w83627ehf.c 48.7 KB
Newer Older
1 2 3 4
/*
    w83627ehf - Driver for the hardware monitoring functionality of
                the Winbond W83627EHF Super-I/O chip
    Copyright (C) 2005  Jean Delvare <khali@linux-fr.org>
J
Jean Delvare 已提交
5
    Copyright (C) 2006  Yuan Mu (Winbond),
6
                        Rudolf Marek <r.marek@assembler.cz>
7
                        David Hubbard <david.c.hubbard@gmail.com>
8 9 10 11 12 13 14

    Shamelessly ripped from the w83627hf driver
    Copyright (C) 2003  Mark Studebaker

    Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
    in testing and debugging this driver.

15 16 17
    This driver also supports the W83627EHG, which is the lead-free
    version of the W83627EHF.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


    Supports the following chips:

35 36 37 38
    Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
    w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
                                               0x8860 0xa1
    w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
39 40 41 42 43
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
44 45
#include <linux/jiffies.h>
#include <linux/platform_device.h>
46
#include <linux/hwmon.h>
47
#include <linux/hwmon-sysfs.h>
48
#include <linux/hwmon-vid.h>
49
#include <linux/err.h>
50
#include <linux/mutex.h>
51 52 53
#include <asm/io.h>
#include "lm75.h"

54
enum kinds { w83627ehf, w83627dhg };
55

56 57 58 59 60 61 62
/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
static const char * w83627ehf_device_names[] = {
	"w83627ehf",
	"w83627dhg",
};

#define DRVNAME "w83627ehf"
63

64
/*
65
 * Super-I/O constants and functions
66
 */
67 68 69 70 71

#define W83627EHF_LD_HWM	0x0b

#define SIO_REG_LDSEL		0x07	/* Logical device select */
#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
72
#define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
73 74
#define SIO_REG_ENABLE		0x30	/* Logical device enable */
#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
75 76
#define SIO_REG_VID_CTRL	0xF0	/* VID control */
#define SIO_REG_VID_DATA	0xF1	/* VID data */
77

78 79 80 81
#define SIO_W83627EHF_ID	0x8850
#define SIO_W83627EHG_ID	0x8860
#define SIO_W83627DHG_ID	0xa020
#define SIO_ID_MASK		0xFFF0
82 83

static inline void
84
superio_outb(int ioreg, int reg, int val)
85
{
86 87
	outb(reg, ioreg);
	outb(val, ioreg + 1);
88 89 90
}

static inline int
91
superio_inb(int ioreg, int reg)
92
{
93 94
	outb(reg, ioreg);
	return inb(ioreg + 1);
95 96 97
}

static inline void
98
superio_select(int ioreg, int ld)
99
{
100 101
	outb(SIO_REG_LDSEL, ioreg);
	outb(ld, ioreg + 1);
102 103 104
}

static inline void
105
superio_enter(int ioreg)
106
{
107 108
	outb(0x87, ioreg);
	outb(0x87, ioreg);
109 110 111
}

static inline void
112
superio_exit(int ioreg)
113
{
114 115
	outb(0x02, ioreg);
	outb(0x02, ioreg + 1);
116 117 118 119 120 121
}

/*
 * ISA constants
 */

122 123 124
#define IOREGION_ALIGNMENT	~7
#define IOREGION_OFFSET		5
#define IOREGION_LENGTH		2
125 126
#define ADDR_REG_OFFSET		0
#define DATA_REG_OFFSET		1
127 128 129

#define W83627EHF_REG_BANK		0x4E
#define W83627EHF_REG_CONFIG		0x40
130 131 132 133 134 135

/* Not currently used:
 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
 * REG_MAN_ID is at port 0x4f
 * REG_CHIP_ID is at port 0x58 */
136 137 138 139

static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };

140 141 142 143 144 145 146 147
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
					 (0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
					 (0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
					 (0x550 + (nr) - 7))

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#define W83627EHF_REG_TEMP1		0x27
#define W83627EHF_REG_TEMP1_HYST	0x3a
#define W83627EHF_REG_TEMP1_OVER	0x39
static const u16 W83627EHF_REG_TEMP[] = { 0x150, 0x250 };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x153, 0x253 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x155, 0x255 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0x152, 0x252 };

/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1		0x47
#define W83627EHF_REG_FANDIV2		0x4B
#define W83627EHF_REG_VBAT		0x5D
#define W83627EHF_REG_DIODE		0x59
#define W83627EHF_REG_SMI_OVT		0x4C

163 164 165 166
#define W83627EHF_REG_ALARM1		0x459
#define W83627EHF_REG_ALARM2		0x45A
#define W83627EHF_REG_ALARM3		0x45B

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* SmartFan registers */
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
	0x04,			/* SYS FAN0 output mode and PWM mode */
	0x04,			/* CPU FAN0 output mode and PWM mode */
	0x12,			/* AUX FAN mode */
	0x62,			/* CPU fan1 mode */
};

static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };

/* FAN Duty Cycle, be used to control */
static const u8 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u8 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };


/* Advanced Fan control, some values are common for all fans */
static const u8 W83627EHF_REG_FAN_MIN_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u8 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0C, 0x0D, 0x17, 0x66 };

