i40e_txrx.c 63.8 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
S
Scott Peterson 已提交
31
#include "i40e_trace.h"
32
#include "i40e_prototype.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
55 56 57 58
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
59 60 61 62 63 64 65 66 67 68 69
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
107
	netdev_tx_reset_queue(txring_txq(tx_ring));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141
	head = ring->next_to_clean;
142 143 144 145 146 147 148
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
149 150
}

151
#define WB_STRIDE 4
152

153 154
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
155 156 157
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
158 159 160
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
161 162
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
163 164 165 166
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
	struct i40e_tx_desc *tx_desc;
167 168
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

S
Scott Peterson 已提交
184
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
185 186 187
		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
188 189 190 191 192 193 194 195 196 197
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
198
		napi_consume_skb(tx_buf->skb, napi_budget);
199 200 201 202 203 204 205 206 207 208 209 210 211

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
212 213
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

244 245
		prefetch(tx_desc);

246 247 248 249 250 251 252 253 254 255 256 257 258
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

259 260 261 262 263 264
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
265
		unsigned int j = i40evf_get_tx_pending(tx_ring, false);
266 267

		if (budget &&
268
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
269
		    !test_bit(__I40E_DOWN, &vsi->state) &&
270 271 272 273
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

274 275
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
276 277 278 279 280 281 282 283 284 285 286
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
287
		   !test_bit(__I40E_DOWN, &vsi->state)) {
288 289 290 291 292 293
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

294
	return !!budget;
295 296
}

297
/**
298
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
299
 * @vsi: the VSI we care about
300
 * @q_vector: the vector on which to enable writeback
301 302
 *
 **/
303 304
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
305
{
306
	u16 flags = q_vector->tx.ring[0].flags;
307
	u32 val;
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
341 342
}

343 344 345 346
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
347 348
 * Returns true if ITR changed, false if not
 *
349 350 351 352 353 354 355 356
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
357
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
358 359
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
360
	struct i40e_q_vector *qv = rc->ring->q_vector;
361 362
	u32 new_itr = rc->itr;
	int bytes_per_int;
363
	int usecs;
364 365

	if (rc->total_packets == 0 || !rc->itr)
366
		return false;
367 368

	/* simple throttlerate management
369
	 *   0-10MB/s   lowest (50000 ints/s)
370
	 *  10-20MB/s   low    (20000 ints/s)
371 372
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
373 374 375 376
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
377 378
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
379
	 */
380
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
381
	bytes_per_int = rc->total_bytes / usecs;
382

383
	switch (new_latency_range) {
384 385 386 387 388 389 390 391 392 393 394
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
395
	case I40E_ULTRA_LATENCY:
396 397 398
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
399 400
		break;
	}
401 402 403 404 405 406 407 408 409 410 411 412

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

413
	rc->latency_range = new_latency_range;
414 415 416

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
417
		new_itr = I40E_ITR_50K;
418 419 420 421 422
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
423 424 425
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
426 427 428 429 430 431 432 433
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
434 435 436 437 438 439 440

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
441 442
}

J
Jesse Brandeburg 已提交
443
/**
444 445 446 447 448 449 450 451 452 453 454 455 456
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

457 458
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

498 499 500 501 502
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

503 504
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
505 506 507 508 509
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

510 511 512 513 514 515
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
516
					      rx_ring->rx_buf_len,
517 518 519 520
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
521
				     i40e_rx_pg_size(rx_ring),
522 523
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
524

525
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
526 527 528

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
529 530 531 532 533 534 535 536
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

537
	rx_ring->next_to_alloc = 0;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

572 573
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
574 575 576 577 578
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

579
	u64_stats_init(&rx_ring->syncp);
580

581
	/* Round up to nearest 4K */
582
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
583 584 585 586 587 588 589 590 591 592
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

593
	rx_ring->next_to_alloc = 0;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
612 613 614 615

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

616 617 618 619 620 621 622 623 624
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

625 626 627 628 629 630 631 632 633 634 635
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

636
/**
637 638 639
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
640
 *
641 642
 * Returns true if the page was successfully allocated or
 * reused.
643
 **/
644 645
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
646
{
647 648
	struct page *page = bi->page;
	dma_addr_t dma;
649

650 651 652 653 654
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
655

656
	/* alloc new page for storage */
657
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
658 659 660 661
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
662

663
	/* map page for use */
664
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
665
				 i40e_rx_pg_size(rx_ring),
666 667
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
668

