i40e_txrx.c 59.6 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54
		dev_kfree_skb_any(tx_buffer->skb);
55 56 57 58 59 60 61 62 63 64 65
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
66 67 68 69

	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
		kfree(tx_buffer->raw_buf);

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
						  tx_ring->queue_index));
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141 142 143 144
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
145 146 147 148 149 150 151
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
152 153
}

154 155
#define WB_STRIDE 0x3

156 157
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
158 159 160
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
161 162 163
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
164 165
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
166 167 168
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
169
	struct i40e_tx_desc *tx_head;
170
	struct i40e_tx_desc *tx_desc;
171 172
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
173 174 175 176 177

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

178 179
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

180 181 182 183 184 185 186 187 188 189
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

190 191
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
192 193 194 195 196 197 198 199 200 201
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
202
		napi_consume_skb(tx_buf->skb, napi_budget);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

246 247
		prefetch(tx_desc);

248 249 250 251 252 253 254 255 256 257 258 259 260
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

261 262 263 264 265 266 267
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		unsigned int j = 0;
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
268
		j = i40evf_get_tx_pending(tx_ring, false);
269 270 271

		if (budget &&
		    ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
272
		    !test_bit(__I40E_DOWN, &vsi->state) &&
273 274 275 276
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

277 278 279 280 281 282 283 284 285 286 287 288 289
	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
						      tx_ring->queue_index),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
290
		   !test_bit(__I40E_DOWN, &vsi->state)) {
291 292 293 294 295 296
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

297
	return !!budget;
298 299
}

300
/**
301
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
302
 * @vsi: the VSI we care about
303
 * @q_vector: the vector on which to enable writeback
304 305
 *
 **/
306 307
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
308
{
309
	u16 flags = q_vector->tx.ring[0].flags;
310
	u32 val;
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
344 345
}

346 347 348 349
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
350 351
 * Returns true if ITR changed, false if not
 *
352 353 354 355 356 357 358 359
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
360
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
361 362
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
363
	struct i40e_q_vector *qv = rc->ring->q_vector;
364 365
	u32 new_itr = rc->itr;
	int bytes_per_int;
366
	int usecs;
367 368

	if (rc->total_packets == 0 || !rc->itr)
369
		return false;
370 371

	/* simple throttlerate management
372
	 *   0-10MB/s   lowest (50000 ints/s)
373
	 *  10-20MB/s   low    (20000 ints/s)
374 375
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
376 377 378 379
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
380 381
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
382
	 */
383
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
384
	bytes_per_int = rc->total_bytes / usecs;
385

386
	switch (new_latency_range) {
387 388 389 390 391 392 393 394 395 396 397
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
398
	case I40E_ULTRA_LATENCY:
399 400 401
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
402 403
		break;
	}
404 405 406 407 408 409 410 411 412 413 414 415

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

416
	rc->latency_range = new_latency_range;
417 418 419

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
420
		new_itr = I40E_ITR_50K;
421 422 423 424 425
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
426 427 428
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
429 430 431 432 433 434 435 436
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
437 438 439 440 441 442 443

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
444 445
}

J
Jesse Brandeburg 已提交
446
/**
447 448 449 450 451 452 453 454 455 456 457 458 459
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

460 461
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
462 463 464 465 466 467 468
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
469 470 471 472
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

507 508 509 510 511 512 513 514 515 516 517 518
	if (ring_is_ps_enabled(rx_ring)) {
		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;