189 190 191 192
/*
 * Conversions
 */

193 194 195 196 197 198 199 200 201 202 203 204
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
	return mode ? 100 * reg : 400 * reg;
}

static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
	return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
						(msec + 200) / 400), 1, 255);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static inline unsigned int
fan_from_reg(u8 reg, unsigned int div)
{
	if (reg == 0 || reg == 255)
		return 0;
	return 1350000U / (reg * div);
}

static inline unsigned int
div_from_reg(u8 reg)
{
	return 1 << reg;
}

static inline int
temp1_from_reg(s8 reg)
{
	return reg * 1000;
}

static inline s8
226
temp1_to_reg(int temp, int min, int max)
227
{
228 229 230 231
	if (temp <= min)
		return min / 1000;
	if (temp >= max)
		return max / 1000;
232 233 234 235 236
	if (temp < 0)
		return (temp - 500) / 1000;
	return (temp + 500) / 1000;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* Some of analog inputs have internal scaling (2x), 8mV is ADC LSB */

static u8 scale_in[10] = { 8, 8, 16, 16, 8, 8, 8, 16, 16, 8 };

static inline long in_from_reg(u8 reg, u8 nr)
{
	return reg * scale_in[nr];
}

static inline u8 in_to_reg(u32 val, u8 nr)
{
	return SENSORS_LIMIT(((val + (scale_in[nr] / 2)) / scale_in[nr]), 0, 255);
}

251 252 253 254 255
/*
 * Data structures and manipulation thereof
 */

struct w83627ehf_data {
256 257 258
	int addr;	/* IO base of hw monitor block */
	const char *name;

259
	struct class_device *class_dev;
260
	struct mutex lock;
261

262
	struct mutex update_lock;
263 264 265 266
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	/* Register values */
267
	u8 in_num;		/* number of in inputs we have */
268 269 270
	u8 in[10];		/* Register value */
	u8 in_max[10];		/* Register value */
	u8 in_min[10];		/* Register value */
271 272 273 274
	u8 fan[5];
	u8 fan_min[5];
	u8 fan_div[5];
	u8 has_fan;		/* some fan inputs can be disabled */
275
	u8 temp_type[3];
276 277 278 279 280 281
	s8 temp1;
	s8 temp1_max;
	s8 temp1_max_hyst;
	s16 temp[2];
	s16 temp_max[2];
	s16 temp_max_hyst[2];
282
	u32 alarms;
283 284 285 286 287 288 289 290 291 292

	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
	u8 pwm_enable[4]; /* 1->manual
			     2->thermal cruise (also called SmartFan I) */
	u8 pwm[4];
	u8 target_temp[4];
	u8 tolerance[4];

	u8 fan_min_output[4]; /* minimum fan speed */
	u8 fan_stop_time[4];
293 294 295

	u8 vid;
	u8 vrm;
296 297
};

298 299 300 301 302
struct w83627ehf_sio_data {
	int sioreg;
	enum kinds kind;
};

303 304 305 306 307 308 309 310 311
static inline int is_word_sized(u16 reg)
{
	return (((reg & 0xff00) == 0x100
	      || (reg & 0xff00) == 0x200)
	     && ((reg & 0x00ff) == 0x50
	      || (reg & 0x00ff) == 0x53
	      || (reg & 0x00ff) == 0x55));
}

312
/* Registers 0x50-0x5f are banked */
313
static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
314
{
315
	if ((reg & 0x00f0) == 0x50) {
316 317
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(reg >> 8, data->addr + DATA_REG_OFFSET);
318 319 320
	}
}

321
/* Not strictly necessary, but play it safe for now */
322
static inline void w83627ehf_reset_bank(struct w83627ehf_data *data, u16 reg)
323 324
{
	if (reg & 0xff00) {
325 326
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(0, data->addr + DATA_REG_OFFSET);
327 328 329
	}
}

330
static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
331 332 333
{
	int res, word_sized = is_word_sized(reg);

334
	mutex_lock(&data->lock);
335

336 337 338
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
	res = inb_p(data->addr + DATA_REG_OFFSET);
339 340
	if (word_sized) {
		outb_p((reg & 0xff) + 1,
341 342
		       data->addr + ADDR_REG_OFFSET);
		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
343
	}
344
	w83627ehf_reset_bank(data, reg);
345

346
	mutex_unlock(&data->lock);
347 348 349 350

	return res;
}

351
static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg, u16 value)
352 353 354
{
	int word_sized = is_word_sized(reg);

355
	mutex_lock(&data->lock);
356

357 358
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
359
	if (word_sized) {
360
		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
361
		outb_p((reg & 0xff) + 1,
362
		       data->addr + ADDR_REG_OFFSET);
363
	}
364 365
	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
	w83627ehf_reset_bank(data, reg);
366

367
	mutex_unlock(&data->lock);
368 369 370 371
	return 0;
}

/* This function assumes that the caller holds data->update_lock */
372
static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
373 374 375 376 377
{
	u8 reg;

	switch (nr) {
	case 0:
378
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
379
		    | ((data->fan_div[0] & 0x03) << 4);
380 381
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
382 383
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
384
		    | ((data->fan_div[0] & 0x04) << 3);
385
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
386 387
		break;
	case 1:
388
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
389
		    | ((data->fan_div[1] & 0x03) << 6);
390 391
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
392 393
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
394
		    | ((data->fan_div[1] & 0x04) << 4);
395
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
396 397
		break;
	case 2:
398
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
399
		    | ((data->fan_div[2] & 0x03) << 6);
400 401
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
402
		    | ((data->fan_div[2] & 0x04) << 5);
403
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
404 405
		break;
	case 3:
406
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
407
		    | (data->fan_div[3] & 0x03);
408 409
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
410
		    | ((data->fan_div[3] & 0x04) << 5);
411
		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
412 413
		break;
	case 4:
414
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
415
		    | ((data->fan_div[4] & 0x03) << 2)
416
		    | ((data->fan_div[4] & 0x04) << 5);
417
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
418 419 420 421
		break;
	}
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
{
	int i;

