mutex_init(&data->lock);
	mutex_init(&data->update_lock);
1277 1278
	data->name = w83627ehf_device_names[sio_data->kind];
	platform_set_drvdata(pdev, data);
1279

1280 1281 1282 1283
	/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
	data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
	/* 667HG has 3 pwms */
	data->pwm_num = (sio_data->kind == w83667hg) ? 3 : 4;
1284 1285

	/* Initialize the chip */
1286
	w83627ehf_init_device(data);
1287

1288 1289 1290
	data->vrm = vid_which_vrm();
	superio_enter(sio_data->sioreg);
	/* Read VID value */
1291 1292 1293 1294 1295 1296
	if (sio_data->kind == w83667hg) {
		/* W83667HG has different pins for VID input and output, so
		we can get the VID input values directly at logical device D
		0xe3. */
		superio_select(sio_data->sioreg, W83667HG_LD_VID);
		data->vid = superio_inb(sio_data->sioreg, 0xe3);
1297 1298 1299
		err = device_create_file(dev, &dev_attr_cpu0_vid);
		if (err)
			goto exit_release;
1300
	} else {
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
		if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
			/* Set VID input sensibility if needed. In theory the
			   BIOS should have set it, but in practice it's not
			   always the case. We only do it for the W83627EHF/EHG
			   because the W83627DHG is more complex in this
			   respect. */
			if (sio_data->kind == w83627ehf) {
				en_vrm10 = superio_inb(sio_data->sioreg,
						       SIO_REG_EN_VRM10);
				if ((en_vrm10 & 0x08) && data->vrm == 90) {
					dev_warn(dev, "Setting VID input "
						 "voltage to TTL\n");
					superio_outb(sio_data->sioreg,
						     SIO_REG_EN_VRM10,
						     en_vrm10 & ~0x08);
				} else if (!(en_vrm10 & 0x08)
					   && data->vrm == 100) {
					dev_warn(dev, "Setting VID input "
						 "voltage to VRM10\n");
					superio_outb(sio_data->sioreg,
						     SIO_REG_EN_VRM10,
						     en_vrm10 | 0x08);
				}
			}

			data->vid = superio_inb(sio_data->sioreg,
						SIO_REG_VID_DATA);
			if (sio_data->kind == w83627ehf) /* 6 VID pins only */
				data->vid &= 0x3f;

			err = device_create_file(dev, &dev_attr_cpu0_vid);
			if (err)
				goto exit_release;
		} else {
			dev_info(dev, "VID pins in output mode, CPU VID not "
				 "available\n");
		}
1339 1340
	}

1341
	/* fan4 and fan5 share some pins with the GPIO and serial flash */
1342 1343 1344 1345 1346 1347 1348
	if (sio_data->kind == w83667hg) {
		fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
		fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
	} else {
		fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
		fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
	}
1349
	superio_exit(sio_data->sioreg);
1350

1351
	/* It looks like fan4 and fan5 pins can be alternatively used
1352 1353 1354 1355
	   as fan on/off switches, but fan5 control is write only :/
	   We assume that if the serial interface is disabled, designers
	   connected fan5 as input unless they are emitting log 1, which
	   is not the default. */
1356

1357
	data->has_fan = 0x07; /* fan1, fan2 and fan3 */
1358
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1359
	if ((i & (1 << 2)) && fan4pin)
1360
		data->has_fan |= (1 << 3);
1361
	if (!(i & (1 << 1)) && fan5pin)
1362 1363
		data->has_fan |= (1 << 4);

1364 1365 1366
	/* Read fan clock dividers immediately */
	w83627ehf_update_fan_div(data);

1367
	/* Register sysfs hooks */
1368
  	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
1369 1370 1371
		if ((err = device_create_file(dev,
			&sda_sf3_arrays[i].dev_attr)))
			goto exit_remove;
1372 1373

