w83627ehf.c 47.9 KB
Newer Older
1 2 3 4
/*
    w83627ehf - Driver for the hardware monitoring functionality of
                the Winbond W83627EHF Super-I/O chip
    Copyright (C) 2005  Jean Delvare <khali@linux-fr.org>
J
Jean Delvare 已提交
5
    Copyright (C) 2006  Yuan Mu (Winbond),
6
                        Rudolf Marek <r.marek@assembler.cz>
7
                        David Hubbard <david.c.hubbard@gmail.com>
8 9 10 11 12 13 14

    Shamelessly ripped from the w83627hf driver
    Copyright (C) 2003  Mark Studebaker

    Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
    in testing and debugging this driver.

15 16 17
    This driver also supports the W83627EHG, which is the lead-free
    version of the W83627EHF.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


    Supports the following chips:

35 36 37 38
    Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
    w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
                                               0x8860 0xa1
    w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
39 40 41 42 43
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
44 45
#include <linux/jiffies.h>
#include <linux/platform_device.h>
46
#include <linux/hwmon.h>
47
#include <linux/hwmon-sysfs.h>
48
#include <linux/hwmon-vid.h>
49
#include <linux/err.h>
50
#include <linux/mutex.h>
51 52 53
#include <asm/io.h>
#include "lm75.h"

54
enum kinds { w83627ehf, w83627dhg };
55

56 57 58 59 60 61 62
/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
static const char * w83627ehf_device_names[] = {
	"w83627ehf",
	"w83627dhg",
};

#define DRVNAME "w83627ehf"
63

64
/*
65
 * Super-I/O constants and functions
66
 */
67 68 69 70 71

#define W83627EHF_LD_HWM	0x0b

#define SIO_REG_LDSEL		0x07	/* Logical device select */
#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
72
#define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
73 74
#define SIO_REG_ENABLE		0x30	/* Logical device enable */
#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
75 76
#define SIO_REG_VID_CTRL	0xF0	/* VID control */
#define SIO_REG_VID_DATA	0xF1	/* VID data */
77

78 79 80 81
#define SIO_W83627EHF_ID	0x8850
#define SIO_W83627EHG_ID	0x8860
#define SIO_W83627DHG_ID	0xa020
#define SIO_ID_MASK		0xFFF0
82 83

static inline void
84
superio_outb(int ioreg, int reg, int val)
85
{
86 87
	outb(reg, ioreg);
	outb(val, ioreg + 1);
88 89 90
}

static inline int
91
superio_inb(int ioreg, int reg)
92
{
93 94
	outb(reg, ioreg);
	return inb(ioreg + 1);
95 96 97
}

static inline void
98
superio_select(int ioreg, int ld)
99
{
100 101
	outb(SIO_REG_LDSEL, ioreg);
	outb(ld, ioreg + 1);
102 103 104
}

static inline void
105
superio_enter(int ioreg)
106
{
107 108
	outb(0x87, ioreg);
	outb(0x87, ioreg);
109 110 111
}

static inline void
112
superio_exit(int ioreg)
113
{
114 115
	outb(0x02, ioreg);
	outb(0x02, ioreg + 1);
116 117 118 119 120 121
}

/*
 * ISA constants
 */

122 123 124
#define IOREGION_ALIGNMENT	~7
#define IOREGION_OFFSET		5
#define IOREGION_LENGTH		2
125 126
#define ADDR_REG_OFFSET		0
#define DATA_REG_OFFSET		1
127 128 129

#define W83627EHF_REG_BANK		0x4E
#define W83627EHF_REG_CONFIG		0x40
130 131 132 133 134 135

/* Not currently used:
 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
 * REG_MAN_ID is at port 0x4f
 * REG_CHIP_ID is at port 0x58 */
136 137 138 139

static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };

140 141 142 143 144 145 146 147
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
					 (0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
					 (0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
					 (0x550 + (nr) - 7))

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#define W83627EHF_REG_TEMP1		0x27
#define W83627EHF_REG_TEMP1_HYST	0x3a
#define W83627EHF_REG_TEMP1_OVER	0x39
static const u16 W83627EHF_REG_TEMP[] = { 0x150, 0x250 };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x153, 0x253 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x155, 0x255 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0x152, 0x252 };

/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1		0x47
#define W83627EHF_REG_FANDIV2		0x4B
#define W83627EHF_REG_VBAT		0x5D
#define W83627EHF_REG_DIODE		0x59
#define W83627EHF_REG_SMI_OVT		0x4C

163 164 165 166
#define W83627EHF_REG_ALARM1		0x459
#define W83627EHF_REG_ALARM2		0x45A
#define W83627EHF_REG_ALARM3		0x45B

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* SmartFan registers */
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
	0x04,			/* SYS FAN0 output mode and PWM mode */
	0x04,			/* CPU FAN0 output mode and PWM mode */
	0x12,			/* AUX FAN mode */
	0x62,			/* CPU fan1 mode */
};

static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };

/* FAN Duty Cycle, be used to control */
static const u8 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u8 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };


/* Advanced Fan control, some values are common for all fans */
static const u8 W83627EHF_REG_FAN_MIN_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u8 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0C, 0x0D, 0x17, 0x66 };