	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
	data->fan_div[0] = (i >> 4) & 0x03;
	data->fan_div[1] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
	data->fan_div[2] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	data->fan_div[0] |= (i >> 3) & 0x04;
	data->fan_div[1] |= (i >> 4) & 0x04;
	data->fan_div[2] |= (i >> 5) & 0x04;
	if (data->has_fan & ((1 << 3) | (1 << 4))) {
		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
		data->fan_div[3] = i & 0x03;
		data->fan_div[4] = ((i >> 2) & 0x03)
				 | ((i >> 5) & 0x04);
	}
	if (data->has_fan & (1 << 3)) {
		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
		data->fan_div[3] |= (i >> 5) & 0x04;
	}
}

447 448
static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
449
	struct w83627ehf_data *data = dev_get_drvdata(dev);
450
	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
451 452
	int i;

453
	mutex_lock(&data->update_lock);
454

455
	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
456 457
	 || !data->valid) {
		/* Fan clock dividers */
458
		w83627ehf_update_fan_div(data);
459

460
		/* Measured voltages and limits */
461 462
		for (i = 0; i < data->in_num; i++) {
			data->in[i] = w83627ehf_read_value(data,
463
				      W83627EHF_REG_IN(i));
464
			data->in_min[i] = w83627ehf_read_value(data,
465
					  W83627EHF_REG_IN_MIN(i));
466
			data->in_max[i] = w83627ehf_read_value(data,
467 468 469
					  W83627EHF_REG_IN_MAX(i));
		}

470 471 472 473 474
		/* Measured fan speeds and limits */
		for (i = 0; i < 5; i++) {
			if (!(data->has_fan & (1 << i)))
				continue;

475
			data->fan[i] = w83627ehf_read_value(data,
476
				       W83627EHF_REG_FAN[i]);
477
			data->fan_min[i] = w83627ehf_read_value(data,
478 479 480 481 482 483 484
					   W83627EHF_REG_FAN_MIN[i]);

			/* If we failed to measure the fan speed and clock
			   divider can be increased, let's try that for next
			   time */
			if (data->fan[i] == 0xff
			 && data->fan_div[i] < 0x07) {
485
			 	dev_dbg(dev, "Increasing fan%d "
486
					"clock divider from %u to %u\n",
487
					i + 1, div_from_reg(data->fan_div[i]),
488 489
					div_from_reg(data->fan_div[i] + 1));
				data->fan_div[i]++;
490
				w83627ehf_write_fan_div(data, i);
491 492 493
				/* Preserve min limit if possible */
				if (data->fan_min[i] >= 2
				 && data->fan_min[i] != 255)
494
					w83627ehf_write_value(data,
495 496 497 498 499
						W83627EHF_REG_FAN_MIN[i],
						(data->fan_min[i] /= 2));
			}
		}

500 501 502
		for (i = 0; i < 4; i++) {
			/* pwmcfg, tolarance mapped for i=0, i=1 to same reg */
			if (i != 1) {
503
				pwmcfg = w83627ehf_read_value(data,
504
						W83627EHF_REG_PWM_ENABLE[i]);
505
				tolerance = w83627ehf_read_value(data,
506 507 508 509 510 511 512 513
						W83627EHF_REG_TOLERANCE[i]);
			}
			data->pwm_mode[i] =
				((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1)
				? 0 : 1;
			data->pwm_enable[i] =
					((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
						& 3) + 1;
514
			data->pwm[i] = w83627ehf_read_value(data,
515
						W83627EHF_REG_PWM[i]);
516
			data->fan_min_output[i] = w83627ehf_read_value(data,
517
						W83627EHF_REG_FAN_MIN_OUTPUT[i]);
518
			data->fan_stop_time[i] = w83627ehf_read_value(data,
519 520
						W83627EHF_REG_FAN_STOP_TIME[i]);
			data->target_temp[i] =
521
				w83627ehf_read_value(data,
522 523 524 525 526 527
					W83627EHF_REG_TARGET[i]) &
					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
			data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0))
									& 0x0f;
		}

528
		/* Measured temperatures and limits */
529
		data->temp1 = w83627ehf_read_value(data,
530
			      W83627EHF_REG_TEMP1);
531
		data->temp1_max = w83627ehf_read_value(data,
532
				  W83627EHF_REG_TEMP1_OVER);
533
		data->temp1_max_hyst = w83627ehf_read_value(data,
534 535
				       W83627EHF_REG_TEMP1_HYST);
		for (i = 0; i < 2; i++) {
536
			data->temp[i] = w83627ehf_read_value(data,
537
					W83627EHF_REG_TEMP[i]);
538
			data->temp_max[i] = w83627ehf_read_value(data,
539
					    W83627EHF_REG_TEMP_OVER[i]);
540
			data->temp_max_hyst[i] = w83627ehf_read_value(data,
541 542 543
						 W83627EHF_REG_TEMP_HYST[i]);
		}

