i40e_txrx.c 59.5 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54
		dev_kfree_skb_any(tx_buffer->skb);
55 56 57 58 59 60 61 62 63 64 65
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
66 67 68 69

	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
		kfree(tx_buffer->raw_buf);

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
						  tx_ring->queue_index));
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141 142 143 144
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
145 146 147 148 149 150 151
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
152 153
}

154 155
#define WB_STRIDE 0x3

156 157 158 159 160 161 162 163 164 165 166
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 * @tx_ring:  tx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
167
	struct i40e_tx_desc *tx_head;
168 169 170 171 172 173 174 175
	struct i40e_tx_desc *tx_desc;
	unsigned int total_packets = 0;
	unsigned int total_bytes = 0;

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

176 177
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

178 179 180 181 182 183 184 185 186 187
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

188 189
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
		dev_kfree_skb_any(tx_buf->skb);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

244 245
		prefetch(tx_desc);

246 247 248 249 250 251 252 253 254 255 256 257 258
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

259 260 261 262 263 264 265
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		unsigned int j = 0;
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
266
		j = i40evf_get_tx_pending(tx_ring, false);
267 268 269 270 271 272 273 274

		if (budget &&
		    ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
		    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
						      tx_ring->queue_index),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

295
	return !!budget;
296 297
}

298
/**
299
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
300
 * @vsi: the VSI we care about
301
 * @q_vector: the vector on which to enable writeback
302 303
 *
 **/
304 305
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
306
{
307
	u16 flags = q_vector->tx.ring[0].flags;
308
	u32 val;
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
342 343
}

344 345 346 347
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
348 349
 * Returns true if ITR changed, false if not
 *
350 351 352 353 354 355 356 357
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
358
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
359 360
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
361
	struct i40e_q_vector *qv = rc->ring->q_vector;
362 363
	u32 new_itr = rc->itr;
	int bytes_per_int;
364
	int usecs;
365 366

	if (rc->total_packets == 0 || !rc->itr)
367
		return false;
368 369

	/* simple throttlerate management
370
	 *   0-10MB/s   lowest (50000 ints/s)
371
	 *  10-20MB/s   low    (20000 ints/s)
372 373
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
374 375 376 377
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
378 379
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
380
	 */
381
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
382
	bytes_per_int = rc->total_bytes / usecs;
383

384
	switch (new_latency_range) {
385 386 387 388 389 390 391 392 393 394 395
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
396
	case I40E_ULTRA_LATENCY:
397 398 399
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
400 401
		break;
	}
402 403 404 405 406 407 408 409 410 411 412 413

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

414
	rc->latency_range = new_latency_range;
415 416 417

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
418
		new_itr = I40E_ITR_50K;
419 420 421 422 423
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
424 425 426
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
427 428 429 430 431 432 433 434
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
435 436 437 438 439 440 441

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
442 443
}

J
Jesse Brandeburg 已提交
444
/**
445 446 447 448 449 450 451 452 453 454 455 456 457
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

458 459
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
460 461 462 463 464 465 466
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
467 468 469 470
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

505 506 507 508 509 510 511 512 513 514 515 516
	if (ring_is_ps_enabled(rx_ring)) {
		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;

		rx_bi = &rx_ring->rx_bi[0];
		if (rx_bi->hdr_buf) {
			dma_free_coherent(dev,
					  bufsz,
					  rx_bi->hdr_buf,
					  rx_bi->dma);
			for (i = 0; i < rx_ring->count; i++) {
				rx_bi = &rx_ring->rx_bi[i];
				rx_bi->dma = 0;
517
				rx_bi->hdr_buf = NULL;
518 519 520
			}
		}
	}
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		if (rx_bi->dma) {
			dma_unmap_single(dev,
					 rx_bi->dma,
					 rx_ring->rx_buf_len,
					 DMA_FROM_DEVICE);
			rx_bi->dma = 0;
		}
		if (rx_bi->skb) {
			dev_kfree_skb(rx_bi->skb);
			rx_bi->skb = NULL;
		}
		if (rx_bi->page) {
			if (rx_bi->page_dma) {
				dma_unmap_page(dev,
					       rx_bi->page_dma,
539
					       PAGE_SIZE,
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
					       DMA_FROM_DEVICE);
				rx_bi->page_dma = 0;
			}
			__free_page(rx_bi->page);
			rx_bi->page = NULL;
			rx_bi->page_offset = 0;
		}
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * i40evf_alloc_rx_headers - allocate rx header buffers
 * @rx_ring: ring to alloc buffers
 *
 * Allocate rx header buffers for the entire ring. As these are static,
 * this is only called when setting up a new ring.
 **/
void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	dma_addr_t dma;
	void *buffer;
	int buf_size;
	int i;