189 190 191 192
/*
 * Conversions
 */

193 194 195 196 197 198 199 200 201 202 203 204
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
	return mode ? 100 * reg : 400 * reg;
}

static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
	return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
						(msec + 200) / 400), 1, 255);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static inline unsigned int
fan_from_reg(u8 reg, unsigned int div)
{
	if (reg == 0 || reg == 255)
		return 0;
	return 1350000U / (reg * div);
}

static inline unsigned int
div_from_reg(u8 reg)
{
	return 1 << reg;
}

static inline int
temp1_from_reg(s8 reg)
{
	return reg * 1000;
}

static inline s8
226
temp1_to_reg(int temp, int min, int max)
227
{
228 229 230 231
	if (temp <= min)
		return min / 1000;
	if (temp >= max)
		return max / 1000;
232 233 234 235 236
	if (temp < 0)
		return (temp - 500) / 1000;
	return (temp + 500) / 1000;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* Some of analog inputs have internal scaling (2x), 8mV is ADC LSB */

static u8 scale_in[10] = { 8, 8, 16, 16, 8, 8, 8, 16, 16, 8 };

static inline long in_from_reg(u8 reg, u8 nr)
{
	return reg * scale_in[nr];
}

static inline u8 in_to_reg(u32 val, u8 nr)
{
	return SENSORS_LIMIT(((val + (scale_in[nr] / 2)) / scale_in[nr]), 0, 255);
}

251 252 253 254 255
/*
 * Data structures and manipulation thereof
 */

struct w83627ehf_data {
256 257 258
	int addr;	/* IO base of hw monitor block */
	const char *name;

259
	struct class_device *class_dev;
260
	struct mutex lock;
261

262
	struct mutex update_lock;
263 264 265 266
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	/* Register values */
267
	u8 in_num;		/* number of in inputs we have */
268 269 270
	u8 in[10];		/* Register value */
	u8 in_max[10];		/* Register value */
	u8 in_min[10];		/* Register value */
271 272 273 274 275 276 277 278 279 280
	u8 fan[5];
	u8 fan_min[5];
	u8 fan_div[5];
	u8 has_fan;		/* some fan inputs can be disabled */
	s8 temp1;
	s8 temp1_max;
	s8 temp1_max_hyst;
	s16 temp[2];
	s16 temp_max[2];
	s16 temp_max_hyst[2];
281
	u32 alarms;
282 283 284 285 286 287 288 289 290 291

	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
	u8 pwm_enable[4]; /* 1->manual
			     2->thermal cruise (also called SmartFan I) */
	u8 pwm[4];
	u8 target_temp[4];
	u8 tolerance[4];

	u8 fan_min_output[4]; /* minimum fan speed */
	u8 fan_stop_time[4];
292 293 294

	u8 vid;
	u8 vrm;
295 296
};

297 298 299 300 301
struct w83627ehf_sio_data {
	int sioreg;
	enum kinds kind;
};

302 303 304 305 306 307 308 309 310 311 312 313 314
static inline int is_word_sized(u16 reg)
{
	return (((reg & 0xff00) == 0x100
	      || (reg & 0xff00) == 0x200)
	     && ((reg & 0x00ff) == 0x50
	      || (reg & 0x00ff) == 0x53
	      || (reg & 0x00ff) == 0x55));
}

/* We assume that the default bank is 0, thus the following two functions do
   nothing for registers which live in bank 0. For others, they respectively
   set the bank register to the correct value (before the register is
   accessed), and back to 0 (afterwards). */
315
static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
316 317
{
	if (reg & 0xff00) {
318 319
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(reg >> 8, data->addr + DATA_REG_OFFSET);
320 321 322
	}
}

323
static inline void w83627ehf_reset_bank(struct w83627ehf_data *data, u16 reg)
324 325
{
	if (reg & 0xff00) {
326 327
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(0, data->addr + DATA_REG_OFFSET);
328 329 330
	}
}

331
static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
332 333 334
{
	int res, word_sized = is_word_sized(reg);

335
	mutex_lock(&data->lock);
336

337 338 339
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
	res = inb_p(data->addr + DATA_REG_OFFSET);
340 341
	if (word_sized) {
		outb_p((reg & 0xff) + 1,
342 343
		       data->addr + ADDR_REG_OFFSET);
		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
344
	}
345
	w83627ehf_reset_bank(data, reg);
346

347
	mutex_unlock(&data->lock);
348 349 350 351

	return res;
}

352
static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg, u16 value)
353 354 355
{
	int word_sized = is_word_sized(reg);

356
	mutex_lock(&data->lock);
357

358 359
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
360
	if (word_sized) {
361
		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
362
		outb_p((reg & 0xff) + 1,
363
		       data->addr + ADDR_REG_OFFSET);
364
	}
365 366
	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
	w83627ehf_reset_bank(data, reg);
367

