w83627ehf.c 49.2 KB
Newer Older
1 2 3 4
/*
    w83627ehf - Driver for the hardware monitoring functionality of
                the Winbond W83627EHF Super-I/O chip
    Copyright (C) 2005  Jean Delvare <khali@linux-fr.org>
J
Jean Delvare 已提交
5
    Copyright (C) 2006  Yuan Mu (Winbond),
6
                        Rudolf Marek <r.marek@assembler.cz>
7
                        David Hubbard <david.c.hubbard@gmail.com>
8 9 10 11 12 13 14

    Shamelessly ripped from the w83627hf driver
    Copyright (C) 2003  Mark Studebaker

    Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
    in testing and debugging this driver.

15 16 17
    This driver also supports the W83627EHG, which is the lead-free
    version of the W83627EHF.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


    Supports the following chips:

35 36 37 38
    Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
    w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
                                               0x8860 0xa1
    w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
39 40 41 42 43
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
44 45
#include <linux/jiffies.h>
#include <linux/platform_device.h>
46
#include <linux/hwmon.h>
47
#include <linux/hwmon-sysfs.h>
48
#include <linux/hwmon-vid.h>
49
#include <linux/err.h>
50
#include <linux/mutex.h>
51
#include <linux/acpi.h>
52 53 54
#include <asm/io.h>
#include "lm75.h"

55
enum kinds { w83627ehf, w83627dhg };
56

57 58 59 60 61 62
/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
static const char * w83627ehf_device_names[] = {
	"w83627ehf",
	"w83627dhg",
};

63 64 65 66
static unsigned short force_id;
module_param(force_id, ushort, 0);
MODULE_PARM_DESC(force_id, "Override the detected device ID");

67
#define DRVNAME "w83627ehf"
68

69
/*
70
 * Super-I/O constants and functions
71
 */
72 73 74 75 76

#define W83627EHF_LD_HWM	0x0b

#define SIO_REG_LDSEL		0x07	/* Logical device select */
#define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
77
#define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
78 79
#define SIO_REG_ENABLE		0x30	/* Logical device enable */
#define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
80 81
#define SIO_REG_VID_CTRL	0xF0	/* VID control */
#define SIO_REG_VID_DATA	0xF1	/* VID data */
82

83 84 85 86
#define SIO_W83627EHF_ID	0x8850
#define SIO_W83627EHG_ID	0x8860
#define SIO_W83627DHG_ID	0xa020
#define SIO_ID_MASK		0xFFF0
87 88

static inline void
89
superio_outb(int ioreg, int reg, int val)
90
{
91 92
	outb(reg, ioreg);
	outb(val, ioreg + 1);
93 94 95
}

static inline int
96
superio_inb(int ioreg, int reg)
97
{
98 99
	outb(reg, ioreg);
	return inb(ioreg + 1);
100 101 102
}

static inline void
103
superio_select(int ioreg, int ld)
104
{
105 106
	outb(SIO_REG_LDSEL, ioreg);
	outb(ld, ioreg + 1);
107 108 109
}

static inline void
110
superio_enter(int ioreg)
111
{
112 113
	outb(0x87, ioreg);
	outb(0x87, ioreg);
114 115 116
}

static inline void
117
superio_exit(int ioreg)
118
{
119 120
	outb(0x02, ioreg);
	outb(0x02, ioreg + 1);
121 122 123 124 125 126
}

/*
 * ISA constants
 */

127 128 129
#define IOREGION_ALIGNMENT	~7
#define IOREGION_OFFSET		5
#define IOREGION_LENGTH		2
130 131
#define ADDR_REG_OFFSET		0
#define DATA_REG_OFFSET		1
132 133 134

#define W83627EHF_REG_BANK		0x4E
#define W83627EHF_REG_CONFIG		0x40
135 136 137 138 139 140

/* Not currently used:
 * REG_MAN_ID has the value 0x5ca3 for all supported chips.
 * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
 * REG_MAN_ID is at port 0x4f
 * REG_CHIP_ID is at port 0x58 */
141 142 143 144

static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };

145 146 147 148 149 150 151 152
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
					 (0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
					 (0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
					 (0x550 + (nr) - 7))

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#define W83627EHF_REG_TEMP1		0x27
#define W83627EHF_REG_TEMP1_HYST	0x3a
#define W83627EHF_REG_TEMP1_OVER	0x39
static const u16 W83627EHF_REG_TEMP[] = { 0x150, 0x250 };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x153, 0x253 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x155, 0x255 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0x152, 0x252 };

/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1		0x47
#define W83627EHF_REG_FANDIV2		0x4B
#define W83627EHF_REG_VBAT		0x5D
#define W83627EHF_REG_DIODE		0x59
#define W83627EHF_REG_SMI_OVT		0x4C

168 169 170 171
#define W83627EHF_REG_ALARM1		0x459
#define W83627EHF_REG_ALARM2		0x45A
#define W83627EHF_REG_ALARM3		0x45B

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/* SmartFan registers */
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
	0x04,			/* SYS FAN0 output mode and PWM mode */
	0x04,			/* CPU FAN0 output mode and PWM mode */
	0x12,			/* AUX FAN mode */
	0x62,			/* CPU fan1 mode */
};

static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };

/* FAN Duty Cycle, be used to control */
static const u8 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u8 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };


/* Advanced Fan control, some values are common for all fans */
static const u8 W83627EHF_REG_FAN_MIN_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u8 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0C, 0x0D, 0x17, 0x66 };