	if (rx_ring->rx_bi[0].hdr_buf)
		return;
	/* Make sure the buffers don't cross cache line boundaries. */
	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
				    &dma, GFP_KERNEL);
	if (!buffer)
		return;
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		rx_bi->dma = dma + (i * buf_size);
		rx_bi->hdr_buf = buffer + (i * buf_size);
	}
}

609 610 611 612 613 614 615 616 617 618 619
/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

620 621
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
622 623 624 625 626
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

627
	u64_stats_init(&rx_ring->syncp);
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	/* Round up to nearest 4K */
	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
671 672 673
 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
674 675
 *
 * Returns true if any errors on allocation
676
 **/
677
bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
678 679 680 681
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
682
	const int current_node = numa_node_id();
683 684 685

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
686
		return false;
687 688 689 690 691 692 693

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];

		if (bi->skb) /* desc is in use */
			goto no_buffers;
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

	/* If we've been moved to a different NUMA node, release the
	 * page so we can get a new one on the current node.
	 */
		if (bi->page &&  page_to_nid(bi->page) != current_node) {
			dma_unmap_page(rx_ring->dev,
				       bi->page_dma,
				       PAGE_SIZE,
				       DMA_FROM_DEVICE);
			__free_page(bi->page);
			bi->page = NULL;
			bi->page_dma = 0;
			rx_ring->rx_stats.realloc_count++;
		} else if (bi->page) {
			rx_ring->rx_stats.page_reuse_count++;
		}

711 712 713 714 715 716 717 718
		if (!bi->page) {
			bi->page = alloc_page(GFP_ATOMIC);
			if (!bi->page) {
				rx_ring->rx_stats.alloc_page_failed++;
				goto no_buffers;
			}
			bi->page_dma = dma_map_page(rx_ring->dev,
						    bi->page,
719 720
						    0,
						    PAGE_SIZE,
721
						    DMA_FROM_DEVICE);
722
			if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
723
				rx_ring->rx_stats.alloc_page_failed++;
724 725
				__free_page(bi->page);
				bi->page = NULL;
726
				bi->page_dma = 0;
727
				bi->page_offset = 0;
728 729
				goto no_buffers;
			}
730
			bi->page_offset = 0;
731 732 733 734 735
		}

		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
736 737
		rx_desc->read.pkt_addr =
				cpu_to_le64(bi->page_dma + bi->page_offset);
738 739 740 741 742 743
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

744 745 746 747 748
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);

	return false;

749 750 751
no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
752 753 754 755 756

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
757 758 759 760
}

/**
 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
761 762
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
763 764
 *
 * Returns true if any errors on allocation
765
 **/
766
bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
767 768 769 770 771 772 773 774
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
	struct sk_buff *skb;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
775
		return false;
776 777 778 779 780 781 782

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];
		skb = bi->skb;

		if (!skb) {
J
Jesse Brandeburg 已提交
783 784 785 786
			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
							  rx_ring->rx_buf_len,
							  GFP_ATOMIC |
							  __GFP_NOWARN);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
			if (!skb) {
				rx_ring->rx_stats.alloc_buff_failed++;
				goto no_buffers;
			}
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			bi->skb = skb;
		}

		if (!bi->dma) {
			bi->dma = dma_map_single(rx_ring->dev,
						 skb->data,
						 rx_ring->rx_buf_len,
						 DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
				rx_ring->rx_stats.alloc_buff_failed++;
				bi->dma = 0;
804 805
				dev_kfree_skb(bi->skb);
				bi->skb = NULL;
806 807 808 809
				goto no_buffers;
			}
		}

810 811
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
		rx_desc->read.hdr_addr = 0;
812 813 814 815 816
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

817 818 819 820 821
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);

	return false;

822 823 824
no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
825 826 827 828 829

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
}

/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;

	if (vlan_tag & VLAN_VID_MASK)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