368
	mutex_unlock(&data->lock);
369 370 371 372
	return 0;
}

/* This function assumes that the caller holds data->update_lock */
373
static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
374 375 376 377 378
{
	u8 reg;

	switch (nr) {
	case 0:
379
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
380
		    | ((data->fan_div[0] & 0x03) << 4);
381 382
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
383 384
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
385
		    | ((data->fan_div[0] & 0x04) << 3);
386
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
387 388
		break;
	case 1:
389
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
390
		    | ((data->fan_div[1] & 0x03) << 6);
391 392
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
393 394
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
395
		    | ((data->fan_div[1] & 0x04) << 4);
396
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
397 398
		break;
	case 2:
399
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
400
		    | ((data->fan_div[2] & 0x03) << 6);
401 402
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
403
		    | ((data->fan_div[2] & 0x04) << 5);
404
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
405 406
		break;
	case 3:
407
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
408
		    | (data->fan_div[3] & 0x03);
409 410
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
411
		    | ((data->fan_div[3] & 0x04) << 5);
412
		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
413 414
		break;
	case 4:
415
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
416
		    | ((data->fan_div[4] & 0x03) << 2)
417
		    | ((data->fan_div[4] & 0x04) << 5);
418
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
419 420 421 422 423 424
		break;
	}
}

static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
425
	struct w83627ehf_data *data = dev_get_drvdata(dev);
426
	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
427 428
	int i;

429
	mutex_lock(&data->update_lock);
430

431
	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
432 433
	 || !data->valid) {
		/* Fan clock dividers */
434
		i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
435 436
		data->fan_div[0] = (i >> 4) & 0x03;
		data->fan_div[1] = (i >> 6) & 0x03;
437
		i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
438
		data->fan_div[2] = (i >> 6) & 0x03;
439
		i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
440 441 442 443
		data->fan_div[0] |= (i >> 3) & 0x04;
		data->fan_div[1] |= (i >> 4) & 0x04;
		data->fan_div[2] |= (i >> 5) & 0x04;
		if (data->has_fan & ((1 << 3) | (1 << 4))) {
444
			i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
445 446 447 448 449
			data->fan_div[3] = i & 0x03;
			data->fan_div[4] = ((i >> 2) & 0x03)
					 | ((i >> 5) & 0x04);
		}
		if (data->has_fan & (1 << 3)) {
450
			i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
451 452 453
			data->fan_div[3] |= (i >> 5) & 0x04;
		}

454
		/* Measured voltages and limits */
455 456
		for (i = 0; i < data->in_num; i++) {
			data->in[i] = w83627ehf_read_value(data,
457
				      W83627EHF_REG_IN(i));
458
			data->in_min[i] = w83627ehf_read_value(data,
459
					  W83627EHF_REG_IN_MIN(i));
460
			data->in_max[i] = w83627ehf_read_value(data,
461 462 463
					  W83627EHF_REG_IN_MAX(i));
		}

464 465 466 467 468
		/* Measured fan speeds and limits */
		for (i = 0; i < 5; i++) {
			if (!(data->has_fan & (1 << i)))
				continue;

469
			data->fan[i] = w83627ehf_read_value(data,
470
				       W83627EHF_REG_FAN[i]);
471
			data->fan_min[i] = w83627ehf_read_value(data,
472 473 474 475 476 477 478
					   W83627EHF_REG_FAN_MIN[i]);

			/* If we failed to measure the fan speed and clock
			   divider can be increased, let's try that for next
			   time */
			if (data->fan[i] == 0xff
			 && data->fan_div[i] < 0x07) {
479
			 	dev_dbg(dev, "Increasing fan%d "
480
					"clock divider from %u to %u\n",
481
					i + 1, div_from_reg(data->fan_div[i]),
482 483
					div_from_reg(data->fan_div[i] + 1));
				data->fan_div[i]++;
484
				w83627ehf_write_fan_div(data, i);
485 486 487
				/* Preserve min limit if possible */
				if (data->fan_min[i] >= 2
				 && data->fan_min[i] != 255)
488
					w83627ehf_write_value(data,
489 490 491 492 493
						W83627EHF_REG_FAN_MIN[i],
						(data->fan_min[i] /= 2));
			}
		}

494 495 496
		for (i = 0; i < 4; i++) {
			/* pwmcfg, tolarance mapped for i=0, i=1 to same reg */
			if (i != 1) {
497
				pwmcfg = w83627ehf_read_value(data,
498
						W83627EHF_REG_PWM_ENABLE[i]);
499
				tolerance = w83627ehf_read_value(data,
500 501 502 503 504 505 506 507
						W83627EHF_REG_TOLERANCE[i]);
			}
			data->pwm_mode[i] =
				((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1)
				? 0 : 1;
			data->pwm_enable[i] =
					((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
						& 3) + 1;
508
			data->pwm[i] = w83627ehf_read_value(data,
509
						W83627EHF_REG_PWM[i]);
510
			data->fan_min_output[i] = w83627ehf_read_value(data,
511
						W83627EHF_REG_FAN_MIN_OUTPUT[i]);
512
			data->fan_stop_time[i] = w83627ehf_read_value(data,
513 514
						W83627EHF_REG_FAN_STOP_TIME[i]);
			data->target_temp[i] =
515
				w83627ehf_read_value(data,
516 517 518 519 520 521
					W83627EHF_REG_TARGET[i]) &
					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
			data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0))
									& 0x0f;
		}