		rx_bi = &rx_ring->rx_bi[0];
		if (rx_bi->hdr_buf) {
			dma_free_coherent(dev,
					  bufsz,
					  rx_bi->hdr_buf,
					  rx_bi->dma);
			for (i = 0; i < rx_ring->count; i++) {
				rx_bi = &rx_ring->rx_bi[i];
				rx_bi->dma = 0;
519
				rx_bi->hdr_buf = NULL;
520 521 522
			}
		}
	}
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		if (rx_bi->dma) {
			dma_unmap_single(dev,
					 rx_bi->dma,
					 rx_ring->rx_buf_len,
					 DMA_FROM_DEVICE);
			rx_bi->dma = 0;
		}
		if (rx_bi->skb) {
			dev_kfree_skb(rx_bi->skb);
			rx_bi->skb = NULL;
		}
		if (rx_bi->page) {
			if (rx_bi->page_dma) {
				dma_unmap_page(dev,
					       rx_bi->page_dma,
541
					       PAGE_SIZE,
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
					       DMA_FROM_DEVICE);
				rx_bi->page_dma = 0;
			}
			__free_page(rx_bi->page);
			rx_bi->page = NULL;
			rx_bi->page_offset = 0;
		}
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
/**
 * i40evf_alloc_rx_headers - allocate rx header buffers
 * @rx_ring: ring to alloc buffers
 *
 * Allocate rx header buffers for the entire ring. As these are static,
 * this is only called when setting up a new ring.
 **/
void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	dma_addr_t dma;
	void *buffer;
	int buf_size;
	int i;

	if (rx_ring->rx_bi[0].hdr_buf)
		return;
	/* Make sure the buffers don't cross cache line boundaries. */
	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
				    &dma, GFP_KERNEL);
	if (!buffer)
		return;
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		rx_bi->dma = dma + (i * buf_size);
		rx_bi->hdr_buf = buffer + (i * buf_size);
	}
}

611 612 613 614 615 616 617 618 619 620 621
/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

622 623
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
624 625 626 627 628
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

629
	u64_stats_init(&rx_ring->syncp);
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	/* Round up to nearest 4K */
	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
673 674 675
 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
676 677
 *
 * Returns true if any errors on allocation
678
 **/
679
bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
680 681 682 683
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
684
	const int current_node = numa_node_id();
685 686 687

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
688
		return false;
689 690 691 692 693 694 695

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];

		if (bi->skb) /* desc is in use */
			goto no_buffers;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

	/* If we've been moved to a different NUMA node, release the
	 * page so we can get a new one on the current node.
	 */
		if (bi->page &&  page_to_nid(bi->page) != current_node) {
			dma_unmap_page(rx_ring->dev,
				       bi->page_dma,
				       PAGE_SIZE,
				       DMA_FROM_DEVICE);
			__free_page(bi->page);
			bi->page = NULL;
			bi->page_dma = 0;
			rx_ring->rx_stats.realloc_count++;
		} else if (bi->page) {
			rx_ring->rx_stats.page_reuse_count++;
		}

713 714 715 716 717 718 719 720
		if (!bi->page) {
			bi->page = alloc_page(GFP_ATOMIC);
			if (!bi->page) {
				rx_ring->rx_stats.alloc_page_failed++;
				goto no_buffers;
			}
			bi->page_dma = dma_map_page(rx_ring->dev,
						    bi->page,
721 722
						    0,
						    PAGE_SIZE,
723
						    DMA_FROM_DEVICE);
724
			if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
725
				rx_ring->rx_stats.alloc_page_failed++;
726 727
				__free_page(bi->page);
				bi->page = NULL;
728
				bi->page_dma = 0;
729
				bi->page_offset = 0;
730 731
				goto no_buffers;
			}
732
			bi->page_offset = 0;
733 734 735 736 737
		}

		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
738 739
		rx_desc->read.pkt_addr =
				cpu_to_le64(bi->page_dma + bi->page_offset);
740 741 742 743 744 745
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

746 747 748 749 750
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);

	return false;

751 752 753
no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
754 755 756 757 758

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
759 760 761 762
}

/**
 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
763 764
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
765 766
 *
 * Returns true if any errors on allocation
767
 **/
768
bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
769 770 771 772 773 774 775 776
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
	struct sk_buff *skb;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
777
		return false;
778 779 780 781 782 783 784