194 195 196 197
/*
 * Conversions
 */

198 199 200 201 202 203 204 205 206 207 208 209
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
	return mode ? 100 * reg : 400 * reg;
}

static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
	return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
						(msec + 200) / 400), 1, 255);
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static inline unsigned int
fan_from_reg(u8 reg, unsigned int div)
{
	if (reg == 0 || reg == 255)
		return 0;
	return 1350000U / (reg * div);
}

static inline unsigned int
div_from_reg(u8 reg)
{
	return 1 << reg;
}

static inline int
temp1_from_reg(s8 reg)
{
	return reg * 1000;
}

static inline s8
231
temp1_to_reg(long temp, int min, int max)
232
{
233 234 235 236
	if (temp <= min)
		return min / 1000;
	if (temp >= max)
		return max / 1000;
237 238 239 240 241
	if (temp < 0)
		return (temp - 500) / 1000;
	return (temp + 500) / 1000;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255
/* Some of analog inputs have internal scaling (2x), 8mV is ADC LSB */

static u8 scale_in[10] = { 8, 8, 16, 16, 8, 8, 8, 16, 16, 8 };

static inline long in_from_reg(u8 reg, u8 nr)
{
	return reg * scale_in[nr];
}

static inline u8 in_to_reg(u32 val, u8 nr)
{
	return SENSORS_LIMIT(((val + (scale_in[nr] / 2)) / scale_in[nr]), 0, 255);
}

256 257 258 259 260
/*
 * Data structures and manipulation thereof
 */

struct w83627ehf_data {
261 262 263
	int addr;	/* IO base of hw monitor block */
	const char *name;

264
	struct device *hwmon_dev;
265
	struct mutex lock;
266

267
	struct mutex update_lock;
268 269 270 271
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	/* Register values */
272
	u8 in_num;		/* number of in inputs we have */
273 274 275
	u8 in[10];		/* Register value */
	u8 in_max[10];		/* Register value */
	u8 in_min[10];		/* Register value */
276 277 278 279
	u8 fan[5];
	u8 fan_min[5];
	u8 fan_div[5];
	u8 has_fan;		/* some fan inputs can be disabled */
280
	u8 temp_type[3];
281 282 283 284 285 286
	s8 temp1;
	s8 temp1_max;
	s8 temp1_max_hyst;
	s16 temp[2];
	s16 temp_max[2];
	s16 temp_max_hyst[2];
287
	u32 alarms;
288 289 290 291 292 293 294 295 296 297

	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
	u8 pwm_enable[4]; /* 1->manual
			     2->thermal cruise (also called SmartFan I) */
	u8 pwm[4];
	u8 target_temp[4];
	u8 tolerance[4];

	u8 fan_min_output[4]; /* minimum fan speed */
	u8 fan_stop_time[4];
298 299 300

	u8 vid;
	u8 vrm;
301 302
};

303 304 305 306 307
struct w83627ehf_sio_data {
	int sioreg;
	enum kinds kind;
};

308 309 310 311 312 313 314 315 316
static inline int is_word_sized(u16 reg)
{
	return (((reg & 0xff00) == 0x100
	      || (reg & 0xff00) == 0x200)
	     && ((reg & 0x00ff) == 0x50
	      || (reg & 0x00ff) == 0x53
	      || (reg & 0x00ff) == 0x55));
}

317
/* Registers 0x50-0x5f are banked */
318
static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
319
{
320
	if ((reg & 0x00f0) == 0x50) {
321 322
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(reg >> 8, data->addr + DATA_REG_OFFSET);
323 324 325
	}
}

326
/* Not strictly necessary, but play it safe for now */
327
static inline void w83627ehf_reset_bank(struct w83627ehf_data *data, u16 reg)
328 329
{
	if (reg & 0xff00) {
330 331
		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
		outb_p(0, data->addr + DATA_REG_OFFSET);
332 333 334
	}
}

335
static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
336 337 338
{
	int res, word_sized = is_word_sized(reg);

339
	mutex_lock(&data->lock);
340

341 342 343
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
	res = inb_p(data->addr + DATA_REG_OFFSET);
344 345
	if (word_sized) {
		outb_p((reg & 0xff) + 1,
346 347
		       data->addr + ADDR_REG_OFFSET);
		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
348
	}
349
	w83627ehf_reset_bank(data, reg);
350

351
	mutex_unlock(&data->lock);
352 353 354 355

	return res;
}

356
static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg, u16 value)
357 358 359
{
	int word_sized = is_word_sized(reg);

360
	mutex_lock(&data->lock);
361

362 363
	w83627ehf_set_bank(data, reg);
	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
364
	if (word_sized) {
365
		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
366
		outb_p((reg & 0xff) + 1,
367
		       data->addr + ADDR_REG_OFFSET);
368
	}
369 370
	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
	w83627ehf_reset_bank(data, reg);
371

372
	mutex_unlock(&data->lock);
373 374 375 376
	return 0;
}

/* This function assumes that the caller holds data->update_lock */
377
static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
378 379 380 381 382
{
	u8 reg;

	switch (nr) {
	case 0:
383
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
384
		    | ((data->fan_div[0] & 0x03) << 4);
385 386
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
387 388
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
389
		    | ((data->fan_div[0] & 0x04) << 3);
390
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
391 392
		break;
	case 1:
393
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
394
		    | ((data->fan_div[1] & 0x03) << 6);
395 396
		/* fan5 input control bit is write only, compute the value */
		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
397 398
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
399
		    | ((data->fan_div[1] & 0x04) << 4);
400
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
401 402
		break;
	case 2:
403
		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
404
		    | ((data->fan_div[2] & 0x03) << 6);
405 406
		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
407
		    | ((data->fan_div[2] & 0x04) << 5);
408
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
409 410
		break;
	case 3:
411
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
412
		    | (data->fan_div[3] & 0x03);
413 414
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
415
		    | ((data->fan_div[3] & 0x04) << 5);
416
		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
417 418
		break;
	case 4:
419
		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
420
		    | ((data->fan_div[4] & 0x03) << 2)
421
		    | ((data->fan_div[4] & 0x04) << 5);
422
		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
423 424 425 426
		break;
	}
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
{
	int i;