669 670
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
671
	 */
672
	if (dma_mapping_error(rx_ring->dev, dma)) {
673
		__free_pages(page, i40e_rx_pg_order(rx_ring));
674 675
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
676 677
	}

678 679
	bi->dma = dma;
	bi->page = page;
680
	bi->page_offset = i40e_rx_offset(rx_ring);
681 682

	/* initialize pagecnt_bias to 1 representing we fully own page */
683
	bi->pagecnt_bias = 1;
684

685 686
	return true;
}
687

688 689 690 691 692 693 694 695 696 697
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
698

699 700 701 702 703
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
704 705 706
}

/**
707
 * i40evf_alloc_rx_buffers - Replace used receive buffers
708 709
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
710
 *
711
 * Returns false if all allocations were successful, true if any fail
712
 **/
713
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
714
{
715
	u16 ntu = rx_ring->next_to_use;
716 717 718 719 720
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
721
		return false;
722

723 724
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
725

726 727 728
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
729

730 731 732
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
733
						 rx_ring->rx_buf_len,
734 735
						 DMA_FROM_DEVICE);

736 737 738 739
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
758 759 760

	return false;

761
no_buffers:
762 763
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
764 765 766 767 768

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
769 770 771 772 773 774
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
775
 * @rx_desc: the receive descriptor
776 777 778
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
779
				    union i40e_rx_desc *rx_desc)
780
{
781 782
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
783
	bool ipv4, ipv6;
784 785 786 787 788 789 790 791 792 793
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
794 795 796

	skb->ip_summed = CHECKSUM_NONE;

797 798
	skb_checksum_none_assert(skb);

799
	/* Rx csum enabled and ip headers found? */
800 801 802 803
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
804
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
805 806 807 808
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
809 810
		return;

811 812 813 814
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
815 816

	if (ipv4 &&
817 818
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
819 820
		goto checksum_fail;

J
Jesse Brandeburg 已提交
821
	/* likely incorrect csum if alternate IP extension headers found */
822
	if (ipv6 &&
823
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
824
		/* don't increment checksum err here, non-fatal err */
825 826
		return;

827
	/* there was some L4 error, count error and punt packet to the stack */
828
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
829 830 831 832 833 834
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
835
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
836 837
		return;

838 839 840 841 842 843 844 845 846 847
	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
848 849 850 851 852

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
853 854 855
}

/**
856
 * i40e_ptype_to_htype - get a hash type
857 858 859 860
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
861
static inline int i40e_ptype_to_htype(u8 ptype)
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

878 879 880 881 882 883 884 885 886 887 888
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
889
	const __le64 rss_mask =
890 891 892 893 894 895 896 897 898 899 900 901
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

902
/**
903 904 905 906 907
 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
908
 *
909 910 911
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
912
 **/
913 914 915 916
static inline
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
			       union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			       u8 rx_ptype)
917
{
918
	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
919

920
	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
921

922
	skb_record_rx_queue(skb, rx_ring->queue_index);
923 924 925

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
926
}
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;
946

947 948
	return false;
}
949

950 951 952 953 954 955 956 957 958 959 960 961
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;
962

963
	new_buff = &rx_ring->rx_bi[nta];
964

965 966 967
	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
968

969
	/* transfer page from old buffer to new buffer */
970 971 972 973
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
974 975 976
}

/**
977
 * i40e_page_is_reusable - check if any reuse is possible
978
 * @page: page struct to check
979 980 981
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
982
 */
983
static inline bool i40e_page_is_reusable(struct page *page)
984
{
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1016
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1017
{
1018 1019
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1020 1021 1022 1023 1024 1025 1026

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1027
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1028 1029
		return false;
#else
1030 1031 1032
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1033 1034 1035
		return false;
#endif

1036 1037 1038 1039
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1040
	if (unlikely(!pagecnt_bias)) {
1041 1042 1043
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1044 1045

	return true;
1046 1047 1048 1049 1050 1051 1052
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1053
 * @size: packet length from rx_desc
1054 1055
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1056
 * It will just attach the page as a frag to the skb.
1057
 *
1058
 * The function will then update the page offset.
1059
 **/
1060
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1061
			     struct i40e_rx_buffer *rx_buffer,
1062 1063
			     struct sk_buff *skb,
			     unsigned int size)
1064 1065
{
#if (PAGE_SIZE < 8192)
1066
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1067
#else
1068
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1069
#endif
1070

1071 1072
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1073

1074 1075 1076 1077 1078 1079
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1105 1106 1107
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1108 1109 1110
	return rx_buffer;
}