522
		/* Measured temperatures and limits */
523
		data->temp1 = w83627ehf_read_value(data,
524
			      W83627EHF_REG_TEMP1);
525
		data->temp1_max = w83627ehf_read_value(data,
526
				  W83627EHF_REG_TEMP1_OVER);
527
		data->temp1_max_hyst = w83627ehf_read_value(data,
528 529
				       W83627EHF_REG_TEMP1_HYST);
		for (i = 0; i < 2; i++) {
530
			data->temp[i] = w83627ehf_read_value(data,
531
					W83627EHF_REG_TEMP[i]);
532
			data->temp_max[i] = w83627ehf_read_value(data,
533
					    W83627EHF_REG_TEMP_OVER[i]);
534
			data->temp_max_hyst[i] = w83627ehf_read_value(data,
535 536 537
						 W83627EHF_REG_TEMP_HYST[i]);
		}

538
		data->alarms = w83627ehf_read_value(data,
539
					W83627EHF_REG_ALARM1) |
540
			       (w83627ehf_read_value(data,
541
					W83627EHF_REG_ALARM2) << 8) |
542
			       (w83627ehf_read_value(data,
543 544
					W83627EHF_REG_ALARM3) << 16);

545 546 547 548
		data->last_updated = jiffies;
		data->valid = 1;
	}

549
	mutex_unlock(&data->update_lock);
550 551 552 553 554 555
	return data;
}

/*
 * Sysfs callback functions
 */
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr)); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)

#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg (struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
575
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
576 577 578 579 580 581
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
	mutex_lock(&data->update_lock); \
	data->in_##reg[nr] = in_to_reg(val, nr); \
582
	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(nr), \
583 584 585 586 587 588 589 590
			      data->in_##reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

store_in_reg(MIN, min)
store_in_reg(MAX, max)

591 592 593 594 595 596 597 598
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
}

599 600 601 602 603 604 605 606 607 608 609 610 611
static struct sensor_device_attribute sda_in_input[] = {
	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};

612 613 614 615 616 617 618 619 620 621 622 623 624
static struct sensor_device_attribute sda_in_alarm[] = {
	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
};

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
static struct sensor_device_attribute sda_in_min[] = {
       SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
       SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
       SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
       SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
       SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
       SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
       SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
       SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
       SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
       SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};

static struct sensor_device_attribute sda_in_max[] = {
       SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
       SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
       SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
       SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
       SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
       SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
       SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
       SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
       SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
       SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};

651 652
#define show_fan_reg(reg) \
static ssize_t \
653 654
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
655 656
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
657 658
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
659 660 661 662 663 664 665 666
	return sprintf(buf, "%d\n", \
		       fan_from_reg(data->reg[nr], \
				    div_from_reg(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);

static ssize_t
667 668
show_fan_div(struct device *dev, struct device_attribute *attr,
	     char *buf)
669 670
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
671 672 673
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
674 675 676
}

static ssize_t
677 678
store_fan_min(struct device *dev, struct device_attribute *attr,
	      const char *buf, size_t count)
679
{
680
	struct w83627ehf_data *data = dev_get_drvdata(dev);
681 682
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
683 684 685 686
	unsigned int val = simple_strtoul(buf, NULL, 10);
	unsigned int reg;
	u8 new_div;

687
	mutex_lock(&data->update_lock);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	if (!val) {
		/* No min limit, alarm disabled */
		data->fan_min[nr] = 255;
		new_div = data->fan_div[nr]; /* No change */
		dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
	} else if ((reg = 1350000U / val) >= 128 * 255) {
		/* Speed below this value cannot possibly be represented,
		   even with the highest divider (128) */
		data->fan_min[nr] = 254;
		new_div = 7; /* 128 == (1 << 7) */
		dev_warn(dev, "fan%u low limit %u below minimum %u, set to "
			 "minimum\n", nr + 1, val, fan_from_reg(254, 128));
	} else if (!reg) {
		/* Speed above this value cannot possibly be represented,
		   even with the lowest divider (1) */
		data->fan_min[nr] = 1;
		new_div = 0; /* 1 == (1 << 0) */
		dev_warn(dev, "fan%u low limit %u above maximum %u, set to "
706
			 "maximum\n", nr + 1, val, fan_from_reg(1, 1));
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	} else {
		/* Automatically pick the best divider, i.e. the one such
		   that the min limit will correspond to a register value
		   in the 96..192 range */
		new_div = 0;
		while (reg > 192 && new_div < 7) {
			reg >>= 1;
			new_div++;
		}
		data->fan_min[nr] = reg;
	}

	/* Write both the fan clock divider (if it changed) and the new
	   fan min (unconditionally) */
	if (new_div != data->fan_div[nr]) {
722 723 724 725 726 727 728 729 730
		/* Preserve the fan speed reading */
		if (data->fan[nr] != 0xff) {
			if (new_div > data->fan_div[nr])
				data->fan[nr] >>= new_div - data->fan_div[nr];
			else if (data->fan[nr] & 0x80)
				data->fan[nr] = 0xff;
			else
				data->fan[nr] <<= data->fan_div[nr] - new_div;
		}
731 732 733 734 735

		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
			nr + 1, div_from_reg(data->fan_div[nr]),
			div_from_reg(new_div));
		data->fan_div[nr] = new_div;
736
		w83627ehf_write_fan_div(data, nr);
737 738
		/* Give the chip time to sample a new speed value */
		data->last_updated = jiffies;
739
	}
740
	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[nr],
741
			      data->fan_min[nr]);
742
	mutex_unlock(&data->update_lock);
743 744 745 746

	return count;
}

747 748 749 750 751 752 753
static struct sensor_device_attribute sda_fan_input[] = {
	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
754

