i40e_txrx.c 59.0 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54
		dev_kfree_skb_any(tx_buffer->skb);
55 56 57 58 59 60 61 62 63 64 65
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
66 67 68 69

	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
		kfree(tx_buffer->raw_buf);

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
						  tx_ring->queue_index));
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141 142 143 144
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
145 146 147 148 149 150 151
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
152 153
}

154 155
#define WB_STRIDE 0x3

156 157 158 159 160 161 162 163 164 165 166
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 * @tx_ring:  tx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
167
	struct i40e_tx_desc *tx_head;
168 169 170 171 172 173 174 175
	struct i40e_tx_desc *tx_desc;
	unsigned int total_packets = 0;
	unsigned int total_bytes = 0;

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

176 177
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

178 179 180 181 182 183 184 185 186 187
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

188 189
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
		dev_kfree_skb_any(tx_buf->skb);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

244 245
		prefetch(tx_desc);

246 247 248 249 250 251 252 253 254 255 256 257 258
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

259 260 261 262 263 264 265
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		unsigned int j = 0;
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
266
		j = i40evf_get_tx_pending(tx_ring, false);
267 268 269 270 271 272 273 274

		if (budget &&
		    ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
		    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
						      tx_ring->queue_index),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

295
	return !!budget;
296 297
}

298
/**
299
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
300
 * @vsi: the VSI we care about
301
 * @q_vector: the vector on which to enable writeback
302 303
 *
 **/
304 305
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
306
{
307
	u16 flags = q_vector->tx.ring[0].flags;
308
	u32 val;
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
342 343
}

344 345 346 347
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
348 349
 * Returns true if ITR changed, false if not
 *
350 351 352 353 354 355 356 357
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
358
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
359 360
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
361
	struct i40e_q_vector *qv = rc->ring->q_vector;
362 363
	u32 new_itr = rc->itr;
	int bytes_per_int;
364
	int usecs;
365 366

	if (rc->total_packets == 0 || !rc->itr)
367
		return false;
368 369

	/* simple throttlerate management
370
	 *   0-10MB/s   lowest (50000 ints/s)
371
	 *  10-20MB/s   low    (20000 ints/s)
372 373
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
374 375 376 377
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
378 379
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
380
	 */
381
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
382
	bytes_per_int = rc->total_bytes / usecs;
383

384
	switch (new_latency_range) {
385 386 387 388 389 390 391 392 393 394 395
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
396
	case I40E_ULTRA_LATENCY:
397 398 399
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
400 401
		break;
	}
402 403 404 405 406 407 408 409 410 411 412 413

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

414
	rc->latency_range = new_latency_range;
415 416 417

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
418
		new_itr = I40E_ITR_50K;
419 420 421 422 423
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
424 425 426
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
427 428 429 430 431 432 433 434
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
435 436 437 438 439 440 441

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
442 443
}

J
Jesse Brandeburg 已提交
444
/**
445 446 447 448 449 450 451 452 453 454 455 456 457
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

458 459
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
460 461 462 463 464 465 466
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
467 468 469 470
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

505 506 507 508 509 510 511 512 513 514 515 516
	if (ring_is_ps_enabled(rx_ring)) {
		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;

		rx_bi = &rx_ring->rx_bi[0];
		if (rx_bi->hdr_buf) {
			dma_free_coherent(dev,
					  bufsz,
					  rx_bi->hdr_buf,
					  rx_bi->dma);
			for (i = 0; i < rx_ring->count; i++) {
				rx_bi = &rx_ring->rx_bi[i];
				rx_bi->dma = 0;
517
				rx_bi->hdr_buf = NULL;
518 519 520
			}
		}
	}
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		if (rx_bi->dma) {
			dma_unmap_single(dev,
					 rx_bi->dma,
					 rx_ring->rx_buf_len,
					 DMA_FROM_DEVICE);
			rx_bi->dma = 0;
		}
		if (rx_bi->skb) {
			dev_kfree_skb(rx_bi->skb);
			rx_bi->skb = NULL;
		}
		if (rx_bi->page) {
			if (rx_bi->page_dma) {
				dma_unmap_page(dev,
					       rx_bi->page_dma,
539
					       PAGE_SIZE,
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
					       DMA_FROM_DEVICE);
				rx_bi->page_dma = 0;
			}
			__free_page(rx_bi->page);
			rx_bi->page = NULL;
			rx_bi->page_offset = 0;
		}
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * i40evf_alloc_rx_headers - allocate rx header buffers
 * @rx_ring: ring to alloc buffers
 *
 * Allocate rx header buffers for the entire ring. As these are static,
 * this is only called when setting up a new ring.
 **/
void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	dma_addr_t dma;
	void *buffer;
	int buf_size;
	int i;