1111
/**
1112
 * i40e_construct_skb - Allocate skb and populate it
1113
 * @rx_ring: rx descriptor ring to transact packets on
1114
 * @rx_buffer: rx buffer to pull data from
1115
 * @size: size of buffer to add to skb
1116
 *
1117 1118 1119
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1120
 */
1121 1122 1123
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
					  unsigned int size)
1124
{
1125 1126
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
1127
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1128 1129 1130 1131 1132
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1133

1134 1135
	/* prefetch first cache line of first page */
	prefetch(va);
1136
#if L1_CACHE_BYTES < 128
1137
	prefetch(va + L1_CACHE_BYTES);
1138 1139
#endif

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
		headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1172 1173 1174 1175

	return skb;
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
 * @size: size of buffer to add to skb
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
				      unsigned int size)
{
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif
	/* build an skb around the page buffer */
	skb = build_skb(va - I40E_SKB_PAD, truesize);
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1233 1234 1235 1236 1237
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1238 1239
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1240
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1241 1242
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
1280 1281 1282
}

/**
1283 1284 1285 1286 1287 1288 1289 1290
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
1291
 *
1292
 * Returns amount of work completed
1293
 **/
1294
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1295 1296
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1297
	struct sk_buff *skb = rx_ring->skb;
1298
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1299
	bool failure = false;
1300

1301
	while (likely(total_rx_packets < budget)) {
1302
		struct i40e_rx_buffer *rx_buffer;
1303
		union i40e_rx_desc *rx_desc;
1304
		unsigned int size;
1305
		u16 vlan_tag;
1306 1307 1308
		u8 rx_ptype;
		u64 qword;

1309 1310
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1311
			failure = failure ||
1312
				  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1313 1314 1315
			cleaned_count = 0;
		}

1316 1317 1318 1319 1320
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1321
		 * hardware wrote DD then the length will be non-zero
1322
		 */
1323
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1324

1325
		/* This memory barrier is needed to keep us from reading
1326 1327
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1328
		 */
1329
		dma_rmb();
1330

1331 1332 1333 1334 1335
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
1336
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1337 1338
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

1339 1340 1341
		/* retrieve a buffer from the ring */
		if (skb)
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1342 1343
		else if (ring_uses_build_skb(rx_ring))
			skb = i40e_build_skb(rx_ring, rx_buffer, size);
1344 1345 1346 1347 1348 1349 1350
		else
			skb = i40e_construct_skb(rx_ring, rx_buffer, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
1351
			break;
1352
		}
1353

1354
		i40e_put_rx_buffer(rx_ring, rx_buffer);
1355 1356
		cleaned_count++;

1357
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1358 1359
			continue;

1360 1361 1362 1363 1364 1365
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1366
			dev_kfree_skb_any(skb);
1367
			skb = NULL;
1368 1369 1370
			continue;
		}

1371 1372
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1373
			continue;
1374
		}
1375

1376 1377 1378
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1379 1380 1381 1382
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1383 1384
		/* populate checksum, VLAN, and protocol */
		i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1385 1386


1387 1388 1389
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
1390
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1391
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1392
		skb = NULL;
1393

1394 1395 1396
		/* update budget accounting */
		total_rx_packets++;
	}
1397

1398 1399
	rx_ring->skb = skb;

1400 1401 1402 1403 1404 1405 1406
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1407
	/* guarantee a trip back through this routine if there was a failure */
1408
	return failure ? budget : total_rx_packets;
1409 1410
}

1411 1412 1413 1414 1415
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1416 1417 1418
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1419 1420 1421 1422 1423 1424 1425 1426
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1
1427
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1428 1429 1430
{
	struct i40evf_adapter *adapter = vsi->back;

1431
	return adapter->rx_rings[idx].rx_itr_setting;
1432 1433
}

1434
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1435 1436 1437
{
	struct i40evf_adapter *adapter = vsi->back;

1438
	return adapter->tx_rings[idx].tx_itr_setting;
1439
}
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1451 1452
	bool rx = false, tx = false;
	u32 rxval, txval;
1453
	int vector;
1454 1455
	int idx = q_vector->v_idx;
	int rx_itr_setting, tx_itr_setting;
1456 1457

	vector = (q_vector->v_idx + vsi->base_vector);
1458 1459 1460 1461

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1462 1463
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1464 1465
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1466

1467
	if (q_vector->itr_countdown > 0 ||
1468 1469
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1470 1471 1472
		goto enable_int;
	}

1473
	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1474 1475
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1476
	}
J
Jesse Brandeburg 已提交
1477