544
		data->alarms = w83627ehf_read_value(data,
545
					W83627EHF_REG_ALARM1) |
546
			       (w83627ehf_read_value(data,
547
					W83627EHF_REG_ALARM2) << 8) |
548
			       (w83627ehf_read_value(data,
549 550
					W83627EHF_REG_ALARM3) << 16);

551 552 553 554
		data->last_updated = jiffies;
		data->valid = 1;
	}

555
	mutex_unlock(&data->update_lock);
556 557 558 559 560 561
	return data;
}

/*
 * Sysfs callback functions
 */
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr)); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)

#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg (struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
581
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
582 583 584 585 586 587
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
	mutex_lock(&data->update_lock); \
	data->in_##reg[nr] = in_to_reg(val, nr); \
588
	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(nr), \
589 590 591 592 593 594 595 596
			      data->in_##reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

store_in_reg(MIN, min)
store_in_reg(MAX, max)

597 598 599 600 601 602 603 604
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
}

605 606 607 608 609 610 611 612 613 614 615 616 617
static struct sensor_device_attribute sda_in_input[] = {
	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};

618 619 620 621 622 623 624 625 626 627 628 629 630
static struct sensor_device_attribute sda_in_alarm[] = {
	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
};

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static struct sensor_device_attribute sda_in_min[] = {
       SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
       SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
       SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
       SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
       SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
       SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
       SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
       SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
       SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
       SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};

static struct sensor_device_attribute sda_in_max[] = {
       SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
       SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
       SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
       SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
       SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
       SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
       SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
       SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
       SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
       SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};

657 658
#define show_fan_reg(reg) \
static ssize_t \
659 660
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
661 662
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
663 664
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
665 666 667 668 669 670 671 672
	return sprintf(buf, "%d\n", \
		       fan_from_reg(data->reg[nr], \
				    div_from_reg(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);

static ssize_t
673 674
show_fan_div(struct device *dev, struct device_attribute *attr,
	     char *buf)
675 676
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
677 678 679
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
680 681 682
}

static ssize_t
683 684
store_fan_min(struct device *dev, struct device_attribute *attr,
	      const char *buf, size_t count)
685
{
686
	struct w83627ehf_data *data = dev_get_drvdata(dev);
687 688
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
689 690 691 692
	unsigned int val = simple_strtoul(buf, NULL, 10);
	unsigned int reg;
	u8 new_div;

693
	mutex_lock(&data->update_lock);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	if (!val) {
		/* No min limit, alarm disabled */
		data->fan_min[nr] = 255;
		new_div = data->fan_div[nr]; /* No change */
		dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
	} else if ((reg = 1350000U / val) >= 128 * 255) {
		/* Speed below this value cannot possibly be represented,
		   even with the highest divider (128) */
		data->fan_min[nr] = 254;
		new_div = 7; /* 128 == (1 << 7) */
		dev_warn(dev, "fan%u low limit %u below minimum %u, set to "
			 "minimum\n", nr + 1, val, fan_from_reg(254, 128));
	} else if (!reg) {
		/* Speed above this value cannot possibly be represented,
		   even with the lowest divider (1) */
		data->fan_min[nr] = 1;
		new_div = 0; /* 1 == (1 << 0) */
		dev_warn(dev, "fan%u low limit %u above maximum %u, set to "
712
			 "maximum\n", nr + 1, val, fan_from_reg(1, 1));
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	} else {
		/* Automatically pick the best divider, i.e. the one such
		   that the min limit will correspond to a register value
		   in the 96..192 range */
		new_div = 0;
		while (reg > 192 && new_div < 7) {
			reg >>= 1;
			new_div++;
		}
		data->fan_min[nr] = reg;
	}

	/* Write both the fan clock divider (if it changed) and the new
	   fan min (unconditionally) */
	if (new_div != data->fan_div[nr]) {
728 729 730 731 732 733 734 735 736
		/* Preserve the fan speed reading */
		if (data->fan[nr] != 0xff) {
			if (new_div > data->fan_div[nr])
				data->fan[nr] >>= new_div - data->fan_div[nr];
			else if (data->fan[nr] & 0x80)
				data->fan[nr] = 0xff;
			else
				data->fan[nr] <<= data->fan_div[nr] - new_div;
		}
737 738 739 740 741

		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
			nr + 1, div_from_reg(data->fan_div[nr]),
			div_from_reg(new_div));
		data->fan_div[nr] = new_div;
742
		w83627ehf_write_fan_div(data, nr);
743 744
		/* Give the chip time to sample a new speed value */
		data->last_updated = jiffies;
745
	}
746
	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[nr],
747
			      data->fan_min[nr]);
748
	mutex_unlock(&data->update_lock);
749 750 751 752

	return count;
}

753 754 755 756 757 758 759
static struct sensor_device_attribute sda_fan_input[] = {
	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
760

761 762 763 764 765 766 767 768
static struct sensor_device_attribute sda_fan_alarm[] = {
	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
};

769 770 771 772 773 774 775 776 777 778 779 780
static struct sensor_device_attribute sda_fan_min[] = {
	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 0),
	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 1),
	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 2),
	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 3),
	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 4),
};
781