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];
		skb = bi->skb;

		if (!skb) {
J
Jesse Brandeburg 已提交
785 786 787 788
			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
							  rx_ring->rx_buf_len,
							  GFP_ATOMIC |
							  __GFP_NOWARN);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
			if (!skb) {
				rx_ring->rx_stats.alloc_buff_failed++;
				goto no_buffers;
			}
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			bi->skb = skb;
		}

		if (!bi->dma) {
			bi->dma = dma_map_single(rx_ring->dev,
						 skb->data,
						 rx_ring->rx_buf_len,
						 DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
				rx_ring->rx_stats.alloc_buff_failed++;
				bi->dma = 0;
806 807
				dev_kfree_skb(bi->skb);
				bi->skb = NULL;
808 809 810 811
				goto no_buffers;
			}
		}

812 813
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
		rx_desc->read.hdr_addr = 0;
814 815 816 817 818
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

819 820 821 822 823
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);

	return false;

824 825 826
no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
827 828 829 830 831

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
}

/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;

	if (vlan_tag & VLAN_VID_MASK)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

848
	napi_gro_receive(&q_vector->napi, skb);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
 * @rx_status: status value of last descriptor in packet
 * @rx_error: error value of last descriptor in packet
 * @rx_ptype: ptype value of last descriptor in packet
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
				    u32 rx_status,
				    u32 rx_error,
				    u16 rx_ptype)
{
865
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
866
	bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
867 868 869 870

	skb->ip_summed = CHECKSUM_NONE;

	/* Rx csum enabled and ip headers found? */
871 872 873 874
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
875
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
876 877 878 879
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
880 881
		return;

882 883 884 885
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
886 887

	if (ipv4 &&
888 889
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
890 891
		goto checksum_fail;

J
Jesse Brandeburg 已提交
892
	/* likely incorrect csum if alternate IP extension headers found */
893
	if (ipv6 &&
894
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
895
		/* don't increment checksum err here, non-fatal err */
896 897
		return;

898
	/* there was some L4 error, count error and punt packet to the stack */
899
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
900 901 902 903 904 905
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
906
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
907 908
		return;

909 910 911 912 913
	/* The hardware supported by this driver does not validate outer
	 * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
	 * with it but the specification states that you "MAY validate", it
	 * doesn't make it a hard requirement so if we have validated the
	 * inner checksum report CHECKSUM_UNNECESSARY.
914
	 */
915

916 917 918 919 920
	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);

921
	skb->ip_summed = CHECKSUM_UNNECESSARY;
922
	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
923 924 925 926 927

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
928 929 930
}

/**
931
 * i40e_ptype_to_htype - get a hash type
932 933 934 935
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
936
static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
	const __le64 rss_mask  =
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

977
/**
978
 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
979 980 981 982 983
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
984
static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
985 986 987 988 989 990 991 992
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	u16 i = rx_ring->next_to_clean;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
993
	bool failure = false;
994
	u8 rx_ptype;
995
	u64 qword;
996
	u32 copysize;
997

998
	do {
999 1000 1001
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1002 1003
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1004 1005 1006
			failure = failure ||
				  i40evf_alloc_rx_buffers_ps(rx_ring,
							     cleaned_count);
1007 1008 1009 1010 1011 1012 1013 1014 1015
			cleaned_count = 0;
		}

		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;

1016
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1017 1018 1019 1020 1021 1022
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1023
		dma_rmb();
1024 1025 1026 1027 1028 1029
		/* sync header buffer for reading */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_ring->rx_bi[0].dma,
					      i * rx_ring->rx_hdr_len,
					      rx_ring->rx_hdr_len,
					      DMA_FROM_DEVICE);
1030 1031
		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
1032
		if (likely(!skb)) {
J
Jesse Brandeburg 已提交
1033 1034 1035 1036
			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
							  rx_ring->rx_hdr_len,
							  GFP_ATOMIC |
							  __GFP_NOWARN);
1037
			if (!skb) {
1038
				rx_ring->rx_stats.alloc_buff_failed++;
1039
				failure = true;
1040 1041 1042
				break;
			}

1043 1044 1045 1046
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			/* we are reusing so sync this buffer for CPU use */
			dma_sync_single_range_for_cpu(rx_ring->dev,
J
Jesse Brandeburg 已提交
1047 1048
						      rx_ring->rx_bi[0].dma,
						      i * rx_ring->rx_hdr_len,
1049 1050 1051
						      rx_ring->rx_hdr_len,
						      DMA_FROM_DEVICE);
		}
1052 1053 1054 1055 1056 1057 1058 1059 1060
		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1061 1062
		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1063 1064 1065