1478
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1479 1480 1481
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1495
	}
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1510
enable_int:
1511 1512
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1513 1514 1515 1516 1517

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1518 1519
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1536
	bool arm_wb = false;
1537
	int budget_per_ring;
1538
	int work_done = 0;
1539 1540 1541 1542 1543 1544 1545 1546 1547

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1548
	i40e_for_each_ring(ring, q_vector->tx) {
1549
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1550 1551 1552 1553
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1554
		ring->arm_wb = false;
1555
	}
1556

1557 1558 1559 1560
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1561 1562 1563 1564 1565
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1566
	i40e_for_each_ring(ring, q_vector->rx) {
1567
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1568 1569

		work_done += cleaned;
1570 1571 1572
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1573
	}
1574 1575

	/* If work not completed, return budget and polling will return */
1576
	if (!clean_complete) {
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
1588
tx_only:
1589 1590 1591 1592 1593
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
1594
		}
1595
	}
1596

1597 1598 1599
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1600
	/* Work is done so exit the polling mode and re-enable the interrupt */
1601
	napi_complete_done(napi, work_done);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40evf_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40evf_force_wb(vsi, q_vector);
	else
		i40e_update_enable_itr(vsi, q_vector);

1612
	return min(work_done, budget - 1);
1613 1614 1615
}

/**
1616
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1627 1628 1629
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1630 1631 1632 1633
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1647
	/* if we have a HW VLAN tag being added, default to the HW one */
1648 1649
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1650 1651 1652 1653
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1664
out:
1665 1666 1667 1668 1669 1670
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
1671
 * @first:    pointer to first Tx buffer for xmit
1672
 * @hdr_len:  ptr to the size of the packet header
1673
 * @cd_type_cmd_tso_mss: Quad Word 1
1674 1675 1676
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1677 1678
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
1679
{
1680
	struct sk_buff *skb = first->skb;
1681
	u64 cd_cmd, cd_tso_len, cd_mss;
1682 1683 1684 1685 1686
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1687 1688
	union {
		struct tcphdr *tcp;
1689
		struct udphdr *udp;
1690 1691 1692
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1693
	u16 gso_segs, gso_size;
1694 1695
	int err;

1696 1697 1698
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1699 1700 1701
	if (!skb_is_gso(skb))
		return 0;

1702 1703 1704
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1705

1706 1707
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1708

1709 1710 1711 1712
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1713
	} else {
1714 1715 1716
		ip.v6->payload_len = 0;
	}

1717
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1718
					 SKB_GSO_GRE_CSUM |
1719
					 SKB_GSO_IPXIP4 |
1720
					 SKB_GSO_IPXIP6 |
1721
					 SKB_GSO_UDP_TUNNEL |
1722
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1723 1724 1725 1726
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

1727 1728 1729 1730
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1731
			paylen = skb->len - l4_offset;
1732 1733
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
1734 1735
		}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1747 1748
	}

1749 1750 1751 1752
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1753
	paylen = skb->len - l4_offset;
1754
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1755 1756 1757

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1758

1759 1760 1761 1762 1763 1764 1765 1766
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

1767 1768 1769
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
1770
	cd_mss = gso_size;
1771 1772 1773
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1774 1775 1776 1777 1778 1779
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1780
 * @tx_flags: pointer to Tx flags currently set
1781 1782
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1783
 * @tx_ring: Tx descriptor ring
1784 1785
 * @cd_tunneling: ptr to context desc bits
 **/
1786 1787 1788 1789
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1790
{
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1801
	unsigned char *exthdr;
1802
	u32 offset, cmd = 0;
1803
	__be16 frag_off;
1804 1805
	u8 l4_proto = 0;

1806 1807 1808
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1809 1810
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1811

1812 1813 1814
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1815
	if (skb->encapsulation) {
1816
		u32 tunnel = 0;
1817 1818
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1819 1820 1821 1822
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1823 1824
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1825
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1826 1827

			exthdr = ip.hdr + sizeof(*ip.v6);
1828
			l4_proto = ip.v6->nexthdr;
1829 1830 1831
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1832 1833 1834 1835
		}

		/* define outer transport */
		switch (l4_proto) {
1836
		case IPPROTO_UDP:
1837
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1838
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1839
			break;
1840
		case IPPROTO_GRE:
1841
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1842 1843
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1844 1845 1846 1847 1848
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
1849
		default:
1850 1851 1852 1853 1854
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1855
		}
1856