	if (rx_ring->rx_bi[0].hdr_buf)
		return;
	/* Make sure the buffers don't cross cache line boundaries. */
	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
				    &dma, GFP_KERNEL);
	if (!buffer)
		return;
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		rx_bi->dma = dma + (i * buf_size);
		rx_bi->hdr_buf = buffer + (i * buf_size);
	}
}

609 610 611 612 613 614 615 616 617 618 619
/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

620 621
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
622 623 624 625 626
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

627
	u64_stats_init(&rx_ring->syncp);
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	/* Round up to nearest 4K */
	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
671 672 673
 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
674 675
 *
 * Returns true if any errors on allocation
676
 **/
677
bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
678 679 680 681
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
682
	const int current_node = numa_node_id();
683 684 685

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
686
		return false;
687 688 689 690 691 692 693

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];

		if (bi->skb) /* desc is in use */
			goto no_buffers;
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

	/* If we've been moved to a different NUMA node, release the
	 * page so we can get a new one on the current node.
	 */
		if (bi->page &&  page_to_nid(bi->page) != current_node) {
			dma_unmap_page(rx_ring->dev,
				       bi->page_dma,
				       PAGE_SIZE,
				       DMA_FROM_DEVICE);
			__free_page(bi->page);
			bi->page = NULL;
			bi->page_dma = 0;
			rx_ring->rx_stats.realloc_count++;
		} else if (bi->page) {
			rx_ring->rx_stats.page_reuse_count++;
		}

711 712 713 714 715 716 717 718
		if (!bi->page) {
			bi->page = alloc_page(GFP_ATOMIC);
			if (!bi->page) {
				rx_ring->rx_stats.alloc_page_failed++;
				goto no_buffers;
			}
			bi->page_dma = dma_map_page(rx_ring->dev,
						    bi->page,
719 720
						    0,
						    PAGE_SIZE,
721
						    DMA_FROM_DEVICE);
722
			if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
723
				rx_ring->rx_stats.alloc_page_failed++;
724 725
				__free_page(bi->page);
				bi->page = NULL;
726
				bi->page_dma = 0;
727
				bi->page_offset = 0;
728 729
				goto no_buffers;
			}
730
			bi->page_offset = 0;
731 732 733 734 735
		}

		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
736 737
		rx_desc->read.pkt_addr =
				cpu_to_le64(bi->page_dma + bi->page_offset);
738 739 740 741 742 743
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

744 745 746 747 748
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);

	return false;

749 750 751
no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
752 753 754 755 756

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
757 758 759 760
}

/**
 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
761 762
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
763 764
 *
 * Returns true if any errors on allocation
765
 **/
766
bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
767 768 769 770 771 772 773 774
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
	struct sk_buff *skb;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
775
		return false;
776 777 778 779 780 781 782

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];
		skb = bi->skb;

		if (!skb) {
J
Jesse Brandeburg 已提交
783 784 785 786
			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
							  rx_ring->rx_buf_len,
							  GFP_ATOMIC |
							  __GFP_NOWARN);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
			if (!skb) {
				rx_ring->rx_stats.alloc_buff_failed++;
				goto no_buffers;
			}
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			bi->skb = skb;
		}

		if (!bi->dma) {
			bi->dma = dma_map_single(rx_ring->dev,
						 skb->data,
						 rx_ring->rx_buf_len,
						 DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
				rx_ring->rx_stats.alloc_buff_failed++;
				bi->dma = 0;
804 805
				dev_kfree_skb(bi->skb);
				bi->skb = NULL;
806 807 808 809
				goto no_buffers;
			}
		}

810 811
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
		rx_desc->read.hdr_addr = 0;
812 813 814 815 816
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

817 818 819 820 821
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);

	return false;