	/* if fan4 is enabled create the sf3 files for it */
1374
	if ((data->has_fan & (1 << 3)) && data->pwm_num >= 4)
1375 1376 1377 1378 1379
		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++) {
			if ((err = device_create_file(dev,
				&sda_sf3_arrays_fan4[i].dev_attr)))
				goto exit_remove;
		}
1380

1381
	for (i = 0; i < data->in_num; i++)
1382 1383 1384 1385 1386 1387 1388 1389
		if ((err = device_create_file(dev, &sda_in_input[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_alarm[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_min[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_max[i].dev_attr)))
			goto exit_remove;
1390

1391
	for (i = 0; i < 5; i++) {
1392
		if (data->has_fan & (1 << i)) {
1393 1394 1395 1396 1397 1398 1399 1400 1401
			if ((err = device_create_file(dev,
					&sda_fan_input[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_alarm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_div[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_min[i].dev_attr)))
				goto exit_remove;
1402
			if (i < data->pwm_num &&
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
				((err = device_create_file(dev,
					&sda_pwm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_mode[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_enable[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_target_temp[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_tolerance[i].dev_attr))))
				goto exit_remove;
1414
		}
1415
	}
1416

1417
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
1418 1419 1420
		if ((err = device_create_file(dev, &sda_temp[i].dev_attr)))
			goto exit_remove;

1421 1422 1423 1424
	err = device_create_file(dev, &dev_attr_name);
	if (err)
		goto exit_remove;

1425 1426 1427
	data->hwmon_dev = hwmon_device_register(dev);
	if (IS_ERR(data->hwmon_dev)) {
		err = PTR_ERR(data->hwmon_dev);
1428 1429
		goto exit_remove;
	}
1430 1431 1432

	return 0;

1433 1434
exit_remove:
	w83627ehf_device_remove_files(dev);
1435
	kfree(data);
1436
	platform_set_drvdata(pdev, NULL);
1437
exit_release:
1438
	release_region(res->start, IOREGION_LENGTH);
1439 1440 1441 1442
exit:
	return err;
}

1443
static int __devexit w83627ehf_remove(struct platform_device *pdev)
1444
{
1445
	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1446

1447
	hwmon_device_unregister(data->hwmon_dev);
1448 1449 1450
	w83627ehf_device_remove_files(&pdev->dev);
	release_region(data->addr, IOREGION_LENGTH);
	platform_set_drvdata(pdev, NULL);
1451
	kfree(data);
1452 1453 1454 1455

	return 0;
}

1456
static struct platform_driver w83627ehf_driver = {
1457
	.driver = {
J
Jean Delvare 已提交
1458
		.owner	= THIS_MODULE,
1459
		.name	= DRVNAME,
1460
	},
1461 1462
	.probe		= w83627ehf_probe,
	.remove		= __devexit_p(w83627ehf_remove),
1463 1464
};

1465 1466 1467
/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
				 struct w83627ehf_sio_data *sio_data)
1468
{
1469 1470 1471
	static const char __initdata sio_name_W83627EHF[] = "W83627EHF";
	static const char __initdata sio_name_W83627EHG[] = "W83627EHG";
	static const char __initdata sio_name_W83627DHG[] = "W83627DHG";
1472
	static const char __initdata sio_name_W83667HG[] = "W83667HG";
1473

1474
	u16 val;
1475
	const char *sio_name;
1476

1477
	superio_enter(sioaddr);
1478

1479 1480 1481 1482 1483
	if (force_id)
		val = force_id;
	else
		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
1484 1485
	switch (val & SIO_ID_MASK) {
	case SIO_W83627EHF_ID:
1486 1487 1488
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHF;
		break;
1489
	case SIO_W83627EHG_ID:
1490 1491 1492 1493 1494 1495
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHG;
		break;
	case SIO_W83627DHG_ID:
		sio_data->kind = w83627dhg;
		sio_name = sio_name_W83627DHG;
1496
		break;
1497 1498 1499 1500
	case SIO_W83667HG_ID:
		sio_data->kind = w83667hg;
		sio_name = sio_name_W83667HG;
		break;
1501
	default:
1502 1503 1504
		if (val != 0xffff)
			pr_debug(DRVNAME ": unsupported chip ID: 0x%04x\n",
				 val);
1505
		superio_exit(sioaddr);
1506 1507 1508
		return -ENODEV;
	}