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
1066 1067 1068 1069 1070 1071 1072
		/* sync half-page for reading */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->page_dma,
					      rx_bi->page_offset,
					      PAGE_SIZE / 2,
					      DMA_FROM_DEVICE);
		prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1073
		rx_bi->skb = NULL;
1074
		cleaned_count++;
1075
		copysize = 0;
1076 1077
		if (rx_hbo || rx_sph) {
			int len;
J
Jesse Brandeburg 已提交
1078

1079 1080 1081
			if (rx_hbo)
				len = I40E_RX_HDR_SIZE;
			else
1082 1083 1084 1085
				len = rx_header_len;
			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
		} else if (skb->len == 0) {
			int len;
1086 1087
			unsigned char *va = page_address(rx_bi->page) +
					    rx_bi->page_offset;
1088

1089 1090 1091
			len = min(rx_packet_len, rx_ring->rx_hdr_len);
			memcpy(__skb_put(skb, len), va, len);
			copysize = len;
1092
			rx_packet_len -= len;
1093 1094
		}
		/* Get the rest of the data if this was a header split */
1095
		if (rx_packet_len) {
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
					rx_bi->page,
					rx_bi->page_offset + copysize,
					rx_packet_len, I40E_RXBUFFER_2048);

			/* If the page count is more than 2, then both halves
			 * of the page are used and we need to free it. Do it
			 * here instead of in the alloc code. Otherwise one
			 * of the half-pages might be released between now and
			 * then, and we wouldn't know which one to use.
M
Mitch Williams 已提交
1106 1107 1108 1109
			 * Don't call get_page and free_page since those are
			 * both expensive atomic operations that just change
			 * the refcount in opposite directions. Just give the
			 * page to the stack; he can have our refcount.
1110 1111 1112 1113 1114 1115
			 */
			if (page_count(rx_bi->page) > 2) {
				dma_unmap_page(rx_ring->dev,
					       rx_bi->page_dma,
					       PAGE_SIZE,
					       DMA_FROM_DEVICE);
1116
				rx_bi->page = NULL;
1117 1118
				rx_bi->page_dma = 0;
				rx_ring->rx_stats.realloc_count++;
M
Mitch Williams 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
			} else {
				get_page(rx_bi->page);
				/* switch to the other half-page here; the
				 * allocation code programs the right addr
				 * into HW. If we haven't used this half-page,
				 * the address won't be changed, and HW can
				 * just use it next time through.
				 */
				rx_bi->page_offset ^= PAGE_SIZE / 2;
1128
			}
1129 1130

		}
1131
		I40E_RX_INCREMENT(rx_ring, i);
1132 1133

		if (unlikely(
1134
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1135 1136 1137
			struct i40e_rx_buffer *next_buffer;

			next_buffer = &rx_ring->rx_bi[i];
1138
			next_buffer->skb = skb;
1139
			rx_ring->rx_stats.non_eop_descs++;
1140
			continue;
1141 1142 1143
		}

		/* ERR_MASK will only have valid bits if EOP set */
1144
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1145
			dev_kfree_skb_any(skb);
1146
			continue;
1147 1148
		}

1149 1150
		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

1151 1152 1153 1154 1155 1156 1157 1158
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1159
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1160 1161
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
1162
#ifdef I40E_FCOE
1163 1164 1165
		if (unlikely(
		    i40e_rx_is_fcoe(rx_ptype) &&
		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1166 1167 1168 1169
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1170 1171 1172 1173
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;

1174 1175 1176 1177 1178 1179 1180 1181 1182
	} while (likely(total_rx_packets < budget));

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1183
	return failure ? budget : total_rx_packets;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
}