822 823 824
no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
825 826 827 828 829

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
}

/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;

	if (vlan_tag & VLAN_VID_MASK)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

846
	napi_gro_receive(&q_vector->napi, skb);
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
 * @rx_status: status value of last descriptor in packet
 * @rx_error: error value of last descriptor in packet
 * @rx_ptype: ptype value of last descriptor in packet
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
				    u32 rx_status,
				    u32 rx_error,
				    u16 rx_ptype)
{
863 864
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
	bool ipv4 = false, ipv6 = false;
865 866
	bool ipv4_tunnel, ipv6_tunnel;

867 868 869 870
	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
871 872 873 874

	skb->ip_summed = CHECKSUM_NONE;

	/* Rx csum enabled and ip headers found? */
875 876 877 878
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
879
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
880 881 882 883
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
884 885
		return;

886 887 888 889 890 891 892 893
	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
		ipv4 = true;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
		ipv6 = true;

	if (ipv4 &&
894 895
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
896 897
		goto checksum_fail;

J
Jesse Brandeburg 已提交
898
	/* likely incorrect csum if alternate IP extension headers found */
899
	if (ipv6 &&
900
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
901
		/* don't increment checksum err here, non-fatal err */
902 903
		return;

904
	/* there was some L4 error, count error and punt packet to the stack */
905
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
906 907 908 909 910 911
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
912
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
913 914
		return;

915 916 917 918 919
	/* The hardware supported by this driver does not validate outer
	 * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
	 * with it but the specification states that you "MAY validate", it
	 * doesn't make it a hard requirement so if we have validated the
	 * inner checksum report CHECKSUM_UNNECESSARY.
920
	 */
921 922

	skb->ip_summed = CHECKSUM_UNNECESSARY;
923
	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
924 925 926 927 928

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
929 930 931
}

/**
932
 * i40e_ptype_to_htype - get a hash type
933 934 935 936
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
937
static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
	const __le64 rss_mask  =
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

978
/**
979
 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
980 981 982 983 984
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
985
static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
986 987 988 989 990 991 992 993
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	u16 i = rx_ring->next_to_clean;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
994
	bool failure = false;
995
	u8 rx_ptype;
996
	u64 qword;
997
	u32 copysize;
998

999
	do {
1000 1001 1002
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1003 1004
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1005 1006 1007
			failure = failure ||
				  i40evf_alloc_rx_buffers_ps(rx_ring,
							     cleaned_count);
1008 1009 1010 1011 1012 1013 1014 1015 1016
			cleaned_count = 0;
		}

		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;

1017
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1018 1019 1020 1021 1022 1023
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1024
		dma_rmb();
1025 1026 1027 1028 1029 1030
		/* sync header buffer for reading */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_ring->rx_bi[0].dma,
					      i * rx_ring->rx_hdr_len,
					      rx_ring->rx_hdr_len,
					      DMA_FROM_DEVICE);
1031 1032
		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
1033
		if (likely(!skb)) {
J
Jesse Brandeburg 已提交
1034 1035 1036 1037
			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
							  rx_ring->rx_hdr_len,
							  GFP_ATOMIC |
							  __GFP_NOWARN);
1038
			if (!skb) {
1039
				rx_ring->rx_stats.alloc_buff_failed++;
1040
				failure = true;
1041 1042 1043
				break;
			}

1044 1045 1046 1047
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			/* we are reusing so sync this buffer for CPU use */
			dma_sync_single_range_for_cpu(rx_ring->dev,
J
Jesse Brandeburg 已提交
1048 1049
						      rx_ring->rx_bi[0].dma,
						      i * rx_ring->rx_hdr_len,
1050 1051 1052
						      rx_ring->rx_hdr_len,
						      DMA_FROM_DEVICE);
		}
1053 1054 1055 1056 1057 1058 1059 1060 1061
		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1062 1063
		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1064 1065 1066

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
1067 1068 1069 1070 1071 1072 1073
		/* sync half-page for reading */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->page_dma,
					      rx_bi->page_offset,
					      PAGE_SIZE / 2,
					      DMA_FROM_DEVICE);
		prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1074
		rx_bi->skb = NULL;
1075
		cleaned_count++;
1076
		copysize = 0;
1077 1078
		if (rx_hbo || rx_sph) {
			int len;
J
Jesse Brandeburg 已提交
1079