755 756 757 758 759 760 761 762
static struct sensor_device_attribute sda_fan_alarm[] = {
	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
};

763 764 765 766 767 768 769 770 771 772 773 774
static struct sensor_device_attribute sda_fan_min[] = {
	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 0),
	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 1),
	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 2),
	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 3),
	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 4),
};
775

776 777 778 779 780 781 782 783
static struct sensor_device_attribute sda_fan_div[] = {
	SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
	SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
	SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
	SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
	SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
};

784 785
#define show_temp1_reg(reg) \
static ssize_t \
786 787
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
788 789 790 791 792 793 794 795 796 797
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg)); \
}
show_temp1_reg(temp1);
show_temp1_reg(temp1_max);
show_temp1_reg(temp1_max_hyst);

#define store_temp1_reg(REG, reg) \
static ssize_t \
798 799
store_temp1_##reg(struct device *dev, struct device_attribute *attr, \
		  const char *buf, size_t count) \
800
{ \
801
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
802 803
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
804
	mutex_lock(&data->update_lock); \
805
	data->temp1_##reg = temp1_to_reg(val, -128000, 127000); \
806
	w83627ehf_write_value(data, W83627EHF_REG_TEMP1_##REG, \
807
			      data->temp1_##reg); \
808
	mutex_unlock(&data->update_lock); \
809 810 811 812 813 814 815
	return count; \
}
store_temp1_reg(OVER, max);
store_temp1_reg(HYST, max_hyst);

#define show_temp_reg(reg) \
static ssize_t \
816 817
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
818 819
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
820 821
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
822 823 824 825 826 827 828 829 830
	return sprintf(buf, "%d\n", \
		       LM75_TEMP_FROM_REG(data->reg[nr])); \
}
show_temp_reg(temp);
show_temp_reg(temp_max);
show_temp_reg(temp_max_hyst);

#define store_temp_reg(REG, reg) \
static ssize_t \
831 832
store_##reg(struct device *dev, struct device_attribute *attr, \
	    const char *buf, size_t count) \
833
{ \
834
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
835 836
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
837 838
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
839
	mutex_lock(&data->update_lock); \
840
	data->reg[nr] = LM75_TEMP_TO_REG(val); \
841
	w83627ehf_write_value(data, W83627EHF_REG_TEMP_##REG[nr], \
842
			      data->reg[nr]); \
843
	mutex_unlock(&data->update_lock); \
844 845 846 847 848
	return count; \
}
store_temp_reg(OVER, temp_max);
store_temp_reg(HYST, temp_max_hyst);

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static struct sensor_device_attribute sda_temp[] = {
	SENSOR_ATTR(temp1_input, S_IRUGO, show_temp1, NULL, 0),
	SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0),
	SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 1),
	SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp1_max,
		    store_temp1_max, 0),
	SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 0),
	SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 1),
	SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1_max_hyst,
		    store_temp1_max_hyst, 0),
	SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 0),
	SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 1),
865 866 867
	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
868
};
869

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
#define show_pwm_reg(reg) \
static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}

show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)

static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
888
	struct w83627ehf_data *data = dev_get_drvdata(dev);
889 890 891 892 893 894 895 896
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (val > 1)
		return -EINVAL;
	mutex_lock(&data->update_lock);
897
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
898 899 900 901
	data->pwm_mode[nr] = val;
	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
	if (!val)
		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
902
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
903 904 905 906 907 908 909 910
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
911
	struct w83627ehf_data *data = dev_get_drvdata(dev);
912 913 914 915 916 917
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255);

	mutex_lock(&data->update_lock);
	data->pwm[nr] = val;
918
	w83627ehf_write_value(data, W83627EHF_REG_PWM[nr], val);
919 920 921 922 923 924 925 926
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
927
	struct w83627ehf_data *data = dev_get_drvdata(dev);
928 929 930 931 932 933 934 935
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (!val || (val > 2))	/* only modes 1 and 2 are supported */
		return -EINVAL;
	mutex_lock(&data->update_lock);
936
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
937 938 939
	data->pwm_enable[nr] = val;
	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
940
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	mutex_unlock(&data->update_lock);
	return count;
}


#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg[nr])); \
}

show_tol_temp(tolerance)
show_tol_temp(target_temp)

static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
963
	struct w83627ehf_data *data = dev_get_drvdata(dev);
964 965 966 967 968 969
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 127000);

	mutex_lock(&data->update_lock);
	data->target_temp[nr] = val;
970
	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
971 972 973 974 975 976 977 978
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
979
	struct w83627ehf_data *data = dev_get_drvdata(dev);
980 981 982 983 984 985 986
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u16 reg;
	/* Limit the temp to 0C - 15C */
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 15000);

	mutex_lock(&data->update_lock);
987
	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
988 989 990 991 992
	data->tolerance[nr] = val;
	if (nr == 1)
		reg = (reg & 0x0f) | (val << 4);
	else
		reg = (reg & 0xf0) | val;
993
	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	mutex_unlock(&data->update_lock);
	return count;
}

static struct sensor_device_attribute sda_pwm[] = {
	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
};

static struct sensor_device_attribute sda_pwm_mode[] = {
	SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 0),
	SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 1),
	SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 2),
	SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 3),
};

static struct sensor_device_attribute sda_pwm_enable[] = {
	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 0),
	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 1),
	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 2),
	SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 3),
};

static struct sensor_device_attribute sda_target_temp[] = {
	SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 0),
	SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 1),
	SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 2),
	SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 3),
};

static struct sensor_device_attribute sda_tolerance[] = {
	SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 0),
	SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 1),
	SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 2),
	SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 3),
};