/**
 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns number of packets cleaned
 **/
static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
	u16 rx_packet_len;
1201
	bool failure = false;
1202 1203 1204 1205 1206 1207 1208 1209
	u8 rx_ptype;
	u64 qword;
	u16 i;

	do {
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1210 1211
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1212 1213 1214
			failure = failure ||
				  i40evf_alloc_rx_buffers_1buf(rx_ring,
							       cleaned_count);
1215 1216 1217
			cleaned_count = 0;
		}

1218 1219
		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
1220 1221
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1222 1223
			I40E_RXD_QW1_STATUS_SHIFT;

1224
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1225 1226 1227 1228 1229 1230
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1231
		dma_rmb();
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
		prefetch(skb->data);

		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1242
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
		rx_bi->skb = NULL;
		cleaned_count++;

		/* Get the header and possibly the whole packet
		 * If this is an skb from previous receive dma will be 0
		 */
		skb_put(skb, rx_packet_len);
		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
				 DMA_FROM_DEVICE);
		rx_bi->dma = 0;

		I40E_RX_INCREMENT(rx_ring, i);

		if (unlikely(
1260
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1261 1262 1263 1264 1265
			rx_ring->rx_stats.non_eop_descs++;
			continue;
		}

		/* ERR_MASK will only have valid bits if EOP set */
1266
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1267 1268 1269 1270
			dev_kfree_skb_any(skb);
			continue;
		}

1271
		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1272 1273 1274 1275 1276 1277 1278 1279
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1280
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1281 1282 1283 1284 1285 1286
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;
	} while (likely(total_rx_packets < budget));
1287 1288 1289 1290 1291 1292 1293 1294

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1295
	return failure ? budget : total_rx_packets;
1296 1297
}

1298 1299 1300 1301 1302
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1303 1304 1305
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1306 1307 1308 1309 1310 1311 1312 1313 1314
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1325 1326
	bool rx = false, tx = false;
	u32 rxval, txval;
1327 1328 1329
	int vector;

	vector = (q_vector->v_idx + vsi->base_vector);
1330 1331 1332 1333

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1334 1335
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1336 1337 1338 1339 1340 1341
	if (q_vector->itr_countdown > 0 ||
	    (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
		goto enable_int;
	}

1342
	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1343 1344
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1345
	}
J
Jesse Brandeburg 已提交
1346

1347
	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1348 1349 1350
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1364
	}
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1379
enable_int:
1380 1381
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1382 1383 1384 1385 1386

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1387 1388
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1405
	bool arm_wb = false;
1406
	int budget_per_ring;
1407
	int work_done = 0;
1408 1409 1410 1411 1412 1413 1414 1415 1416

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1417
	i40e_for_each_ring(ring, q_vector->tx) {
1418
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1419 1420 1421 1422
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1423
		ring->arm_wb = false;
1424
	}
1425

1426 1427 1428 1429
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1430 1431 1432 1433 1434
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1435
	i40e_for_each_ring(ring, q_vector->rx) {
1436 1437
		int cleaned;

1438 1439 1440 1441
		if (ring_is_ps_enabled(ring))
			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
		else
			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1442 1443

		work_done += cleaned;
1444 1445 1446
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1447
	}
1448 1449

	/* If work not completed, return budget and polling will return */
1450
	if (!clean_complete) {
1451
tx_only:
1452 1453
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1454
			i40e_enable_wb_on_itr(vsi, q_vector);
1455
		}
1456
		return budget;
1457
	}
1458

1459 1460 1461
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1462
	/* Work is done so exit the polling mode and re-enable the interrupt */
1463
	napi_complete_done(napi, work_done);
1464
	i40e_update_enable_itr(vsi, q_vector);
1465 1466 1467 1468
	return 0;
}

/**
1469
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1480 1481 1482
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1483 1484 1485 1486
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1500
	/* if we have a HW VLAN tag being added, default to the HW one */
1501 1502
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1503 1504 1505 1506
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1517
out:
1518 1519 1520 1521 1522 1523 1524 1525
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
 * @skb:      ptr to the skb we're sending
 * @hdr_len:  ptr to the size of the packet header
1526
 * @cd_type_cmd_tso_mss: Quad Word 1
1527 1528 1529
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1530
static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1531
{
1532
	u64 cd_cmd, cd_tso_len, cd_mss;
1533 1534 1535 1536 1537
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1538 1539
	union {
		struct tcphdr *tcp;
1540
		struct udphdr *udp;
1541 1542 1543
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1544 1545
	int err;