1080 1081 1082
			if (rx_hbo)
				len = I40E_RX_HDR_SIZE;
			else
1083 1084 1085 1086
				len = rx_header_len;
			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
		} else if (skb->len == 0) {
			int len;
1087 1088
			unsigned char *va = page_address(rx_bi->page) +
					    rx_bi->page_offset;
1089

1090 1091 1092
			len = min(rx_packet_len, rx_ring->rx_hdr_len);
			memcpy(__skb_put(skb, len), va, len);
			copysize = len;
1093
			rx_packet_len -= len;
1094 1095
		}
		/* Get the rest of the data if this was a header split */
1096
		if (rx_packet_len) {
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
					rx_bi->page,
					rx_bi->page_offset + copysize,
					rx_packet_len, I40E_RXBUFFER_2048);

			/* If the page count is more than 2, then both halves
			 * of the page are used and we need to free it. Do it
			 * here instead of in the alloc code. Otherwise one
			 * of the half-pages might be released between now and
			 * then, and we wouldn't know which one to use.
M
Mitch Williams 已提交
1107 1108 1109 1110
			 * Don't call get_page and free_page since those are
			 * both expensive atomic operations that just change
			 * the refcount in opposite directions. Just give the
			 * page to the stack; he can have our refcount.
1111 1112 1113 1114 1115 1116
			 */
			if (page_count(rx_bi->page) > 2) {
				dma_unmap_page(rx_ring->dev,
					       rx_bi->page_dma,
					       PAGE_SIZE,
					       DMA_FROM_DEVICE);
1117
				rx_bi->page = NULL;
1118 1119
				rx_bi->page_dma = 0;
				rx_ring->rx_stats.realloc_count++;
M
Mitch Williams 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128
			} else {
				get_page(rx_bi->page);
				/* switch to the other half-page here; the
				 * allocation code programs the right addr
				 * into HW. If we haven't used this half-page,
				 * the address won't be changed, and HW can
				 * just use it next time through.
				 */
				rx_bi->page_offset ^= PAGE_SIZE / 2;
1129
			}
1130 1131

		}
1132
		I40E_RX_INCREMENT(rx_ring, i);
1133 1134

		if (unlikely(
1135
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1136 1137 1138
			struct i40e_rx_buffer *next_buffer;

			next_buffer = &rx_ring->rx_bi[i];
1139
			next_buffer->skb = skb;
1140
			rx_ring->rx_stats.non_eop_descs++;
1141
			continue;
1142 1143 1144
		}

		/* ERR_MASK will only have valid bits if EOP set */
1145
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1146
			dev_kfree_skb_any(skb);
1147
			continue;
1148 1149
		}

1150 1151
		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

1152 1153 1154 1155 1156 1157 1158 1159
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1160
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1161 1162
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
1163 1164 1165 1166 1167 1168
#ifdef I40E_FCOE
		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1169 1170 1171 1172
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;

1173 1174 1175 1176 1177 1178 1179 1180 1181
	} while (likely(total_rx_packets < budget));

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1182
	return failure ? budget : total_rx_packets;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
}

/**
 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns number of packets cleaned
 **/
static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
	u16 rx_packet_len;
1200
	bool failure = false;
1201 1202 1203 1204 1205 1206 1207 1208
	u8 rx_ptype;
	u64 qword;
	u16 i;

	do {
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1209 1210
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1211 1212 1213
			failure = failure ||
				  i40evf_alloc_rx_buffers_1buf(rx_ring,
							       cleaned_count);
1214 1215 1216
			cleaned_count = 0;
		}

1217 1218
		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
1219 1220
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1221 1222
			I40E_RXD_QW1_STATUS_SHIFT;

1223
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1224 1225 1226 1227 1228 1229
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1230
		dma_rmb();
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
		prefetch(skb->data);

		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1241
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
		rx_bi->skb = NULL;
		cleaned_count++;

		/* Get the header and possibly the whole packet
		 * If this is an skb from previous receive dma will be 0
		 */
		skb_put(skb, rx_packet_len);
		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
				 DMA_FROM_DEVICE);
		rx_bi->dma = 0;