1857 1858 1859 1860 1861 1862 1863
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1864 1865 1866 1867
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1868 1869
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1870
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1871 1872 1873
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1874 1875 1876
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1877 1878
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1879
		l4_proto = 0;
1880

1881 1882 1883 1884 1885
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1886
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1887 1888 1889
	}

	/* Enable IP checksum offloads */
1890
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1891
		l4_proto = ip.v4->protocol;
1892 1893 1894
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1895 1896 1897
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1898
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1899
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1900 1901 1902 1903 1904 1905

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1906
	}
1907

1908 1909
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1910 1911

	/* Enable L4 checksum offloads */
1912
	switch (l4_proto) {
1913 1914
	case IPPROTO_TCP:
		/* enable checksum offloads */
1915 1916
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1917 1918 1919
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1920 1921 1922
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1923 1924 1925
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1926 1927 1928
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1929 1930
		break;
	default:
1931 1932 1933 1934
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1935
	}
1936 1937 1938

	*td_cmd |= cmd;
	*td_offset |= offset;
1939 1940

	return 1;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1957 1958
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1970
	context_desc->rsvd = cpu_to_le16(0);
1971 1972 1973
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1974
/**
1975
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1976 1977
 * @skb:      send buffer
 *
1978 1979 1980 1981 1982 1983 1984 1985
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
1986
 **/
1987
bool __i40evf_chk_linearize(struct sk_buff *skb)
1988
{
1989
	const struct skb_frag_struct *frag, *stale;
1990
	int nr_frags, sum;
1991

1992
	/* no need to check if number of frags is less than 7 */
1993
	nr_frags = skb_shinfo(skb)->nr_frags;
1994
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1995
		return false;
1996

1997
	/* We need to walk through the list and validate that each group
1998
	 * of 6 fragments totals at least gso_size.
1999
	 */
2000
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2001 2002 2003 2004 2005 2006 2007 2008
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2009
	sum = 1 - skb_shinfo(skb)->gso_size;
2010

2011 2012 2013 2014 2015 2016
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2017 2018 2019 2020 2021 2022

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2023
		sum += skb_frag_size(frag++);
2024 2025 2026 2027 2028

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2029
		if (!nr_frags--)
2030 2031
			break;

2032
		sum -= skb_frag_size(stale++);
2033 2034
	}

2035
	return false;
2036 2037
}

2038 2039 2040 2041 2042 2043 2044
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2045
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2061
/**
2062
 * i40evf_tx_map - Build the Tx descriptor
2063 2064 2065 2066 2067 2068 2069 2070
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2071 2072 2073
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2098 2099
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

2100 2101 2102 2103 2104 2105 2106
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2107 2108
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2109 2110 2111 2112 2113
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2114
					   max_data, td_tag);
2115 2116 2117

			tx_desc++;
			i++;
2118

2119 2120 2121 2122 2123
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2124 2125
			dma += max_data;
			size -= max_data;
2126

2127
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

2154
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2155 2156 2157 2158 2159 2160 2161

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2162
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2163

2164 2165
	/* write last descriptor with RS and EOP bits */
	td_cmd |= I40E_TXD_CMD;
2166
	tx_desc->cmd_type_offset_bsz =
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2179

2180
	/* notify HW of packet */
2181
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2182
		writel(i, tx_ring->tail);
2183 2184 2185 2186 2187

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2188
	}
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2227
	int tso, count;
J
Jesse Brandeburg 已提交
2228

2229 2230 2231
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
2232 2233
	i40e_trace(xmit_frame_ring, skb, tx_ring);

2234
	count = i40e_xmit_descriptor_count(skb);
2235
	if (i40e_chk_linearize(skb, count)) {
2236 2237 2238 2239
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2240
		count = i40e_txd_use_count(skb->len);
2241 2242
		tx_ring->tx_stats.tx_linearize++;
	}
2243 2244 2245 2246 2247 2248 2249 2250 2251

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2252
		return NETDEV_TX_BUSY;
2253
	}
2254

2255 2256 2257 2258 2259 2260
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2261
	/* prepare the xmit flags */
2262
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2263 2264 2265
		goto out_drop;

	/* obtain protocol of skb */
2266
	protocol = vlan_get_protocol(skb);
2267 2268 2269 2270 2271 2272 2273

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2274
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2275 2276 2277 2278 2279 2280 2281

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2282 2283 2284 2285
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2286

2287 2288 2289 2290 2291
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2292 2293 2294
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2295 2296
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2297 2298 2299 2300

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
2301
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2302 2303
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2317
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}