846
	napi_gro_receive(&q_vector->napi, skb);
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
 * @rx_status: status value of last descriptor in packet
 * @rx_error: error value of last descriptor in packet
 * @rx_ptype: ptype value of last descriptor in packet
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
				    u32 rx_status,
				    u32 rx_error,
				    u16 rx_ptype)
{
863
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
864
	bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
865 866 867 868

	skb->ip_summed = CHECKSUM_NONE;

	/* Rx csum enabled and ip headers found? */
869 870 871 872
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
873
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
874 875 876 877
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
878 879
		return;

880 881 882 883
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
884 885

	if (ipv4 &&
886 887
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
888 889
		goto checksum_fail;

J
Jesse Brandeburg 已提交
890
	/* likely incorrect csum if alternate IP extension headers found */
891
	if (ipv6 &&
892
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
893
		/* don't increment checksum err here, non-fatal err */
894 895
		return;

896
	/* there was some L4 error, count error and punt packet to the stack */
897
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
898 899 900 901 902 903
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
904
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
905 906
		return;

907 908 909 910 911
	/* The hardware supported by this driver does not validate outer
	 * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
	 * with it but the specification states that you "MAY validate", it
	 * doesn't make it a hard requirement so if we have validated the
	 * inner checksum report CHECKSUM_UNNECESSARY.
912
	 */
913

914 915 916 917 918
	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);

919
	skb->ip_summed = CHECKSUM_UNNECESSARY;
920
	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
921 922 923 924 925

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
926 927 928
}

/**
929
 * i40e_ptype_to_htype - get a hash type
930 931 932 933
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
934
static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
	const __le64 rss_mask  =
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

975
/**
976
 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
977 978 979 980 981
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
982
static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
983 984 985 986 987 988 989 990
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	u16 i = rx_ring->next_to_clean;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
991
	bool failure = false;
992
	u8 rx_ptype;
993
	u64 qword;
994
	u32 copysize;
995

996
	do {
997 998 999
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1000 1001
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1002 1003 1004
			failure = failure ||
				  i40evf_alloc_rx_buffers_ps(rx_ring,
							     cleaned_count);
1005 1006 1007 1008 1009 1010 1011 1012 1013
			cleaned_count = 0;
		}

		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;

1014
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1015 1016 1017 1018 1019 1020
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1021
		dma_rmb();
1022 1023 1024 1025 1026 1027
		/* sync header buffer for reading */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_ring->rx_bi[0].dma,
					      i * rx_ring->rx_hdr_len,
					      rx_ring->rx_hdr_len,
					      DMA_FROM_DEVICE);
1028 1029
		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
1030
		if (likely(!skb)) {
J
Jesse Brandeburg 已提交
1031 1032 1033 1034
			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
							  rx_ring->rx_hdr_len,
							  GFP_ATOMIC |
							  __GFP_NOWARN);
1035
			if (!skb) {
1036
				rx_ring->rx_stats.alloc_buff_failed++;
1037
				failure = true;
1038 1039 1040
				break;
			}

1041 1042 1043 1044
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			/* we are reusing so sync this buffer for CPU use */
			dma_sync_single_range_for_cpu(rx_ring->dev,
J
Jesse Brandeburg 已提交
1045 1046
						      rx_ring->rx_bi[0].dma,
						      i * rx_ring->rx_hdr_len,
1047 1048 1049
						      rx_ring->rx_hdr_len,
						      DMA_FROM_DEVICE);
		}
1050 1051 1052 1053 1054 1055 1056 1057 1058
		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1059 1060
		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1061 1062 1063

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
1064 1065 1066 1067 1068 1069 1070
		/* sync half-page for reading */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->page_dma,
					      rx_bi->page_offset,
					      PAGE_SIZE / 2,
					      DMA_FROM_DEVICE);
		prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1071
		rx_bi->skb = NULL;
1072
		cleaned_count++;
1073
		copysize = 0;
1074 1075
		if (rx_hbo || rx_sph) {
			int len;
J
Jesse Brandeburg 已提交
1076

1077 1078 1079
			if (rx_hbo)
				len = I40E_RX_HDR_SIZE;
			else
1080 1081 1082 1083
				len = rx_header_len;
			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
		} else if (skb->len == 0) {
			int len;
1084 1085
			unsigned char *va = page_address(rx_bi->page) +
					    rx_bi->page_offset;
1086