1509 1510 1511 1512
	/* We have a known chip, find the HWM I/O address */
	superio_select(sioaddr, W83627EHF_LD_HWM);
	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
1513
	*addr = val & IOREGION_ALIGNMENT;
1514
	if (*addr == 0) {
1515 1516
		printk(KERN_ERR DRVNAME ": Refusing to enable a Super-I/O "
		       "device with a base I/O port 0.\n");
1517
		superio_exit(sioaddr);
1518 1519 1520 1521
		return -ENODEV;
	}

	/* Activate logical device if needed */
1522
	val = superio_inb(sioaddr, SIO_REG_ENABLE);
1523 1524 1525
	if (!(val & 0x01)) {
		printk(KERN_WARNING DRVNAME ": Forcibly enabling Super-I/O. "
		       "Sensor is probably unusable.\n");
1526
		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
1527
	}
1528 1529 1530 1531

	superio_exit(sioaddr);
	pr_info(DRVNAME ": Found %s chip at %#x\n", sio_name, *addr);
	sio_data->sioreg = sioaddr;
1532 1533 1534 1535

	return 0;
}

1536 1537 1538 1539 1540 1541
/* when Super-I/O functions move to a separate file, the Super-I/O
 * bus will manage the lifetime of the device and this module will only keep
 * track of the w83627ehf driver. But since we platform_device_alloc(), we
 * must keep track of the device */
static struct platform_device *pdev;

1542 1543
static int __init sensors_w83627ehf_init(void)
{
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	int err;
	unsigned short address;
	struct resource res;
	struct w83627ehf_sio_data sio_data;

	/* initialize sio_data->kind and sio_data->sioreg.
	 *
	 * when Super-I/O functions move to a separate file, the Super-I/O
	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
	 * w83627ehf hardware monitor, and call probe() */
	if (w83627ehf_find(0x2e, &address, &sio_data) &&
	    w83627ehf_find(0x4e, &address, &sio_data))
1556 1557
		return -ENODEV;

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	err = platform_driver_register(&w83627ehf_driver);
	if (err)
		goto exit;

	if (!(pdev = platform_device_alloc(DRVNAME, address))) {
		err = -ENOMEM;
		printk(KERN_ERR DRVNAME ": Device allocation failed\n");
		goto exit_unregister;
	}

	err = platform_device_add_data(pdev, &sio_data,
				       sizeof(struct w83627ehf_sio_data));
	if (err) {
		printk(KERN_ERR DRVNAME ": Platform data allocation failed\n");
		goto exit_device_put;
	}

	memset(&res, 0, sizeof(res));
	res.name = DRVNAME;
	res.start = address + IOREGION_OFFSET;
	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
	res.flags = IORESOURCE_IO;
1580 1581 1582

	err = acpi_check_resource_conflict(&res);
	if (err)
1583
		goto exit_device_put;
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	err = platform_device_add_resources(pdev, &res, 1);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device resource addition failed "
		       "(%d)\n", err);
		goto exit_device_put;
	}

	/* platform_device_add calls probe() */
	err = platform_device_add(pdev);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device addition failed (%d)\n",
		       err);
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(pdev);
exit_unregister:
	platform_driver_unregister(&w83627ehf_driver);
exit:
	return err;
1608 1609 1610 1611
}

static void __exit sensors_w83627ehf_exit(void)
{
1612 1613
	platform_device_unregister(pdev);
	platform_driver_unregister(&w83627ehf_driver);
1614 1615 1616 1617 1618 1619 1620 1621
}

MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");

module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);