	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
	data->fan_div[0] = (i >> 4) & 0x03;
	data->fan_div[1] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
	data->fan_div[2] = (i >> 6) & 0x03;
	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	data->fan_div[0] |= (i >> 3) & 0x04;
	data->fan_div[1] |= (i >> 4) & 0x04;
	data->fan_div[2] |= (i >> 5) & 0x04;
	if (data->has_fan & ((1 << 3) | (1 << 4))) {
		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
		data->fan_div[3] = i & 0x03;
		data->fan_div[4] = ((i >> 2) & 0x03)
				 | ((i >> 5) & 0x04);
	}
	if (data->has_fan & (1 << 3)) {
		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
		data->fan_div[3] |= (i >> 5) & 0x04;
	}
}

452 453
static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
454
	struct w83627ehf_data *data = dev_get_drvdata(dev);
455
	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
456 457
	int i;

458
	mutex_lock(&data->update_lock);
459

460
	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
461 462
	 || !data->valid) {
		/* Fan clock dividers */
463
		w83627ehf_update_fan_div(data);
464

465
		/* Measured voltages and limits */
466 467
		for (i = 0; i < data->in_num; i++) {
			data->in[i] = w83627ehf_read_value(data,
468
				      W83627EHF_REG_IN(i));
469
			data->in_min[i] = w83627ehf_read_value(data,
470
					  W83627EHF_REG_IN_MIN(i));
471
			data->in_max[i] = w83627ehf_read_value(data,
472 473 474
					  W83627EHF_REG_IN_MAX(i));
		}

475 476 477 478 479
		/* Measured fan speeds and limits */
		for (i = 0; i < 5; i++) {
			if (!(data->has_fan & (1 << i)))
				continue;

480
			data->fan[i] = w83627ehf_read_value(data,
481
				       W83627EHF_REG_FAN[i]);
482
			data->fan_min[i] = w83627ehf_read_value(data,
483 484 485 486 487 488 489
					   W83627EHF_REG_FAN_MIN[i]);

			/* If we failed to measure the fan speed and clock
			   divider can be increased, let's try that for next
			   time */
			if (data->fan[i] == 0xff
			 && data->fan_div[i] < 0x07) {
490
			 	dev_dbg(dev, "Increasing fan%d "
491
					"clock divider from %u to %u\n",
492
					i + 1, div_from_reg(data->fan_div[i]),
493 494
					div_from_reg(data->fan_div[i] + 1));
				data->fan_div[i]++;
495
				w83627ehf_write_fan_div(data, i);
496 497 498
				/* Preserve min limit if possible */
				if (data->fan_min[i] >= 2
				 && data->fan_min[i] != 255)
499
					w83627ehf_write_value(data,
500 501 502 503 504
						W83627EHF_REG_FAN_MIN[i],
						(data->fan_min[i] /= 2));
			}
		}

505
		for (i = 0; i < 4; i++) {
J
Jean Delvare 已提交
506
			/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
507
			if (i != 1) {
508
				pwmcfg = w83627ehf_read_value(data,
509
						W83627EHF_REG_PWM_ENABLE[i]);
510
				tolerance = w83627ehf_read_value(data,
511 512 513 514 515 516 517 518
						W83627EHF_REG_TOLERANCE[i]);
			}
			data->pwm_mode[i] =
				((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1)
				? 0 : 1;
			data->pwm_enable[i] =
					((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
						& 3) + 1;
519
			data->pwm[i] = w83627ehf_read_value(data,
520
						W83627EHF_REG_PWM[i]);
521
			data->fan_min_output[i] = w83627ehf_read_value(data,
522
						W83627EHF_REG_FAN_MIN_OUTPUT[i]);
523
			data->fan_stop_time[i] = w83627ehf_read_value(data,
524 525
						W83627EHF_REG_FAN_STOP_TIME[i]);
			data->target_temp[i] =
526
				w83627ehf_read_value(data,
527 528 529 530 531 532
					W83627EHF_REG_TARGET[i]) &
					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
			data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0))
									& 0x0f;
		}

533
		/* Measured temperatures and limits */
534
		data->temp1 = w83627ehf_read_value(data,
535
			      W83627EHF_REG_TEMP1);
536
		data->temp1_max = w83627ehf_read_value(data,
537
				  W83627EHF_REG_TEMP1_OVER);
538
		data->temp1_max_hyst = w83627ehf_read_value(data,
539 540
				       W83627EHF_REG_TEMP1_HYST);
		for (i = 0; i < 2; i++) {
541
			data->temp[i] = w83627ehf_read_value(data,
542
					W83627EHF_REG_TEMP[i]);
543
			data->temp_max[i] = w83627ehf_read_value(data,
544
					    W83627EHF_REG_TEMP_OVER[i]);
545
			data->temp_max_hyst[i] = w83627ehf_read_value(data,
546 547 548
						 W83627EHF_REG_TEMP_HYST[i]);
		}

549
		data->alarms = w83627ehf_read_value(data,
550
					W83627EHF_REG_ALARM1) |
551
			       (w83627ehf_read_value(data,
552
					W83627EHF_REG_ALARM2) << 8) |
553
			       (w83627ehf_read_value(data,
554 555
					W83627EHF_REG_ALARM3) << 16);

556 557 558 559
		data->last_updated = jiffies;
		data->valid = 1;
	}

560
	mutex_unlock(&data->update_lock);
561 562 563 564 565 566
	return data;
}

/*
 * Sysfs callback functions
 */
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr)); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)