782 783 784 785 786 787 788 789
static struct sensor_device_attribute sda_fan_div[] = {
	SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
	SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
	SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
	SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
	SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
};

790 791
#define show_temp1_reg(reg) \
static ssize_t \
792 793
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
794 795 796 797 798 799 800 801 802 803
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg)); \
}
show_temp1_reg(temp1);
show_temp1_reg(temp1_max);
show_temp1_reg(temp1_max_hyst);

#define store_temp1_reg(REG, reg) \
static ssize_t \
804 805
store_temp1_##reg(struct device *dev, struct device_attribute *attr, \
		  const char *buf, size_t count) \
806
{ \
807
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
808 809
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
810
	mutex_lock(&data->update_lock); \
811
	data->temp1_##reg = temp1_to_reg(val, -128000, 127000); \
812
	w83627ehf_write_value(data, W83627EHF_REG_TEMP1_##REG, \
813
			      data->temp1_##reg); \
814
	mutex_unlock(&data->update_lock); \
815 816 817 818 819 820 821
	return count; \
}
store_temp1_reg(OVER, max);
store_temp1_reg(HYST, max_hyst);

#define show_temp_reg(reg) \
static ssize_t \
822 823
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
824 825
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
826 827
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
828 829 830 831 832 833 834 835 836
	return sprintf(buf, "%d\n", \
		       LM75_TEMP_FROM_REG(data->reg[nr])); \
}
show_temp_reg(temp);
show_temp_reg(temp_max);
show_temp_reg(temp_max_hyst);

#define store_temp_reg(REG, reg) \
static ssize_t \
837 838
store_##reg(struct device *dev, struct device_attribute *attr, \
	    const char *buf, size_t count) \
839
{ \
840
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
841 842
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
843 844
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
845
	mutex_lock(&data->update_lock); \
846
	data->reg[nr] = LM75_TEMP_TO_REG(val); \
847
	w83627ehf_write_value(data, W83627EHF_REG_TEMP_##REG[nr], \
848
			      data->reg[nr]); \
849
	mutex_unlock(&data->update_lock); \
850 851 852 853 854
	return count; \
}
store_temp_reg(OVER, temp_max);
store_temp_reg(HYST, temp_max_hyst);

855 856 857 858 859 860 861 862 863
static ssize_t
show_temp_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%d\n", (int)data->temp_type[nr]);
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static struct sensor_device_attribute sda_temp[] = {
	SENSOR_ATTR(temp1_input, S_IRUGO, show_temp1, NULL, 0),
	SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0),
	SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 1),
	SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp1_max,
		    store_temp1_max, 0),
	SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 0),
	SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 1),
	SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1_max_hyst,
		    store_temp1_max_hyst, 0),
	SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 0),
	SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 1),
880 881 882
	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
883 884 885
	SENSOR_ATTR(temp1_type, S_IRUGO, show_temp_type, NULL, 0),
	SENSOR_ATTR(temp2_type, S_IRUGO, show_temp_type, NULL, 1),
	SENSOR_ATTR(temp3_type, S_IRUGO, show_temp_type, NULL, 2),
886
};
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
#define show_pwm_reg(reg) \
static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}

show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)

static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
906
	struct w83627ehf_data *data = dev_get_drvdata(dev);
907 908 909 910 911 912 913 914
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (val > 1)
		return -EINVAL;
	mutex_lock(&data->update_lock);
915
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
916 917 918 919
	data->pwm_mode[nr] = val;
	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
	if (!val)
		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
920
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
921 922 923 924 925 926 927 928
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
929
	struct w83627ehf_data *data = dev_get_drvdata(dev);
930 931 932 933 934 935
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255);

	mutex_lock(&data->update_lock);
	data->pwm[nr] = val;
936
	w83627ehf_write_value(data, W83627EHF_REG_PWM[nr], val);
937 938 939 940 941 942 943 944
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
945
	struct w83627ehf_data *data = dev_get_drvdata(dev);
946 947 948 949 950 951 952 953
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (!val || (val > 2))	/* only modes 1 and 2 are supported */
		return -EINVAL;
	mutex_lock(&data->update_lock);
954
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
955 956 957
	data->pwm_enable[nr] = val;
	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
958
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	mutex_unlock(&data->update_lock);
	return count;
}


#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg[nr])); \
}

show_tol_temp(tolerance)
show_tol_temp(target_temp)

static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
981
	struct w83627ehf_data *data = dev_get_drvdata(dev);
982 983 984 985 986 987
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 127000);

	mutex_lock(&data->update_lock);
	data->target_temp[nr] = val;
988
	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
989 990 991 992 993 994 995 996
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
997
	struct w83627ehf_data *data = dev_get_drvdata(dev);
998 999 1000 1001 1002 1003 1004
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u16 reg;
	/* Limit the temp to 0C - 15C */
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 15000);

	mutex_lock(&data->update_lock);
1005
	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
1006 1007 1008 1009 1010
	data->tolerance[nr] = val;
	if (nr == 1)
		reg = (reg & 0x0f) | (val << 4);
	else
		reg = (reg & 0xf0) | val;
1011
	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	mutex_unlock(&data->update_lock);
	return count;
}

static struct sensor_device_attribute sda_pwm[] = {
	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
};

static struct sensor_device_attribute sda_pwm_mode[] = {
	SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 0),
	SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 1),
	SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 2),
	SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 3),
};

static struct sensor_device_attribute sda_pwm_enable[] = {
	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 0),
	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 1),
	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 2),
	SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 3),
};

static struct sensor_device_attribute sda_target_temp[] = {
	SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 0),
	SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 1),
	SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 2),
	SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 3),
};

static struct sensor_device_attribute sda_tolerance[] = {
	SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 0),
	SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 1),
	SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 2),
	SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 3),
};