1546 1547 1548
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1549 1550 1551
	if (!skb_is_gso(skb))
		return 0;

1552 1553 1554
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1555

1556 1557
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1558

1559 1560 1561 1562
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1563
	} else {
1564 1565 1566
		ip.v6->payload_len = 0;
	}

1567 1568 1569 1570 1571 1572 1573
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1574 1575
			paylen = skb->len - l4_offset;
			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
1576 1577
		}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1589 1590
	}

1591 1592 1593 1594
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1595 1596
	paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
1597 1598 1599

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1600 1601 1602 1603 1604

	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
	cd_mss = skb_shinfo(skb)->gso_size;
1605 1606 1607
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1608 1609 1610 1611 1612 1613
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1614
 * @tx_flags: pointer to Tx flags currently set
1615 1616
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1617
 * @tx_ring: Tx descriptor ring
1618 1619
 * @cd_tunneling: ptr to context desc bits
 **/
1620 1621 1622 1623
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1624
{
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1635
	unsigned char *exthdr;
1636
	u32 offset, cmd = 0;
1637
	__be16 frag_off;
1638 1639
	u8 l4_proto = 0;

1640 1641 1642
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1643 1644
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1645

1646 1647 1648
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1649
	if (skb->encapsulation) {
1650
		u32 tunnel = 0;
1651 1652
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1653 1654 1655 1656
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1657 1658
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1659
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1660 1661

			exthdr = ip.hdr + sizeof(*ip.v6);
1662
			l4_proto = ip.v6->nexthdr;
1663 1664 1665
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1666 1667
		}

1668 1669 1670 1671 1672 1673 1674
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1675 1676
		/* define outer transport */
		switch (l4_proto) {
1677
		case IPPROTO_UDP:
1678
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1679
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1680
			break;
1681
		case IPPROTO_GRE:
1682
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1683 1684
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1685
		default:
1686 1687 1688 1689 1690
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1691
		}
1692

1693 1694 1695 1696
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1697 1698 1699 1700 1701
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1702 1703 1704
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1705 1706
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1707
		l4_proto = 0;
1708

1709 1710 1711 1712 1713
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1714
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1715 1716 1717
	}

	/* Enable IP checksum offloads */
1718
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1719
		l4_proto = ip.v4->protocol;
1720 1721 1722
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1723 1724 1725
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1726
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1727
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1728 1729 1730 1731 1732 1733

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1734
	}
1735

1736 1737
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1738 1739

	/* Enable L4 checksum offloads */
1740
	switch (l4_proto) {
1741 1742
	case IPPROTO_TCP:
		/* enable checksum offloads */
1743 1744
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1745 1746 1747
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1748 1749 1750
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1751 1752 1753
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1754 1755 1756
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1757 1758
		break;
	default:
1759 1760 1761 1762
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1763
	}
1764 1765 1766

	*td_cmd |= cmd;
	*td_offset |= offset;
1767 1768

	return 1;
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1785 1786
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1798
	context_desc->rsvd = cpu_to_le16(0);
1799 1800 1801
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1802
/**
1803
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1804 1805
 * @skb:      send buffer
 *
1806 1807 1808 1809 1810 1811 1812 1813
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
1814
 **/
1815
bool __i40evf_chk_linearize(struct sk_buff *skb)
1816
{
1817
	const struct skb_frag_struct *frag, *stale;
1818
	int nr_frags, sum;
1819

1820
	/* no need to check if number of frags is less than 7 */
1821
	nr_frags = skb_shinfo(skb)->nr_frags;
1822
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1823
		return false;
1824

1825 1826
	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.  However we don't need
1827 1828
	 * to perform such validation on the last 6 since the last 6 cannot
	 * inherit any data from a descriptor after them.
1829
	 */
1830
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1831 1832 1833 1834 1835 1836 1837 1838
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
1839
	sum = 1 - skb_shinfo(skb)->gso_size;
1840