/* Smart Fan registers */

#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		       char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			    const char *buf, size_t count) \
{\
1064
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1065 1066 1067 1068 1069
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 1, 255); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1070
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	mutex_unlock(&data->update_lock); \
	return count; \
}

fan_functions(fan_min_output, FAN_MIN_OUTPUT)

#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", \
			step_time_from_reg(data->reg[nr], data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
1092
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1093 1094 1095 1096 1097 1098
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u8 val = step_time_to_reg(simple_strtoul(buf, NULL, 10), \
					data->pwm_mode[nr]); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1099
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1100 1101 1102 1103 1104 1105
	mutex_unlock(&data->update_lock); \
	return count; \
} \

fan_time_functions(fan_stop_time, FAN_STOP_TIME)

1106 1107 1108 1109 1110 1111 1112 1113
static ssize_t show_name(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
	SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 3),
	SENSOR_ATTR(pwm4_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 3),
};

static struct sensor_device_attribute sda_sf3_arrays[] = {
	SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 0),
	SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 1),
	SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 2),
	SENSOR_ATTR(pwm1_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 0),
	SENSOR_ATTR(pwm2_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 1),
	SENSOR_ATTR(pwm3_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 2),
};

1137 1138 1139 1140 1141 1142 1143 1144
static ssize_t
show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);

1145
/*
1146
 * Driver and device management
1147 1148
 */

1149 1150 1151 1152 1153
static void w83627ehf_device_remove_files(struct device *dev)
{
	/* some entries in the following arrays may not have been used in
	 * device_create_file(), but device_remove_file() will ignore them */
	int i;
1154
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1155 1156 1157 1158 1159

	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
		device_remove_file(dev, &sda_sf3_arrays[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
		device_remove_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);
1160
	for (i = 0; i < data->in_num; i++) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		device_remove_file(dev, &sda_in_input[i].dev_attr);
		device_remove_file(dev, &sda_in_alarm[i].dev_attr);
		device_remove_file(dev, &sda_in_min[i].dev_attr);
		device_remove_file(dev, &sda_in_max[i].dev_attr);
	}
	for (i = 0; i < 5; i++) {
		device_remove_file(dev, &sda_fan_input[i].dev_attr);
		device_remove_file(dev, &sda_fan_alarm[i].dev_attr);
		device_remove_file(dev, &sda_fan_div[i].dev_attr);
		device_remove_file(dev, &sda_fan_min[i].dev_attr);
	}
	for (i = 0; i < 4; i++) {
		device_remove_file(dev, &sda_pwm[i].dev_attr);
		device_remove_file(dev, &sda_pwm_mode[i].dev_attr);
		device_remove_file(dev, &sda_pwm_enable[i].dev_attr);
		device_remove_file(dev, &sda_target_temp[i].dev_attr);
		device_remove_file(dev, &sda_tolerance[i].dev_attr);
	}
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
		device_remove_file(dev, &sda_temp[i].dev_attr);

1182
	device_remove_file(dev, &dev_attr_name);
1183 1184
	if (data->vid != 0x3f)
		device_remove_file(dev, &dev_attr_cpu0_vid);
1185
}
1186

1187 1188
/* Get the monitoring functions started */
static inline void __devinit w83627ehf_init_device(struct w83627ehf_data *data)
1189 1190 1191 1192 1193
{
	int i;
	u8 tmp;

	/* Start monitoring is needed */
1194
	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1195
	if (!(tmp & 0x01))
1196
		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1197 1198 1199 1200
				      tmp | 0x01);

	/* Enable temp2 and temp3 if needed */
	for (i = 0; i < 2; i++) {
1201
		tmp = w83627ehf_read_value(data,
1202 1203
					   W83627EHF_REG_TEMP_CONFIG[i]);
		if (tmp & 0x01)
1204
			w83627ehf_write_value(data,
1205 1206 1207 1208 1209
					      W83627EHF_REG_TEMP_CONFIG[i],
					      tmp & 0xfe);
	}
}

1210
static int __devinit w83627ehf_probe(struct platform_device *pdev)
1211
{
1212 1213
	struct device *dev = &pdev->dev;
	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1214
	struct w83627ehf_data *data;
1215
	struct resource *res;
1216
	u8 fan4pin, fan5pin, en_vrm10;
1217 1218
	int i, err = 0;

1219 1220
	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1221
		err = -EBUSY;
1222 1223 1224
		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
			(unsigned long)res->start,
			(unsigned long)res->start + IOREGION_LENGTH - 1);
1225 1226 1227
		goto exit;
	}

D
Deepak Saxena 已提交
1228
	if (!(data = kzalloc(sizeof(struct w83627ehf_data), GFP_KERNEL))) {
1229 1230 1231 1232
		err = -ENOMEM;
		goto exit_release;
	}