/* Smart Fan registers */

#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		       char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			    const char *buf, size_t count) \
{\
1082
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1083 1084 1085 1086 1087
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 1, 255); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1088
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	mutex_unlock(&data->update_lock); \
	return count; \
}

fan_functions(fan_min_output, FAN_MIN_OUTPUT)

#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", \
			step_time_from_reg(data->reg[nr], data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
1110
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1111 1112 1113 1114 1115 1116
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u8 val = step_time_to_reg(simple_strtoul(buf, NULL, 10), \
					data->pwm_mode[nr]); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1117
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1118 1119 1120 1121 1122 1123
	mutex_unlock(&data->update_lock); \
	return count; \
} \

fan_time_functions(fan_stop_time, FAN_STOP_TIME)

1124 1125 1126 1127 1128 1129 1130 1131
static ssize_t show_name(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
	SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 3),
	SENSOR_ATTR(pwm4_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 3),
};

static struct sensor_device_attribute sda_sf3_arrays[] = {
	SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 0),
	SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 1),
	SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 2),
	SENSOR_ATTR(pwm1_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 0),
	SENSOR_ATTR(pwm2_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 1),
	SENSOR_ATTR(pwm3_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 2),
};

1155 1156 1157 1158 1159 1160 1161 1162
static ssize_t
show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);

1163
/*
1164
 * Driver and device management
1165 1166
 */

1167 1168 1169 1170 1171
static void w83627ehf_device_remove_files(struct device *dev)
{
	/* some entries in the following arrays may not have been used in
	 * device_create_file(), but device_remove_file() will ignore them */
	int i;
1172
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1173 1174 1175 1176 1177

	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
		device_remove_file(dev, &sda_sf3_arrays[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
		device_remove_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);
1178
	for (i = 0; i < data->in_num; i++) {
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		device_remove_file(dev, &sda_in_input[i].dev_attr);
		device_remove_file(dev, &sda_in_alarm[i].dev_attr);
		device_remove_file(dev, &sda_in_min[i].dev_attr);
		device_remove_file(dev, &sda_in_max[i].dev_attr);
	}
	for (i = 0; i < 5; i++) {
		device_remove_file(dev, &sda_fan_input[i].dev_attr);
		device_remove_file(dev, &sda_fan_alarm[i].dev_attr);
		device_remove_file(dev, &sda_fan_div[i].dev_attr);
		device_remove_file(dev, &sda_fan_min[i].dev_attr);
	}
	for (i = 0; i < 4; i++) {
		device_remove_file(dev, &sda_pwm[i].dev_attr);
		device_remove_file(dev, &sda_pwm_mode[i].dev_attr);
		device_remove_file(dev, &sda_pwm_enable[i].dev_attr);
		device_remove_file(dev, &sda_target_temp[i].dev_attr);
		device_remove_file(dev, &sda_tolerance[i].dev_attr);
	}
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
		device_remove_file(dev, &sda_temp[i].dev_attr);

1200
	device_remove_file(dev, &dev_attr_name);
1201 1202
	if (data->vid != 0x3f)
		device_remove_file(dev, &dev_attr_cpu0_vid);
1203
}
1204

1205 1206
/* Get the monitoring functions started */
static inline void __devinit w83627ehf_init_device(struct w83627ehf_data *data)
1207 1208
{
	int i;
1209
	u8 tmp, diode;
1210 1211

	/* Start monitoring is needed */
1212
	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1213
	if (!(tmp & 0x01))
1214
		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1215 1216 1217 1218
				      tmp | 0x01);

	/* Enable temp2 and temp3 if needed */
	for (i = 0; i < 2; i++) {
1219
		tmp = w83627ehf_read_value(data,
1220 1221
					   W83627EHF_REG_TEMP_CONFIG[i]);
		if (tmp & 0x01)
1222
			w83627ehf_write_value(data,
1223 1224 1225
					      W83627EHF_REG_TEMP_CONFIG[i],
					      tmp & 0xfe);
	}
1226 1227 1228 1229 1230

	/* Enable VBAT monitoring if needed */
	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	if (!(tmp & 0x01))
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1231 1232 1233 1234 1235 1236 1237 1238 1239

	/* Get thermal sensor types */
	diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
	for (i = 0; i < 3; i++) {
		if ((tmp & (0x02 << i)))
			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 2;
		else
			data->temp_type[i] = 4; /* thermistor */
	}
1240 1241
}

1242
static int __devinit w83627ehf_probe(struct platform_device *pdev)
1243
{
1244 1245
	struct device *dev = &pdev->dev;
	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1246
	struct w83627ehf_data *data;
1247
	struct resource *res;
1248
	u8 fan4pin, fan5pin, en_vrm10;
1249 1250
	int i, err = 0;

1251 1252
	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1253
		err = -EBUSY;
1254 1255 1256
		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
			(unsigned long)res->start,
			(unsigned long)res->start + IOREGION_LENGTH - 1);
1257 1258 1259
		goto exit;
	}