#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg (struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
586
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
587 588 589 590 591 592
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = simple_strtoul(buf, NULL, 10); \
 \
	mutex_lock(&data->update_lock); \
	data->in_##reg[nr] = in_to_reg(val, nr); \
593
	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(nr), \
594 595 596 597 598 599 600 601
			      data->in_##reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

store_in_reg(MIN, min)
store_in_reg(MAX, max)

602 603 604 605 606 607 608 609
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
}

610 611 612 613 614 615 616 617 618 619 620 621 622
static struct sensor_device_attribute sda_in_input[] = {
	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};

623 624 625 626 627 628 629 630 631 632 633 634 635
static struct sensor_device_attribute sda_in_alarm[] = {
	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
};

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static struct sensor_device_attribute sda_in_min[] = {
       SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
       SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
       SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
       SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
       SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
       SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
       SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
       SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
       SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
       SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};

static struct sensor_device_attribute sda_in_max[] = {
       SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
       SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
       SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
       SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
       SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
       SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
       SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
       SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
       SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
       SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};

662 663
#define show_fan_reg(reg) \
static ssize_t \
664 665
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
666 667
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
668 669
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
670 671 672 673 674 675 676 677
	return sprintf(buf, "%d\n", \
		       fan_from_reg(data->reg[nr], \
				    div_from_reg(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);

static ssize_t
678 679
show_fan_div(struct device *dev, struct device_attribute *attr,
	     char *buf)
680 681
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
682 683 684
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
685 686 687
}

static ssize_t
688 689
store_fan_min(struct device *dev, struct device_attribute *attr,
	      const char *buf, size_t count)
690
{
691
	struct w83627ehf_data *data = dev_get_drvdata(dev);
692 693
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
694 695 696 697
	unsigned int val = simple_strtoul(buf, NULL, 10);
	unsigned int reg;
	u8 new_div;

698
	mutex_lock(&data->update_lock);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	if (!val) {
		/* No min limit, alarm disabled */
		data->fan_min[nr] = 255;
		new_div = data->fan_div[nr]; /* No change */
		dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
	} else if ((reg = 1350000U / val) >= 128 * 255) {
		/* Speed below this value cannot possibly be represented,
		   even with the highest divider (128) */
		data->fan_min[nr] = 254;
		new_div = 7; /* 128 == (1 << 7) */
		dev_warn(dev, "fan%u low limit %u below minimum %u, set to "
			 "minimum\n", nr + 1, val, fan_from_reg(254, 128));
	} else if (!reg) {
		/* Speed above this value cannot possibly be represented,
		   even with the lowest divider (1) */
		data->fan_min[nr] = 1;
		new_div = 0; /* 1 == (1 << 0) */
		dev_warn(dev, "fan%u low limit %u above maximum %u, set to "
717
			 "maximum\n", nr + 1, val, fan_from_reg(1, 1));
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	} else {
		/* Automatically pick the best divider, i.e. the one such
		   that the min limit will correspond to a register value
		   in the 96..192 range */
		new_div = 0;
		while (reg > 192 && new_div < 7) {
			reg >>= 1;
			new_div++;
		}
		data->fan_min[nr] = reg;
	}

	/* Write both the fan clock divider (if it changed) and the new
	   fan min (unconditionally) */
	if (new_div != data->fan_div[nr]) {
733 734 735 736 737 738 739 740 741
		/* Preserve the fan speed reading */
		if (data->fan[nr] != 0xff) {
			if (new_div > data->fan_div[nr])
				data->fan[nr] >>= new_div - data->fan_div[nr];
			else if (data->fan[nr] & 0x80)
				data->fan[nr] = 0xff;
			else
				data->fan[nr] <<= data->fan_div[nr] - new_div;
		}
742 743 744 745 746

		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
			nr + 1, div_from_reg(data->fan_div[nr]),
			div_from_reg(new_div));
		data->fan_div[nr] = new_div;
747
		w83627ehf_write_fan_div(data, nr);
748 749
		/* Give the chip time to sample a new speed value */
		data->last_updated = jiffies;
750
	}
751
	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[nr],
752
			      data->fan_min[nr]);
753
	mutex_unlock(&data->update_lock);
754 755 756 757

	return count;
}

758 759 760 761 762 763 764
static struct sensor_device_attribute sda_fan_input[] = {
	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
765

766 767 768 769 770 771 772 773
static struct sensor_device_attribute sda_fan_alarm[] = {
	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
};

774 775 776 777 778 779 780 781 782 783 784 785
static struct sensor_device_attribute sda_fan_min[] = {
	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 0),
	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 1),
	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 2),
	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 3),
	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
		    store_fan_min, 4),
};
786

787 788 789 790 791 792 793 794
static struct sensor_device_attribute sda_fan_div[] = {
	SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
	SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
	SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
	SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
	SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
};

795 796
#define show_temp1_reg(reg) \
static ssize_t \
797 798
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
799 800 801 802 803 804 805 806 807 808
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg)); \
}
show_temp1_reg(temp1);
show_temp1_reg(temp1_max);
show_temp1_reg(temp1_max_hyst);

#define store_temp1_reg(REG, reg) \
static ssize_t \
809 810
store_temp1_##reg(struct device *dev, struct device_attribute *attr, \
		  const char *buf, size_t count) \
811
{ \
812
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
813
	long val = simple_strtol(buf, NULL, 10); \
814
 \
815
	mutex_lock(&data->update_lock); \
816
	data->temp1_##reg = temp1_to_reg(val, -128000, 127000); \
817
	w83627ehf_write_value(data, W83627EHF_REG_TEMP1_##REG, \
818
			      data->temp1_##reg); \
819
	mutex_unlock(&data->update_lock); \
820 821 822 823 824 825 826
	return count; \
}
store_temp1_reg(OVER, max);
store_temp1_reg(HYST, max_hyst);