1233
	data->addr = res->start;
1234 1235
	mutex_init(&data->lock);
	mutex_init(&data->update_lock);
1236 1237
	data->name = w83627ehf_device_names[sio_data->kind];
	platform_set_drvdata(pdev, data);
1238

1239 1240
	/* 627EHG and 627EHF have 10 voltage inputs; DHG has 9 */
	data->in_num = (sio_data->kind == w83627dhg) ? 9 : 10;
1241 1242

	/* Initialize the chip */
1243
	w83627ehf_init_device(data);
1244 1245 1246

	/* A few vars need to be filled upon startup */
	for (i = 0; i < 5; i++)
1247
		data->fan_min[i] = w83627ehf_read_value(data,
1248 1249
				   W83627EHF_REG_FAN_MIN[i]);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	data->vrm = vid_which_vrm();
	superio_enter(sio_data->sioreg);
	/* Set VID input sensibility if needed. In theory the BIOS should
	   have set it, but in practice it's not always the case. */
	en_vrm10 = superio_inb(sio_data->sioreg, SIO_REG_EN_VRM10);
	if ((en_vrm10 & 0x08) && data->vrm != 100) {
		dev_warn(dev, "Setting VID input voltage to TTL\n");
		superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
			     en_vrm10 & ~0x08);
	} else if (!(en_vrm10 & 0x08) && data->vrm == 100) {
		dev_warn(dev, "Setting VID input voltage to VRM10\n");
		superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
			     en_vrm10 | 0x08);
	}
	/* Read VID value */
	superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
	if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80)
		data->vid = superio_inb(sio_data->sioreg, SIO_REG_VID_DATA) & 0x3f;
	else {
		dev_info(dev, "VID pins in output mode, CPU VID not "
			 "available\n");
		data->vid = 0x3f;
	}

1274 1275
	/* fan4 and fan5 share some pins with the GPIO and serial flash */

1276 1277 1278
	fan5pin = superio_inb(sio_data->sioreg, 0x24) & 0x2;
	fan4pin = superio_inb(sio_data->sioreg, 0x29) & 0x6;
	superio_exit(sio_data->sioreg);
1279

1280
	/* It looks like fan4 and fan5 pins can be alternatively used
1281 1282 1283 1284
	   as fan on/off switches, but fan5 control is write only :/
	   We assume that if the serial interface is disabled, designers
	   connected fan5 as input unless they are emitting log 1, which
	   is not the default. */
1285

1286
	data->has_fan = 0x07; /* fan1, fan2 and fan3 */
1287
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1288
	if ((i & (1 << 2)) && (!fan4pin))
1289
		data->has_fan |= (1 << 3);
1290
	if (!(i & (1 << 1)) && (!fan5pin))
1291 1292 1293
		data->has_fan |= (1 << 4);

	/* Register sysfs hooks */
1294
  	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
1295 1296 1297
		if ((err = device_create_file(dev,
			&sda_sf3_arrays[i].dev_attr)))
			goto exit_remove;
1298 1299 1300

	/* if fan4 is enabled create the sf3 files for it */
	if (data->has_fan & (1 << 3))
1301 1302 1303 1304 1305
		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++) {
			if ((err = device_create_file(dev,
				&sda_sf3_arrays_fan4[i].dev_attr)))
				goto exit_remove;
		}
1306

1307
	for (i = 0; i < data->in_num; i++)
1308 1309 1310 1311 1312 1313 1314 1315
		if ((err = device_create_file(dev, &sda_in_input[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_alarm[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_min[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_max[i].dev_attr)))
			goto exit_remove;
1316

1317
	for (i = 0; i < 5; i++) {
1318
		if (data->has_fan & (1 << i)) {
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			if ((err = device_create_file(dev,
					&sda_fan_input[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_alarm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_div[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_min[i].dev_attr)))
				goto exit_remove;
			if (i < 4 && /* w83627ehf only has 4 pwm */
				((err = device_create_file(dev,
					&sda_pwm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_mode[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_enable[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_target_temp[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_tolerance[i].dev_attr))))
				goto exit_remove;
1340
		}
1341
	}
1342

1343
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
1344 1345 1346
		if ((err = device_create_file(dev, &sda_temp[i].dev_attr)))
			goto exit_remove;

1347 1348 1349 1350
	err = device_create_file(dev, &dev_attr_name);
	if (err)
		goto exit_remove;

1351 1352 1353 1354 1355 1356
	if (data->vid != 0x3f) {
		err = device_create_file(dev, &dev_attr_cpu0_vid);
		if (err)
			goto exit_remove;
	}

1357 1358 1359 1360 1361
	data->class_dev = hwmon_device_register(dev);
	if (IS_ERR(data->class_dev)) {
		err = PTR_ERR(data->class_dev);
		goto exit_remove;
	}
1362 1363 1364

	return 0;

1365 1366
exit_remove:
	w83627ehf_device_remove_files(dev);
1367
	kfree(data);
1368
	platform_set_drvdata(pdev, NULL);
1369
exit_release:
1370
	release_region(res->start, IOREGION_LENGTH);
1371 1372 1373 1374
exit:
	return err;
}

1375
static int __devexit w83627ehf_remove(struct platform_device *pdev)
1376
{
1377
	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1378