D
Deepak Saxena 已提交
1260
	if (!(data = kzalloc(sizeof(struct w83627ehf_data), GFP_KERNEL))) {
1261 1262 1263 1264
		err = -ENOMEM;
		goto exit_release;
	}

1265
	data->addr = res->start;
1266 1267
	mutex_init(&data->lock);
	mutex_init(&data->update_lock);
1268 1269
	data->name = w83627ehf_device_names[sio_data->kind];
	platform_set_drvdata(pdev, data);
1270

1271 1272
	/* 627EHG and 627EHF have 10 voltage inputs; DHG has 9 */
	data->in_num = (sio_data->kind == w83627dhg) ? 9 : 10;
1273 1274

	/* Initialize the chip */
1275
	w83627ehf_init_device(data);
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	data->vrm = vid_which_vrm();
	superio_enter(sio_data->sioreg);
	/* Set VID input sensibility if needed. In theory the BIOS should
	   have set it, but in practice it's not always the case. */
	en_vrm10 = superio_inb(sio_data->sioreg, SIO_REG_EN_VRM10);
	if ((en_vrm10 & 0x08) && data->vrm != 100) {
		dev_warn(dev, "Setting VID input voltage to TTL\n");
		superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
			     en_vrm10 & ~0x08);
	} else if (!(en_vrm10 & 0x08) && data->vrm == 100) {
		dev_warn(dev, "Setting VID input voltage to VRM10\n");
		superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
			     en_vrm10 | 0x08);
	}
	/* Read VID value */
	superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
	if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80)
		data->vid = superio_inb(sio_data->sioreg, SIO_REG_VID_DATA) & 0x3f;
	else {
		dev_info(dev, "VID pins in output mode, CPU VID not "
			 "available\n");
		data->vid = 0x3f;
	}

1301 1302
	/* fan4 and fan5 share some pins with the GPIO and serial flash */

1303 1304 1305
	fan5pin = superio_inb(sio_data->sioreg, 0x24) & 0x2;
	fan4pin = superio_inb(sio_data->sioreg, 0x29) & 0x6;
	superio_exit(sio_data->sioreg);
1306

1307
	/* It looks like fan4 and fan5 pins can be alternatively used
1308 1309 1310 1311
	   as fan on/off switches, but fan5 control is write only :/
	   We assume that if the serial interface is disabled, designers
	   connected fan5 as input unless they are emitting log 1, which
	   is not the default. */
1312

1313
	data->has_fan = 0x07; /* fan1, fan2 and fan3 */
1314
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1315
	if ((i & (1 << 2)) && (!fan4pin))
1316
		data->has_fan |= (1 << 3);
1317
	if (!(i & (1 << 1)) && (!fan5pin))
1318 1319
		data->has_fan |= (1 << 4);

1320 1321 1322
	/* Read fan clock dividers immediately */
	w83627ehf_update_fan_div(data);

1323
	/* Register sysfs hooks */
1324
  	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
1325 1326 1327
		if ((err = device_create_file(dev,
			&sda_sf3_arrays[i].dev_attr)))
			goto exit_remove;
1328 1329 1330

	/* if fan4 is enabled create the sf3 files for it */
	if (data->has_fan & (1 << 3))
1331 1332 1333 1334 1335
		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++) {
			if ((err = device_create_file(dev,
				&sda_sf3_arrays_fan4[i].dev_attr)))
				goto exit_remove;
		}
1336

1337
	for (i = 0; i < data->in_num; i++)
1338 1339 1340 1341 1342 1343 1344 1345
		if ((err = device_create_file(dev, &sda_in_input[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_alarm[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_min[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_max[i].dev_attr)))
			goto exit_remove;
1346

1347
	for (i = 0; i < 5; i++) {
1348
		if (data->has_fan & (1 << i)) {
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			if ((err = device_create_file(dev,
					&sda_fan_input[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_alarm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_div[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_min[i].dev_attr)))
				goto exit_remove;
			if (i < 4 && /* w83627ehf only has 4 pwm */
				((err = device_create_file(dev,
					&sda_pwm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_mode[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_enable[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_target_temp[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_tolerance[i].dev_attr))))
				goto exit_remove;
1370
		}
1371
	}
1372

1373
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
1374 1375 1376
		if ((err = device_create_file(dev, &sda_temp[i].dev_attr)))
			goto exit_remove;

1377 1378 1379 1380
	err = device_create_file(dev, &dev_attr_name);
	if (err)
		goto exit_remove;

1381 1382 1383 1384 1385 1386
	if (data->vid != 0x3f) {
		err = device_create_file(dev, &dev_attr_cpu0_vid);
		if (err)
			goto exit_remove;
	}

1387 1388 1389 1390 1391
	data->class_dev = hwmon_device_register(dev);
	if (IS_ERR(data->class_dev)) {
		err = PTR_ERR(data->class_dev);
		goto exit_remove;
	}
1392 1393 1394

	return 0;

1395 1396
exit_remove:
	w83627ehf_device_remove_files(dev);
1397
	kfree(data);
1398
	platform_set_drvdata(pdev, NULL);
1399
exit_release:
1400
	release_region(res->start, IOREGION_LENGTH);
1401 1402 1403 1404
exit:
	return err;
}