#define show_temp_reg(reg) \
static ssize_t \
827 828
show_##reg(struct device *dev, struct device_attribute *attr, \
	   char *buf) \
829 830
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
831 832
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
833 834 835 836 837 838 839 840 841
	return sprintf(buf, "%d\n", \
		       LM75_TEMP_FROM_REG(data->reg[nr])); \
}
show_temp_reg(temp);
show_temp_reg(temp_max);
show_temp_reg(temp_max_hyst);

#define store_temp_reg(REG, reg) \
static ssize_t \
842 843
store_##reg(struct device *dev, struct device_attribute *attr, \
	    const char *buf, size_t count) \
844
{ \
845
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
846 847
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
848
	long val = simple_strtol(buf, NULL, 10); \
849
 \
850
	mutex_lock(&data->update_lock); \
851
	data->reg[nr] = LM75_TEMP_TO_REG(val); \
852
	w83627ehf_write_value(data, W83627EHF_REG_TEMP_##REG[nr], \
853
			      data->reg[nr]); \
854
	mutex_unlock(&data->update_lock); \
855 856 857 858 859
	return count; \
}
store_temp_reg(OVER, temp_max);
store_temp_reg(HYST, temp_max_hyst);

860 861 862 863 864 865 866 867 868
static ssize_t
show_temp_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = w83627ehf_update_device(dev);
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	return sprintf(buf, "%d\n", (int)data->temp_type[nr]);
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static struct sensor_device_attribute sda_temp[] = {
	SENSOR_ATTR(temp1_input, S_IRUGO, show_temp1, NULL, 0),
	SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 0),
	SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 1),
	SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp1_max,
		    store_temp1_max, 0),
	SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 0),
	SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
		    store_temp_max, 1),
	SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp1_max_hyst,
		    store_temp1_max_hyst, 0),
	SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 0),
	SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
		    store_temp_max_hyst, 1),
885 886 887
	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
888 889 890
	SENSOR_ATTR(temp1_type, S_IRUGO, show_temp_type, NULL, 0),
	SENSOR_ATTR(temp2_type, S_IRUGO, show_temp_type, NULL, 1),
	SENSOR_ATTR(temp3_type, S_IRUGO, show_temp_type, NULL, 2),
891
};
892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
#define show_pwm_reg(reg) \
static ssize_t show_##reg (struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}

show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)

static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
911
	struct w83627ehf_data *data = dev_get_drvdata(dev);
912 913 914 915 916 917 918 919
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (val > 1)
		return -EINVAL;
	mutex_lock(&data->update_lock);
920
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
921 922 923 924
	data->pwm_mode[nr] = val;
	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
	if (!val)
		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
925
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
926 927 928 929 930 931 932 933
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
934
	struct w83627ehf_data *data = dev_get_drvdata(dev);
935 936 937 938 939 940
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 0, 255);

	mutex_lock(&data->update_lock);
	data->pwm[nr] = val;
941
	w83627ehf_write_value(data, W83627EHF_REG_PWM[nr], val);
942 943 944 945 946 947 948 949
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
950
	struct w83627ehf_data *data = dev_get_drvdata(dev);
951 952 953 954 955 956 957 958
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u32 val = simple_strtoul(buf, NULL, 10);
	u16 reg;

	if (!val || (val > 2))	/* only modes 1 and 2 are supported */
		return -EINVAL;
	mutex_lock(&data->update_lock);
959
	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
960 961 962
	data->pwm_enable[nr] = val;
	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
963
	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	mutex_unlock(&data->update_lock);
	return count;
}


#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", temp1_from_reg(data->reg[nr])); \
}

show_tol_temp(tolerance)
show_tol_temp(target_temp)

static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
986
	struct w83627ehf_data *data = dev_get_drvdata(dev);
987 988 989 990 991 992
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 127000);

	mutex_lock(&data->update_lock);
	data->target_temp[nr] = val;
993
	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
994 995 996 997 998 999 1000 1001
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
1002
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1003 1004 1005 1006 1007 1008 1009
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
	int nr = sensor_attr->index;
	u16 reg;
	/* Limit the temp to 0C - 15C */
	u8 val = temp1_to_reg(simple_strtoul(buf, NULL, 10), 0, 15000);

	mutex_lock(&data->update_lock);
1010
	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
1011 1012 1013 1014 1015
	data->tolerance[nr] = val;
	if (nr == 1)
		reg = (reg & 0x0f) | (val << 4);
	else
		reg = (reg & 0xf0) | val;
1016
	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	mutex_unlock(&data->update_lock);
	return count;
}

static struct sensor_device_attribute sda_pwm[] = {
	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
};

static struct sensor_device_attribute sda_pwm_mode[] = {
	SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 0),
	SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 1),
	SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 2),
	SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
		    store_pwm_mode, 3),
};

static struct sensor_device_attribute sda_pwm_enable[] = {
	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 0),
	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 1),
	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 2),
	SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
		    store_pwm_enable, 3),
};

static struct sensor_device_attribute sda_target_temp[] = {
	SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 0),
	SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 1),
	SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 2),
	SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
		    store_target_temp, 3),
};

static struct sensor_device_attribute sda_tolerance[] = {
	SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 0),
	SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 1),
	SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 2),
	SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
		    store_tolerance, 3),
};

/* Smart Fan registers */

#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		       char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", data->reg[nr]); \
}\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			    const char *buf, size_t count) \
{\
1087
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1088 1089 1090 1091 1092
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u32 val = SENSORS_LIMIT(simple_strtoul(buf, NULL, 10), 1, 255); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1093
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	mutex_unlock(&data->update_lock); \
	return count; \
}

fan_functions(fan_min_output, FAN_MIN_OUTPUT)