1087 1088 1089
			len = min(rx_packet_len, rx_ring->rx_hdr_len);
			memcpy(__skb_put(skb, len), va, len);
			copysize = len;
1090
			rx_packet_len -= len;
1091 1092
		}
		/* Get the rest of the data if this was a header split */
1093
		if (rx_packet_len) {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
					rx_bi->page,
					rx_bi->page_offset + copysize,
					rx_packet_len, I40E_RXBUFFER_2048);

			/* If the page count is more than 2, then both halves
			 * of the page are used and we need to free it. Do it
			 * here instead of in the alloc code. Otherwise one
			 * of the half-pages might be released between now and
			 * then, and we wouldn't know which one to use.
M
Mitch Williams 已提交
1104 1105 1106 1107
			 * Don't call get_page and free_page since those are
			 * both expensive atomic operations that just change
			 * the refcount in opposite directions. Just give the
			 * page to the stack; he can have our refcount.
1108 1109 1110 1111 1112 1113
			 */
			if (page_count(rx_bi->page) > 2) {
				dma_unmap_page(rx_ring->dev,
					       rx_bi->page_dma,
					       PAGE_SIZE,
					       DMA_FROM_DEVICE);
1114
				rx_bi->page = NULL;
1115 1116
				rx_bi->page_dma = 0;
				rx_ring->rx_stats.realloc_count++;
M
Mitch Williams 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
			} else {
				get_page(rx_bi->page);
				/* switch to the other half-page here; the
				 * allocation code programs the right addr
				 * into HW. If we haven't used this half-page,
				 * the address won't be changed, and HW can
				 * just use it next time through.
				 */
				rx_bi->page_offset ^= PAGE_SIZE / 2;
1126
			}
1127 1128

		}
1129
		I40E_RX_INCREMENT(rx_ring, i);
1130 1131

		if (unlikely(
1132
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1133 1134 1135
			struct i40e_rx_buffer *next_buffer;

			next_buffer = &rx_ring->rx_bi[i];
1136
			next_buffer->skb = skb;
1137
			rx_ring->rx_stats.non_eop_descs++;
1138
			continue;
1139 1140 1141
		}

		/* ERR_MASK will only have valid bits if EOP set */
1142
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1143
			dev_kfree_skb_any(skb);
1144
			continue;
1145 1146
		}

1147 1148
		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

1149 1150 1151 1152 1153 1154 1155 1156
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1157
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1158 1159
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
1160 1161 1162 1163 1164 1165
#ifdef I40E_FCOE
		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1166 1167 1168 1169
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;

1170 1171 1172 1173 1174 1175 1176 1177 1178
	} while (likely(total_rx_packets < budget));

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1179
	return failure ? budget : total_rx_packets;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
}

/**
 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns number of packets cleaned
 **/
static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
	u16 rx_packet_len;
1197
	bool failure = false;
1198 1199 1200 1201 1202 1203 1204 1205
	u8 rx_ptype;
	u64 qword;
	u16 i;

	do {
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1206 1207
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1208 1209 1210
			failure = failure ||
				  i40evf_alloc_rx_buffers_1buf(rx_ring,
							       cleaned_count);
1211 1212 1213
			cleaned_count = 0;
		}

1214 1215
		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
1216 1217
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1218 1219
			I40E_RXD_QW1_STATUS_SHIFT;

1220
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1221 1222 1223 1224 1225 1226
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1227
		dma_rmb();
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
		prefetch(skb->data);

		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1238
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
		rx_bi->skb = NULL;
		cleaned_count++;

		/* Get the header and possibly the whole packet
		 * If this is an skb from previous receive dma will be 0
		 */
		skb_put(skb, rx_packet_len);
		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
				 DMA_FROM_DEVICE);
		rx_bi->dma = 0;

		I40E_RX_INCREMENT(rx_ring, i);

		if (unlikely(
1256
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1257 1258 1259 1260 1261
			rx_ring->rx_stats.non_eop_descs++;
			continue;
		}

		/* ERR_MASK will only have valid bits if EOP set */
1262
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1263 1264 1265 1266
			dev_kfree_skb_any(skb);
			continue;
		}