1405
static int __devexit w83627ehf_remove(struct platform_device *pdev)
1406
{
1407
	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1408

1409
	hwmon_device_unregister(data->class_dev);
1410 1411 1412
	w83627ehf_device_remove_files(&pdev->dev);
	release_region(data->addr, IOREGION_LENGTH);
	platform_set_drvdata(pdev, NULL);
1413
	kfree(data);
1414 1415 1416 1417

	return 0;
}

1418
static struct platform_driver w83627ehf_driver = {
1419
	.driver = {
J
Jean Delvare 已提交
1420
		.owner	= THIS_MODULE,
1421
		.name	= DRVNAME,
1422
	},
1423 1424
	.probe		= w83627ehf_probe,
	.remove		= __devexit_p(w83627ehf_remove),
1425 1426
};

1427 1428 1429
/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
				 struct w83627ehf_sio_data *sio_data)
1430
{
1431 1432 1433 1434
	static const char __initdata sio_name_W83627EHF[] = "W83627EHF";
	static const char __initdata sio_name_W83627EHG[] = "W83627EHG";
	static const char __initdata sio_name_W83627DHG[] = "W83627DHG";

1435
	u16 val;
1436
	const char *sio_name;
1437

1438
	superio_enter(sioaddr);
1439

1440 1441
	val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
	    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
1442 1443
	switch (val & SIO_ID_MASK) {
	case SIO_W83627EHF_ID:
1444 1445 1446
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHF;
		break;
1447
	case SIO_W83627EHG_ID:
1448 1449 1450 1451 1452 1453
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHG;
		break;
	case SIO_W83627DHG_ID:
		sio_data->kind = w83627dhg;
		sio_name = sio_name_W83627DHG;
1454 1455
		break;
	default:
1456 1457 1458
		if (val != 0xffff)
			pr_debug(DRVNAME ": unsupported chip ID: 0x%04x\n",
				 val);
1459
		superio_exit(sioaddr);
1460 1461 1462
		return -ENODEV;
	}

1463 1464 1465 1466
	/* We have a known chip, find the HWM I/O address */
	superio_select(sioaddr, W83627EHF_LD_HWM);
	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
1467
	*addr = val & IOREGION_ALIGNMENT;
1468
	if (*addr == 0) {
1469 1470
		printk(KERN_ERR DRVNAME ": Refusing to enable a Super-I/O "
		       "device with a base I/O port 0.\n");
1471
		superio_exit(sioaddr);
1472 1473 1474 1475
		return -ENODEV;
	}

	/* Activate logical device if needed */
1476
	val = superio_inb(sioaddr, SIO_REG_ENABLE);
1477 1478 1479
	if (!(val & 0x01)) {
		printk(KERN_WARNING DRVNAME ": Forcibly enabling Super-I/O. "
		       "Sensor is probably unusable.\n");
1480
		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
1481
	}
1482 1483 1484 1485

	superio_exit(sioaddr);
	pr_info(DRVNAME ": Found %s chip at %#x\n", sio_name, *addr);
	sio_data->sioreg = sioaddr;
1486 1487 1488 1489

	return 0;
}

1490 1491 1492 1493 1494 1495
/* when Super-I/O functions move to a separate file, the Super-I/O
 * bus will manage the lifetime of the device and this module will only keep
 * track of the w83627ehf driver. But since we platform_device_alloc(), we
 * must keep track of the device */
static struct platform_device *pdev;

1496 1497
static int __init sensors_w83627ehf_init(void)
{
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	int err;
	unsigned short address;
	struct resource res;
	struct w83627ehf_sio_data sio_data;

	/* initialize sio_data->kind and sio_data->sioreg.
	 *
	 * when Super-I/O functions move to a separate file, the Super-I/O
	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
	 * w83627ehf hardware monitor, and call probe() */
	if (w83627ehf_find(0x2e, &address, &sio_data) &&
	    w83627ehf_find(0x4e, &address, &sio_data))
1510 1511
		return -ENODEV;

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	err = platform_driver_register(&w83627ehf_driver);
	if (err)
		goto exit;

	if (!(pdev = platform_device_alloc(DRVNAME, address))) {
		err = -ENOMEM;
		printk(KERN_ERR DRVNAME ": Device allocation failed\n");
		goto exit_unregister;
	}

	err = platform_device_add_data(pdev, &sio_data,
				       sizeof(struct w83627ehf_sio_data));
	if (err) {
		printk(KERN_ERR DRVNAME ": Platform data allocation failed\n");
		goto exit_device_put;
	}

	memset(&res, 0, sizeof(res));
	res.name = DRVNAME;
	res.start = address + IOREGION_OFFSET;
	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
	res.flags = IORESOURCE_IO;
	err = platform_device_add_resources(pdev, &res, 1);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device resource addition failed "
		       "(%d)\n", err);
		goto exit_device_put;
	}

	/* platform_device_add calls probe() */
	err = platform_device_add(pdev);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device addition failed (%d)\n",
		       err);
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(pdev);
exit_unregister:
	platform_driver_unregister(&w83627ehf_driver);
exit:
	return err;
1557 1558 1559 1560
}

static void __exit sensors_w83627ehf_exit(void)
{
1561 1562
	platform_device_unregister(pdev);
	platform_driver_unregister(&w83627ehf_driver);
1563 1564 1565 1566 1567 1568 1569 1570
}

MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");

module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);