#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
				char *buf) \
{ \
	struct w83627ehf_data *data = w83627ehf_update_device(dev); \
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	return sprintf(buf, "%d\n", \
			step_time_from_reg(data->reg[nr], data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
			const char *buf, size_t count) \
{ \
1115
	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1116 1117 1118 1119 1120 1121
	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); \
	int nr = sensor_attr->index; \
	u8 val = step_time_to_reg(simple_strtoul(buf, NULL, 10), \
					data->pwm_mode[nr]); \
	mutex_lock(&data->update_lock); \
	data->reg[nr] = val; \
1122
	w83627ehf_write_value(data, W83627EHF_REG_##REG[nr], val); \
1123 1124 1125 1126 1127 1128
	mutex_unlock(&data->update_lock); \
	return count; \
} \

fan_time_functions(fan_stop_time, FAN_STOP_TIME)

1129 1130 1131 1132 1133 1134 1135 1136
static ssize_t show_name(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
	SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 3),
	SENSOR_ATTR(pwm4_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 3),
};

static struct sensor_device_attribute sda_sf3_arrays[] = {
	SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 0),
	SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 1),
	SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
		    store_fan_stop_time, 2),
	SENSOR_ATTR(pwm1_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 0),
	SENSOR_ATTR(pwm2_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 1),
	SENSOR_ATTR(pwm3_min_output, S_IWUSR | S_IRUGO, show_fan_min_output,
		    store_fan_min_output, 2),
};

1160 1161 1162 1163 1164 1165 1166 1167
static ssize_t
show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct w83627ehf_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);

1168
/*
1169
 * Driver and device management
1170 1171
 */

1172 1173 1174 1175 1176
static void w83627ehf_device_remove_files(struct device *dev)
{
	/* some entries in the following arrays may not have been used in
	 * device_create_file(), but device_remove_file() will ignore them */
	int i;
1177
	struct w83627ehf_data *data = dev_get_drvdata(dev);
1178 1179 1180 1181 1182

	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
		device_remove_file(dev, &sda_sf3_arrays[i].dev_attr);
	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
		device_remove_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);
1183
	for (i = 0; i < data->in_num; i++) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		device_remove_file(dev, &sda_in_input[i].dev_attr);
		device_remove_file(dev, &sda_in_alarm[i].dev_attr);
		device_remove_file(dev, &sda_in_min[i].dev_attr);
		device_remove_file(dev, &sda_in_max[i].dev_attr);
	}
	for (i = 0; i < 5; i++) {
		device_remove_file(dev, &sda_fan_input[i].dev_attr);
		device_remove_file(dev, &sda_fan_alarm[i].dev_attr);
		device_remove_file(dev, &sda_fan_div[i].dev_attr);
		device_remove_file(dev, &sda_fan_min[i].dev_attr);
	}
	for (i = 0; i < 4; i++) {
		device_remove_file(dev, &sda_pwm[i].dev_attr);
		device_remove_file(dev, &sda_pwm_mode[i].dev_attr);
		device_remove_file(dev, &sda_pwm_enable[i].dev_attr);
		device_remove_file(dev, &sda_target_temp[i].dev_attr);
		device_remove_file(dev, &sda_tolerance[i].dev_attr);
	}
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
		device_remove_file(dev, &sda_temp[i].dev_attr);

1205
	device_remove_file(dev, &dev_attr_name);
1206
	device_remove_file(dev, &dev_attr_cpu0_vid);
1207
}
1208

1209 1210
/* Get the monitoring functions started */
static inline void __devinit w83627ehf_init_device(struct w83627ehf_data *data)
1211 1212
{
	int i;
1213
	u8 tmp, diode;
1214 1215

	/* Start monitoring is needed */
1216
	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1217
	if (!(tmp & 0x01))
1218
		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1219 1220 1221 1222
				      tmp | 0x01);

	/* Enable temp2 and temp3 if needed */
	for (i = 0; i < 2; i++) {
1223
		tmp = w83627ehf_read_value(data,
1224 1225
					   W83627EHF_REG_TEMP_CONFIG[i]);
		if (tmp & 0x01)
1226
			w83627ehf_write_value(data,
1227 1228 1229
					      W83627EHF_REG_TEMP_CONFIG[i],
					      tmp & 0xfe);
	}
1230 1231 1232 1233 1234

	/* Enable VBAT monitoring if needed */
	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
	if (!(tmp & 0x01))
		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1235 1236 1237 1238 1239 1240 1241 1242 1243

	/* Get thermal sensor types */
	diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
	for (i = 0; i < 3; i++) {
		if ((tmp & (0x02 << i)))
			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 2;
		else
			data->temp_type[i] = 4; /* thermistor */
	}
1244 1245
}

1246
static int __devinit w83627ehf_probe(struct platform_device *pdev)
1247
{
1248 1249
	struct device *dev = &pdev->dev;
	struct w83627ehf_sio_data *sio_data = dev->platform_data;
1250
	struct w83627ehf_data *data;
1251
	struct resource *res;
1252
	u8 fan4pin, fan5pin, en_vrm10;
1253 1254
	int i, err = 0;

1255 1256
	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
1257
		err = -EBUSY;
1258 1259 1260
		dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
			(unsigned long)res->start,
			(unsigned long)res->start + IOREGION_LENGTH - 1);
1261 1262 1263
		goto exit;
	}

D
Deepak Saxena 已提交
1264
	if (!(data = kzalloc(sizeof(struct w83627ehf_data), GFP_KERNEL))) {
1265 1266 1267 1268
		err = -ENOMEM;
		goto exit_release;
	}