1267
		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1268 1269 1270 1271 1272 1273 1274 1275
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1276
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1277 1278 1279 1280 1281 1282
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;
	} while (likely(total_rx_packets < budget));
1283 1284 1285 1286 1287 1288 1289 1290

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1291
	return failure ? budget : total_rx_packets;
1292 1293
}

1294 1295 1296 1297 1298
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1299 1300 1301
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1302 1303 1304 1305 1306 1307 1308 1309 1310
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1321 1322
	bool rx = false, tx = false;
	u32 rxval, txval;
1323 1324 1325
	int vector;

	vector = (q_vector->v_idx + vsi->base_vector);
1326 1327 1328 1329

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1330 1331
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1332 1333 1334 1335 1336 1337
	if (q_vector->itr_countdown > 0 ||
	    (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
		goto enable_int;
	}

1338
	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1339 1340
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1341
	}
J
Jesse Brandeburg 已提交
1342

1343
	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1344 1345 1346
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1360
	}
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1375
enable_int:
1376 1377
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1378 1379 1380 1381 1382

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1383 1384
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1401
	bool arm_wb = false;
1402
	int budget_per_ring;
1403
	int work_done = 0;
1404 1405 1406 1407 1408 1409 1410 1411 1412

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1413
	i40e_for_each_ring(ring, q_vector->tx) {
1414 1415 1416 1417 1418
		if (!i40e_clean_tx_irq(ring, vsi->work_limit)) {
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1419
		ring->arm_wb = false;
1420
	}
1421

1422 1423 1424 1425
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1426 1427 1428 1429 1430
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1431
	i40e_for_each_ring(ring, q_vector->rx) {
1432 1433
		int cleaned;

1434 1435 1436 1437
		if (ring_is_ps_enabled(ring))
			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
		else
			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1438 1439

		work_done += cleaned;
1440 1441 1442
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1443
	}
1444 1445

	/* If work not completed, return budget and polling will return */
1446
	if (!clean_complete) {
1447
tx_only:
1448 1449
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1450
			i40e_enable_wb_on_itr(vsi, q_vector);
1451
		}
1452
		return budget;
1453
	}
1454

1455 1456 1457
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1458
	/* Work is done so exit the polling mode and re-enable the interrupt */
1459
	napi_complete_done(napi, work_done);
1460
	i40e_update_enable_itr(vsi, q_vector);
1461 1462 1463 1464
	return 0;
}

/**
1465
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1476 1477 1478
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1479 1480 1481 1482
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1496
	/* if we have a HW VLAN tag being added, default to the HW one */
1497 1498
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1499 1500 1501 1502
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1513
out:
1514 1515 1516 1517 1518 1519 1520 1521 1522
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @hdr_len:  ptr to the size of the packet header
1523
 * @cd_type_cmd_tso_mss: Quad Word 1
1524 1525 1526 1527
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1528
		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1529
{
1530
	u64 cd_cmd, cd_tso_len, cd_mss;
1531 1532 1533 1534 1535
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1536 1537
	union {
		struct tcphdr *tcp;
1538
		struct udphdr *udp;
1539 1540 1541
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1542 1543
	int err;

1544 1545 1546
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1547 1548 1549
	if (!skb_is_gso(skb))
		return 0;

1550 1551 1552
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1553

1554 1555
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1556

1557 1558 1559 1560
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1561
	} else {
1562 1563 1564
		ip.v6->payload_len = 0;
	}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
			paylen = (__force u16)l4.udp->check;
			paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
			l4.udp->check = ~csum_fold((__force __wsum)paylen);
		}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1588 1589
	}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
	paylen = (__force u16)l4.tcp->check;
	paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
	l4.tcp->check = ~csum_fold((__force __wsum)paylen);

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1600 1601 1602 1603 1604

	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
	cd_mss = skb_shinfo(skb)->gso_size;
1605 1606 1607
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1608 1609 1610 1611 1612 1613
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1614
 * @tx_flags: pointer to Tx flags currently set
1615 1616
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1617
 * @tx_ring: Tx descriptor ring
1618 1619
 * @cd_tunneling: ptr to context desc bits
 **/
1620 1621 1622 1623
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1624
{
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1635
	unsigned char *exthdr;
1636
	u32 offset, cmd = 0, tunnel = 0;
1637
	__be16 frag_off;
1638 1639
	u8 l4_proto = 0;