		I40E_RX_INCREMENT(rx_ring, i);

		if (unlikely(
1259
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1260 1261 1262 1263 1264
			rx_ring->rx_stats.non_eop_descs++;
			continue;
		}

		/* ERR_MASK will only have valid bits if EOP set */
1265
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1266 1267 1268 1269
			dev_kfree_skb_any(skb);
			continue;
		}

1270
		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1271 1272 1273 1274 1275 1276 1277 1278
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1279
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1280 1281 1282 1283 1284 1285
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;
	} while (likely(total_rx_packets < budget));
1286 1287 1288 1289 1290 1291 1292 1293

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1294
	return failure ? budget : total_rx_packets;
1295 1296
}

1297 1298 1299 1300 1301
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1302 1303 1304
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1305 1306 1307 1308 1309 1310 1311 1312 1313
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1324 1325
	bool rx = false, tx = false;
	u32 rxval, txval;
1326 1327 1328
	int vector;

	vector = (q_vector->v_idx + vsi->base_vector);
1329 1330 1331 1332

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1333 1334
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1335 1336 1337 1338 1339 1340
	if (q_vector->itr_countdown > 0 ||
	    (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
		goto enable_int;
	}

1341
	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1342 1343
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1344
	}
J
Jesse Brandeburg 已提交
1345

1346
	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1347 1348 1349
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1363
	}
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1378
enable_int:
1379 1380
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1381 1382 1383 1384 1385

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1386 1387
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1404
	bool arm_wb = false;
1405
	int budget_per_ring;
1406
	int work_done = 0;
1407 1408 1409 1410 1411 1412 1413 1414 1415

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1416
	i40e_for_each_ring(ring, q_vector->tx) {
1417 1418
		clean_complete = clean_complete &&
				 i40e_clean_tx_irq(ring, vsi->work_limit);
M
Mitch Williams 已提交
1419
		arm_wb = arm_wb || ring->arm_wb;
1420
		ring->arm_wb = false;
1421
	}
1422

1423 1424 1425 1426
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1427 1428 1429 1430 1431
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1432
	i40e_for_each_ring(ring, q_vector->rx) {
1433 1434
		int cleaned;

1435 1436 1437 1438
		if (ring_is_ps_enabled(ring))
			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
		else
			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1439 1440

		work_done += cleaned;
1441
		/* if we didn't clean as many as budgeted, we must be done */
1442
		clean_complete = clean_complete && (budget_per_ring > cleaned);
1443
	}
1444 1445

	/* If work not completed, return budget and polling will return */
1446
	if (!clean_complete) {
1447
tx_only:
1448 1449
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1450
			i40e_enable_wb_on_itr(vsi, q_vector);
1451
		}
1452
		return budget;
1453
	}
1454

1455 1456 1457
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1458
	/* Work is done so exit the polling mode and re-enable the interrupt */
1459
	napi_complete_done(napi, work_done);
1460
	i40e_update_enable_itr(vsi, q_vector);
1461 1462 1463 1464
	return 0;
}

/**
1465
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1476 1477 1478
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1479 1480 1481 1482
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1496
	/* if we have a HW VLAN tag being added, default to the HW one */
1497 1498
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1499 1500 1501 1502
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1513
out:
1514 1515 1516 1517 1518 1519 1520 1521 1522
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @hdr_len:  ptr to the size of the packet header
1523
 * @cd_type_cmd_tso_mss: Quad Word 1
1524 1525 1526 1527
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1528
		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1529
{
1530
	u64 cd_cmd, cd_tso_len, cd_mss;
1531 1532 1533 1534 1535
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1536 1537 1538 1539 1540
	union {
		struct tcphdr *tcp;
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1541 1542
	int err;

1543 1544 1545
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1546 1547 1548
	if (!skb_is_gso(skb))
		return 0;

1549 1550 1551
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1552

1553 1554
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1555

1556 1557 1558 1559
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1560
	} else {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		ip.v6->payload_len = 0;
	}

	if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE)) {
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1576 1577
	}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
	paylen = (__force u16)l4.tcp->check;
	paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
	l4.tcp->check = ~csum_fold((__force __wsum)paylen);