1269
	data->addr = res->start;
1270 1271
	mutex_init(&data->lock);
	mutex_init(&data->update_lock);
1272 1273
	data->name = w83627ehf_device_names[sio_data->kind];
	platform_set_drvdata(pdev, data);
1274

1275 1276
	/* 627EHG and 627EHF have 10 voltage inputs; DHG has 9 */
	data->in_num = (sio_data->kind == w83627dhg) ? 9 : 10;
1277 1278

	/* Initialize the chip */
1279
	w83627ehf_init_device(data);
1280

1281 1282 1283 1284
	data->vrm = vid_which_vrm();
	superio_enter(sio_data->sioreg);
	/* Read VID value */
	superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
		/* Set VID input sensibility if needed. In theory the BIOS
		   should have set it, but in practice it's not always the
		   case. We only do it for the W83627EHF/EHG because the
		   W83627DHG is more complex in this respect. */
		if (sio_data->kind == w83627ehf) {
			en_vrm10 = superio_inb(sio_data->sioreg,
					       SIO_REG_EN_VRM10);
			if ((en_vrm10 & 0x08) && data->vrm == 90) {
				dev_warn(dev, "Setting VID input voltage to "
					 "TTL\n");
				superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
					     en_vrm10 & ~0x08);
			} else if (!(en_vrm10 & 0x08) && data->vrm == 100) {
				dev_warn(dev, "Setting VID input voltage to "
					 "VRM10\n");
				superio_outb(sio_data->sioreg, SIO_REG_EN_VRM10,
					     en_vrm10 | 0x08);
			}
		}

1306 1307 1308 1309 1310 1311 1312
		data->vid = superio_inb(sio_data->sioreg, SIO_REG_VID_DATA);
		if (sio_data->kind == w83627ehf) /* 6 VID pins only */
			data->vid &= 0x3f;

		err = device_create_file(dev, &dev_attr_cpu0_vid);
		if (err)
			goto exit_release;
1313
	} else {
1314 1315 1316 1317
		dev_info(dev, "VID pins in output mode, CPU VID not "
			 "available\n");
	}

1318 1319
	/* fan4 and fan5 share some pins with the GPIO and serial flash */

1320 1321 1322
	fan5pin = superio_inb(sio_data->sioreg, 0x24) & 0x2;
	fan4pin = superio_inb(sio_data->sioreg, 0x29) & 0x6;
	superio_exit(sio_data->sioreg);
1323

1324
	/* It looks like fan4 and fan5 pins can be alternatively used
1325 1326 1327 1328
	   as fan on/off switches, but fan5 control is write only :/
	   We assume that if the serial interface is disabled, designers
	   connected fan5 as input unless they are emitting log 1, which
	   is not the default. */
1329

1330
	data->has_fan = 0x07; /* fan1, fan2 and fan3 */
1331
	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1332
	if ((i & (1 << 2)) && (!fan4pin))
1333
		data->has_fan |= (1 << 3);
1334
	if (!(i & (1 << 1)) && (!fan5pin))
1335 1336
		data->has_fan |= (1 << 4);

1337 1338 1339
	/* Read fan clock dividers immediately */
	w83627ehf_update_fan_div(data);

1340
	/* Register sysfs hooks */
1341
  	for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
1342 1343 1344
		if ((err = device_create_file(dev,
			&sda_sf3_arrays[i].dev_attr)))
			goto exit_remove;
1345 1346 1347

	/* if fan4 is enabled create the sf3 files for it */
	if (data->has_fan & (1 << 3))
1348 1349 1350 1351 1352
		for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++) {
			if ((err = device_create_file(dev,
				&sda_sf3_arrays_fan4[i].dev_attr)))
				goto exit_remove;
		}
1353

1354
	for (i = 0; i < data->in_num; i++)
1355 1356 1357 1358 1359 1360 1361 1362
		if ((err = device_create_file(dev, &sda_in_input[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_alarm[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_min[i].dev_attr))
			|| (err = device_create_file(dev,
				&sda_in_max[i].dev_attr)))
			goto exit_remove;
1363

1364
	for (i = 0; i < 5; i++) {
1365
		if (data->has_fan & (1 << i)) {
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			if ((err = device_create_file(dev,
					&sda_fan_input[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_alarm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_div[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_fan_min[i].dev_attr)))
				goto exit_remove;
			if (i < 4 && /* w83627ehf only has 4 pwm */
				((err = device_create_file(dev,
					&sda_pwm[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_mode[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_pwm_enable[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_target_temp[i].dev_attr))
				|| (err = device_create_file(dev,
					&sda_tolerance[i].dev_attr))))
				goto exit_remove;
1387
		}
1388
	}
1389

1390
	for (i = 0; i < ARRAY_SIZE(sda_temp); i++)
1391 1392 1393
		if ((err = device_create_file(dev, &sda_temp[i].dev_attr)))
			goto exit_remove;

1394 1395 1396 1397
	err = device_create_file(dev, &dev_attr_name);
	if (err)
		goto exit_remove;

1398 1399 1400
	data->hwmon_dev = hwmon_device_register(dev);
	if (IS_ERR(data->hwmon_dev)) {
		err = PTR_ERR(data->hwmon_dev);
1401 1402
		goto exit_remove;
	}
1403 1404 1405

	return 0;

1406 1407
exit_remove:
	w83627ehf_device_remove_files(dev);
1408
	kfree(data);
1409
	platform_set_drvdata(pdev, NULL);
1410
exit_release:
1411
	release_region(res->start, IOREGION_LENGTH);
1412 1413 1414 1415
exit:
	return err;
}

1416
static int __devexit w83627ehf_remove(struct platform_device *pdev)
1417
{
1418
	struct w83627ehf_data *data = platform_get_drvdata(pdev);
1419