1841 1842 1843 1844 1845 1846
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
1847 1848 1849 1850 1851 1852

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
1853
		sum += skb_frag_size(frag++);
1854 1855 1856 1857 1858 1859 1860 1861 1862

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		/* use pre-decrement to avoid processing last fragment */
		if (!--nr_frags)
			break;

1863
		sum -= skb_frag_size(stale++);
1864 1865
	}

1866
	return false;
1867 1868
}

1869 1870 1871 1872 1873 1874 1875
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
1876
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

1892
/**
1893
 * i40evf_tx_map - Build the Tx descriptor
1894 1895 1896 1897 1898 1899 1900 1901
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
1902 1903 1904
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;
	u16 gso_segs;
1915 1916 1917
	u16 desc_count = 0;
	bool tail_bump = true;
	bool do_rs = false;
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
		gso_segs = skb_shinfo(skb)->gso_segs;
	else
		gso_segs = 1;

	/* multiply data chunks by size of headers */
	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
	first->gso_segs = gso_segs;
	first->skb = skb;
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1942 1943
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

1944 1945 1946 1947 1948 1949 1950
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

1951 1952
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
1953 1954 1955 1956 1957
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
1958
					   max_data, td_tag);
1959 1960 1961

			tx_desc++;
			i++;
1962 1963
			desc_count++;

1964 1965 1966 1967 1968
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

1969 1970
			dma += max_data;
			size -= max_data;
1971

1972
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
1984 1985
		desc_count++;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2009 2010 2011
	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
						 tx_ring->queue_index),
						 first->bytecount);
2012
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

	/* Algorithm to optimize tail and RS bit setting:
	 * if xmit_more is supported
	 *	if xmit_more is true
	 *		do not update tail and do not mark RS bit.
	 *	if xmit_more is false and last xmit_more was false
	 *		if every packet spanned less than 4 desc
	 *			then set RS bit on 4th packet and update tail
	 *			on every packet
	 *		else
	 *			update tail and set RS bit on every packet.
	 *	if xmit_more is false and last_xmit_more was true
	 *		update tail and set RS bit.
	 *
	 * Optimization: wmb to be issued only in case of tail update.
	 * Also optimize the Descriptor WB path for RS bit with the same
	 * algorithm.
	 *
	 * Note: If there are less than 4 packets
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
	if (skb->xmit_more  &&
	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						    tx_ring->queue_index))) {
		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		tail_bump = false;
	} else if (!skb->xmit_more &&
		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						       tx_ring->queue_index)) &&
		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
		   (tx_ring->packet_stride < WB_STRIDE) &&
		   (desc_count < WB_STRIDE)) {
		tx_ring->packet_stride++;
	} else {
		tx_ring->packet_stride = 0;
		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		do_rs = true;
	}
	if (do_rs)
		tx_ring->packet_stride = 0;

	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
						  I40E_TX_DESC_CMD_EOP) <<
						  I40E_TXD_QW1_CMD_SHIFT);

2061
	/* notify HW of packet */
2062
	if (!tail_bump)
2063
		prefetchw(tx_desc + 1);
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	if (tail_bump) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(i, tx_ring->tail);
	}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2112
	int tso, count;
J
Jesse Brandeburg 已提交
2113

2114 2115 2116
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2117
	count = i40e_xmit_descriptor_count(skb);
2118 2119 2120
	if (i40e_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
2121
		count = i40e_txd_use_count(skb->len);
2122 2123
		tx_ring->tx_stats.tx_linearize++;
	}
2124 2125 2126 2127 2128 2129 2130 2131 2132

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2133
		return NETDEV_TX_BUSY;
2134
	}
2135 2136

	/* prepare the xmit flags */
2137
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2138 2139 2140
		goto out_drop;

	/* obtain protocol of skb */
2141
	protocol = vlan_get_protocol(skb);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2152
	tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2153 2154 2155 2156 2157 2158 2159

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2160 2161 2162 2163
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2164

2165 2166 2167 2168 2169
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2170 2171 2172
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2173 2174
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2193
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}