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1588 1589 1590 1591 1592

	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
	cd_mss = skb_shinfo(skb)->gso_size;
1593 1594 1595
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1596 1597 1598 1599 1600 1601
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1602
 * @tx_flags: pointer to Tx flags currently set
1603 1604 1605 1606
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
 * @cd_tunneling: ptr to context desc bits
 **/
1607
static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1608 1609 1610 1611
				u32 *td_cmd, u32 *td_offset,
				struct i40e_ring *tx_ring,
				u32 *cd_tunneling)
{
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1622
	unsigned char *exthdr;
1623
	u32 l4_tunnel = 0;
1624
	__be16 frag_off;
1625 1626 1627 1628
	u8 l4_proto = 0;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1629 1630

	if (skb->encapsulation) {
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
			else
				*cd_tunneling |=
					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
			*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1641 1642

			exthdr = ip.hdr + sizeof(*ip.v6);
1643
			l4_proto = ip.v6->nexthdr;
1644 1645 1646
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1647 1648 1649 1650
		}

		/* define outer transport */
		switch (l4_proto) {
1651 1652
		case IPPROTO_UDP:
			l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1653
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1654
			break;
1655 1656 1657 1658
		case IPPROTO_GRE:
			l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1659 1660 1661
		default:
			return;
		}
1662 1663 1664 1665

		/* switch L4 header pointer from outer to inner */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);
1666
		l4_proto = 0;
1667 1668 1669

		/* Now set the ctx descriptor fields */
		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1670 1671
				   I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
				   l4_tunnel                             |
1672 1673 1674
				   ((skb_inner_network_offset(skb) -
					skb_transport_offset(skb)) >> 1) <<
				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1675 1676 1677 1678 1679 1680

		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1681
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1682 1683 1684
	}

	/* Enable IP checksum offloads */
1685
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1686
		l4_proto = ip.v4->protocol;
1687 1688 1689
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1690
		if (*tx_flags & I40E_TX_FLAGS_TSO) {
1691 1692 1693 1694
			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
		} else {
			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
		}
1695
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1696
		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1697 1698 1699 1700 1701 1702

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1703
	}
1704 1705 1706

	/* Now set the td_offset for IP header length */
	*td_offset = ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1707 1708 1709 1710 1711
	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
	*td_offset |= (skb_network_offset(skb) >> 1) <<
		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

	/* Enable L4 checksum offloads */
1712
	switch (l4_proto) {
1713 1714 1715
	case IPPROTO_TCP:
		/* enable checksum offloads */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1716
		*td_offset |= l4.tcp->doff <<
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		*td_offset |= (sizeof(struct udphdr) >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	default:
		break;
	}
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1750 1751
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1763
	context_desc->rsvd = cpu_to_le16(0);
1764 1765 1766
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1767
/**
1768 1769 1770 1771 1772 1773 1774 1775
 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @tx_flags: collected send information
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 **/
1776
static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
{
	struct skb_frag_struct *frag;
	bool linearize = false;
	unsigned int size = 0;
	u16 num_frags;
	u16 gso_segs;

	num_frags = skb_shinfo(skb)->nr_frags;
	gso_segs = skb_shinfo(skb)->gso_segs;

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1788
		u16 j = 0;
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

		if (num_frags < (I40E_MAX_BUFFER_TXD))
			goto linearize_chk_done;
		/* try the simple math, if we have too many frags per segment */
		if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
		    I40E_MAX_BUFFER_TXD) {
			linearize = true;
			goto linearize_chk_done;
		}
		frag = &skb_shinfo(skb)->frags[0];
		/* we might still have more fragments per segment */
		do {
			size += skb_frag_size(frag);
			frag++; j++;
1803 1804 1805 1806 1807
			if ((size >= skb_shinfo(skb)->gso_size) &&
			    (j < I40E_MAX_BUFFER_TXD)) {
				size = (size % skb_shinfo(skb)->gso_size);
				j = (size) ? 1 : 0;
			}
1808
			if (j == I40E_MAX_BUFFER_TXD) {
1809 1810
				linearize = true;
				break;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
			}
			num_frags--;
		} while (num_frags);
	} else {
		if (num_frags >= I40E_MAX_BUFFER_TXD)
			linearize = true;
	}

linearize_chk_done:
	return linearize;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

/**
 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 **/
1853
static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1854 1855 1856 1857 1858 1859
{
	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
		return 0;
	return __i40evf_maybe_stop_tx(tx_ring, size);
}