1420
	hwmon_device_unregister(data->hwmon_dev);
1421 1422 1423
	w83627ehf_device_remove_files(&pdev->dev);
	release_region(data->addr, IOREGION_LENGTH);
	platform_set_drvdata(pdev, NULL);
1424
	kfree(data);
1425 1426 1427 1428

	return 0;
}

1429
static struct platform_driver w83627ehf_driver = {
1430
	.driver = {
J
Jean Delvare 已提交
1431
		.owner	= THIS_MODULE,
1432
		.name	= DRVNAME,
1433
	},
1434 1435
	.probe		= w83627ehf_probe,
	.remove		= __devexit_p(w83627ehf_remove),
1436 1437
};

1438 1439 1440
/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
				 struct w83627ehf_sio_data *sio_data)
1441
{
1442 1443 1444 1445
	static const char __initdata sio_name_W83627EHF[] = "W83627EHF";
	static const char __initdata sio_name_W83627EHG[] = "W83627EHG";
	static const char __initdata sio_name_W83627DHG[] = "W83627DHG";

1446
	u16 val;
1447
	const char *sio_name;
1448

1449
	superio_enter(sioaddr);
1450

1451 1452 1453 1454 1455
	if (force_id)
		val = force_id;
	else
		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
1456 1457
	switch (val & SIO_ID_MASK) {
	case SIO_W83627EHF_ID:
1458 1459 1460
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHF;
		break;
1461
	case SIO_W83627EHG_ID:
1462 1463 1464 1465 1466 1467
		sio_data->kind = w83627ehf;
		sio_name = sio_name_W83627EHG;
		break;
	case SIO_W83627DHG_ID:
		sio_data->kind = w83627dhg;
		sio_name = sio_name_W83627DHG;
1468 1469
		break;
	default:
1470 1471 1472
		if (val != 0xffff)
			pr_debug(DRVNAME ": unsupported chip ID: 0x%04x\n",
				 val);
1473
		superio_exit(sioaddr);
1474 1475 1476
		return -ENODEV;
	}

1477 1478 1479 1480
	/* We have a known chip, find the HWM I/O address */
	superio_select(sioaddr, W83627EHF_LD_HWM);
	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
1481
	*addr = val & IOREGION_ALIGNMENT;
1482
	if (*addr == 0) {
1483 1484
		printk(KERN_ERR DRVNAME ": Refusing to enable a Super-I/O "
		       "device with a base I/O port 0.\n");
1485
		superio_exit(sioaddr);
1486 1487 1488 1489
		return -ENODEV;
	}

	/* Activate logical device if needed */
1490
	val = superio_inb(sioaddr, SIO_REG_ENABLE);
1491 1492 1493
	if (!(val & 0x01)) {
		printk(KERN_WARNING DRVNAME ": Forcibly enabling Super-I/O. "
		       "Sensor is probably unusable.\n");
1494
		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
1495
	}
1496 1497 1498 1499

	superio_exit(sioaddr);
	pr_info(DRVNAME ": Found %s chip at %#x\n", sio_name, *addr);
	sio_data->sioreg = sioaddr;
1500 1501 1502 1503

	return 0;
}

1504 1505 1506 1507 1508 1509
/* when Super-I/O functions move to a separate file, the Super-I/O
 * bus will manage the lifetime of the device and this module will only keep
 * track of the w83627ehf driver. But since we platform_device_alloc(), we
 * must keep track of the device */
static struct platform_device *pdev;

1510 1511
static int __init sensors_w83627ehf_init(void)
{
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	int err;
	unsigned short address;
	struct resource res;
	struct w83627ehf_sio_data sio_data;

	/* initialize sio_data->kind and sio_data->sioreg.
	 *
	 * when Super-I/O functions move to a separate file, the Super-I/O
	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
	 * w83627ehf hardware monitor, and call probe() */
	if (w83627ehf_find(0x2e, &address, &sio_data) &&
	    w83627ehf_find(0x4e, &address, &sio_data))
1524 1525
		return -ENODEV;

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	err = platform_driver_register(&w83627ehf_driver);
	if (err)
		goto exit;

	if (!(pdev = platform_device_alloc(DRVNAME, address))) {
		err = -ENOMEM;
		printk(KERN_ERR DRVNAME ": Device allocation failed\n");
		goto exit_unregister;
	}

	err = platform_device_add_data(pdev, &sio_data,
				       sizeof(struct w83627ehf_sio_data));
	if (err) {
		printk(KERN_ERR DRVNAME ": Platform data allocation failed\n");
		goto exit_device_put;
	}

	memset(&res, 0, sizeof(res));
	res.name = DRVNAME;
	res.start = address + IOREGION_OFFSET;
	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
	res.flags = IORESOURCE_IO;
1548 1549 1550 1551 1552

	err = acpi_check_resource_conflict(&res);
	if (err)
		goto exit;

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	err = platform_device_add_resources(pdev, &res, 1);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device resource addition failed "
		       "(%d)\n", err);
		goto exit_device_put;
	}

	/* platform_device_add calls probe() */
	err = platform_device_add(pdev);
	if (err) {
		printk(KERN_ERR DRVNAME ": Device addition failed (%d)\n",
		       err);
		goto exit_device_put;
	}

	return 0;

exit_device_put:
	platform_device_put(pdev);
exit_unregister:
	platform_driver_unregister(&w83627ehf_driver);
exit:
	return err;
1576 1577 1578 1579
}

static void __exit sensors_w83627ehf_exit(void)
{
1580 1581
	platform_device_unregister(pdev);
	platform_driver_unregister(&w83627ehf_driver);
1582 1583 1584 1585 1586 1587 1588 1589
}

MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");

module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);