1379
	hwmon_device_unregister(data->class_dev);
1380 1381 1382
	w83627ehf_device_remove_files(&pdev->dev);
	release_region(data->addr, IOREGION_LENGTH);
	platform_set_drvdata(pdev, NULL);
1383
	kfree(data);
1384 1385 1386 1387

	return 0;
}

1388
static struct platform_driver w83627ehf_driver = {
1389
	.driver = {
J
Jean Delvare 已提交
1390
		.owner	= THIS_MODULE,
1391
		.name	= DRVNAME,
1392
	},
1393 1394
	.probe		= w83627ehf_probe,
	.remove		= __devexit_p(w83627ehf_remove),
1395 1396
};

1397 1398 1399
/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
				 struct w83627ehf_sio_data *sio_data)
1400
{
1401 1402 1403 1404
	static const char __initdata sio_name_W83627EHF[] = "W83627EHF";
	static const char __initdata sio_name_W83627EHG[] = "W83627EHG";
	static const char __initdata sio_name_W83627DHG[] = "W83627DHG";

1405
	u16 val;
1406
	const char *sio_name;
1407

1408
	superio_enter(sioaddr);
1409

1410 1411
	val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
	    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
1412 1413
	switch (val & SIO_ID_MASK) {
	case SIO_W83627EHF_ID:
1414 1415 1416
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHF;
		break;
1417
	case SIO_W83627EHG_ID:
1418 1419 1420 1421 1422 1423
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHG;
		break;
	case SIO_W83627DHG_ID:
		sio_data->kind = w83627dhg;
		sio_name = sio_name_W83627DHG;
1424 1425
		break;
	default:
1426
		pr_info(DRVNAME ": unsupported chip ID: 0x%04x\n",
1427
			val);
1428
		superio_exit(sioaddr);
1429 1430 1431
		return -ENODEV;
	}

1432 1433 1434 1435
	/* We have a known chip, find the HWM I/O address */
	superio_select(sioaddr, W83627EHF_LD_HWM);
	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
1436
	*addr = val & IOREGION_ALIGNMENT;
1437
	if (*addr == 0) {
1438 1439
		printk(KERN_ERR DRVNAME ": Refusing to enable a Super-I/O "
		       "device with a base I/O port 0.\n");
1440
		superio_exit(sioaddr);
1441 1442 1443 1444
		return -ENODEV;
	}

	/* Activate logical device if needed */
1445
	val = superio_inb(sioaddr, SIO_REG_ENABLE);
1446 1447 1448
	if (!(val & 0x01)) {
		printk(KERN_WARNING DRVNAME ": Forcibly enabling Super-I/O. "
		       "Sensor is probably unusable.\n");
1449
		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
1450
	}
1451 1452 1453 1454

	superio_exit(sioaddr);
	pr_info(DRVNAME ": Found %s chip at %#x\n", sio_name, *addr);
	sio_data->sioreg = sioaddr;
1455 1456 1457 1458

	return 0;
}

1459 1460 1461 1462 1463 1464
/* when Super-I/O functions move to a separate file, the Super-I/O
 * bus will manage the lifetime of the device and this module will only keep
 * track of the w83627ehf driver. But since we platform_device_alloc(), we
 * must keep track of the device */
static struct platform_device *pdev;

1465 1466
static int __init sensors_w83627ehf_init(void)
{
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	int err;
	unsigned short address;
	struct resource res;
	struct w83627ehf_sio_data sio_data;

	/* initialize sio_data->kind and sio_data->sioreg.
	 *
	 * when Super-I/O functions move to a separate file, the Super-I/O
	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
	 * w83627ehf hardware monitor, and call probe() */
	if (w83627ehf_find(0x2e, &address, &sio_data) &&
	    w83627ehf_find(0x4e, &address, &sio_data))
1479 1480
		return -ENODEV;

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	err = platform_driver_register(&w83627ehf_driver);
	if (err)
		goto exit;

	if (!(pdev = platform_device_alloc(DRVNAME, address))) {
		err = -ENOMEM;
		printk(KERN_ERR DRVNAME ": Device allocation failed\n");
		goto exit_unregister;
	}

	err = platform_device_add_data(pdev, &sio_data,
				       sizeof(struct w83627ehf_sio_data));
	if (err) {
		printk(KERN_ERR DRVNAME ": Platform data allocation failed\n");
		goto exit_device_put;
	}

	memset(&res, 0, sizeof(res));
	res.name = DRVNAME;
	res.start = address + IOREGION_OFFSET;
	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
	res.flags = IORESOURCE_IO;
	err = platform_device_add_resources(pdev, &res, 1);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device resource addition failed "
		       "(%d)\n", err);
		goto exit_device_put;
	}

	/* platform_device_add calls probe() */
	err = platform_device_add(pdev);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device addition failed (%d)\n",
		       err);
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(pdev);
exit_unregister:
	platform_driver_unregister(&w83627ehf_driver);
exit:
	return err;
1526 1527 1528 1529
}

static void __exit sensors_w83627ehf_exit(void)
{
1530 1531
	platform_device_unregister(pdev);
	platform_driver_unregister(&w83627ehf_driver);
1532 1533 1534 1535 1536 1537 1538 1539
}

MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");

module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);