1860
/**
1861
 * i40evf_tx_map - Build the Tx descriptor
1862 1863 1864 1865 1866 1867 1868 1869
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
1870 1871 1872
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;
	u16 gso_segs;
1883 1884 1885
	u16 desc_count = 0;
	bool tail_bump = true;
	bool do_rs = false;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
		gso_segs = skb_shinfo(skb)->gso_segs;
	else
		gso_segs = 1;

	/* multiply data chunks by size of headers */
	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
	first->gso_segs = gso_segs;
	first->skb = skb;
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
					   I40E_MAX_DATA_PER_TXD, td_tag);

			tx_desc++;
			i++;
1926 1927
			desc_count++;

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += I40E_MAX_DATA_PER_TXD;
			size -= I40E_MAX_DATA_PER_TXD;

			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
1947 1948
		desc_count++;

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

1972 1973 1974
	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
						 tx_ring->queue_index),
						 first->bytecount);
1975
	i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

	/* Algorithm to optimize tail and RS bit setting:
	 * if xmit_more is supported
	 *	if xmit_more is true
	 *		do not update tail and do not mark RS bit.
	 *	if xmit_more is false and last xmit_more was false
	 *		if every packet spanned less than 4 desc
	 *			then set RS bit on 4th packet and update tail
	 *			on every packet
	 *		else
	 *			update tail and set RS bit on every packet.
	 *	if xmit_more is false and last_xmit_more was true
	 *		update tail and set RS bit.
	 *
	 * Optimization: wmb to be issued only in case of tail update.
	 * Also optimize the Descriptor WB path for RS bit with the same
	 * algorithm.
	 *
	 * Note: If there are less than 4 packets
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
	if (skb->xmit_more  &&
	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						    tx_ring->queue_index))) {
		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		tail_bump = false;
	} else if (!skb->xmit_more &&
		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						       tx_ring->queue_index)) &&
		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
		   (tx_ring->packet_stride < WB_STRIDE) &&
		   (desc_count < WB_STRIDE)) {
		tx_ring->packet_stride++;
	} else {
		tx_ring->packet_stride = 0;
		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		do_rs = true;
	}
	if (do_rs)
		tx_ring->packet_stride = 0;

	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
						  I40E_TX_DESC_CMD_EOP) <<
						  I40E_TXD_QW1_CMD_SHIFT);

2024
	/* notify HW of packet */
2025
	if (!tail_bump)
2026
		prefetchw(tx_desc + 1);
2027

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	if (tail_bump) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(i, tx_ring->tail);
	}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
2058
 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
2059 2060 2061 2062 2063 2064 2065
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 * there is not enough descriptors available in this ring since we need at least
 * one descriptor.
 **/
2066 2067
static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
					       struct i40e_ring *tx_ring)
2068 2069 2070 2071 2072 2073
{
	unsigned int f;
	int count = 0;

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2074
	 *       + 4 desc gap to avoid the cache line where head is,
2075 2076 2077 2078 2079
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2080

2081
	count += TXD_USE_COUNT(skb_headlen(skb));
2082
	if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		tx_ring->tx_stats.tx_busy++;
		return 0;
	}
	return count;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
	int tso;
J
Jesse Brandeburg 已提交
2108

2109 2110 2111
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2112
	if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
2113 2114 2115
		return NETDEV_TX_BUSY;

	/* prepare the xmit flags */
2116
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2117 2118 2119
		goto out_drop;

	/* obtain protocol of skb */
2120
	protocol = vlan_get_protocol(skb);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2131
	tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2132 2133 2134 2135 2136 2137

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

2138
	if (i40e_chk_linearize(skb, tx_flags)) {
2139 2140
		if (skb_linearize(skb))
			goto out_drop;
2141 2142
		tx_ring->tx_stats.tx_linearize++;
	}
2143 2144 2145 2146 2147 2148 2149 2150 2151
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

	/* Always offload the checksum, since it's in the data descriptor */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		tx_flags |= I40E_TX_FLAGS_CSUM;

2152
		i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2153 2154 2155 2156 2157 2158
				    tx_ring, &cd_tunneling);
	}

	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2159 2160
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2179
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}