1640 1641 1642
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1643 1644
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1645

1646 1647 1648
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1649
	if (skb->encapsulation) {
1650 1651
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1652 1653 1654 1655
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1656 1657
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1658
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1659 1660

			exthdr = ip.hdr + sizeof(*ip.v6);
1661
			l4_proto = ip.v6->nexthdr;
1662 1663 1664
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1665 1666
		}

1667 1668 1669 1670 1671 1672 1673
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1674 1675
		/* define outer transport */
		switch (l4_proto) {
1676
		case IPPROTO_UDP:
1677
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1678
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1679
			break;
1680
		case IPPROTO_GRE:
1681
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1682 1683
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1684
		default:
1685 1686 1687 1688 1689
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1690
		}
1691

1692 1693 1694 1695
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1696 1697 1698 1699 1700
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1701 1702 1703
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1704 1705
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1706
		l4_proto = 0;
1707

1708 1709 1710 1711 1712
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1713
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1714 1715 1716
	}

	/* Enable IP checksum offloads */
1717
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1718
		l4_proto = ip.v4->protocol;
1719 1720 1721
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1722 1723 1724
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1725
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1726
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1727 1728 1729 1730 1731 1732

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1733
	}
1734

1735 1736
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1737 1738

	/* Enable L4 checksum offloads */
1739
	switch (l4_proto) {
1740 1741
	case IPPROTO_TCP:
		/* enable checksum offloads */
1742 1743
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1744 1745 1746
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1747 1748 1749
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1750 1751 1752
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1753 1754 1755
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1756 1757
		break;
	default:
1758 1759 1760 1761
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1762
	}
1763 1764 1765

	*td_cmd |= cmd;
	*td_offset |= offset;
1766 1767

	return 1;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1784 1785
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1797
	context_desc->rsvd = cpu_to_le16(0);
1798 1799 1800
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1801
/**
1802
 * __i40evf_chk_linearize - Check if there are more than 8 fragments per packet
1803 1804 1805 1806 1807 1808
 * @skb:      send buffer
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 **/
1809
bool __i40evf_chk_linearize(struct sk_buff *skb)
1810
{
1811 1812
	const struct skb_frag_struct *frag, *stale;
	int gso_size, nr_frags, sum;
1813

1814 1815 1816 1817
	/* check to see if TSO is enabled, if so we may get a repreive */
	gso_size = skb_shinfo(skb)->gso_size;
	if (unlikely(!gso_size))
		return true;
1818

1819 1820 1821 1822
	/* no need to check if number of frags is less than 8 */
	nr_frags = skb_shinfo(skb)->nr_frags;
	if (nr_frags < I40E_MAX_BUFFER_TXD)
		return false;
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.  However we don't need
	 * to perform such validation on the first or last 6 since the first
	 * 6 cannot inherit any data from a descriptor before them, and the
	 * last 6 cannot inherit any data from a descriptor after them.
	 */
	nr_frags -= I40E_MAX_BUFFER_TXD - 1;
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
	sum = 1 - gso_size;

	/* Add size of frags 1 through 5 to create our initial sum */
	sum += skb_frag_size(++frag);
	sum += skb_frag_size(++frag);
	sum += skb_frag_size(++frag);
	sum += skb_frag_size(++frag);
	sum += skb_frag_size(++frag);

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
		sum += skb_frag_size(++frag);

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		/* use pre-decrement to avoid processing last fragment */
		if (!--nr_frags)
			break;

		sum -= skb_frag_size(++stale);
1864 1865
	}

1866
	return false;
1867 1868
}

1869 1870 1871 1872 1873 1874 1875
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
1876
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

1892
/**
1893
 * i40evf_tx_map - Build the Tx descriptor
1894 1895 1896 1897 1898 1899 1900 1901
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
1902 1903 1904
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;
	u16 gso_segs;
1915 1916 1917
	u16 desc_count = 0;
	bool tail_bump = true;
	bool do_rs = false;
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
		gso_segs = skb_shinfo(skb)->gso_segs;
	else
		gso_segs = 1;

	/* multiply data chunks by size of headers */
	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
	first->gso_segs = gso_segs;
	first->skb = skb;
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1942 1943
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

1944 1945 1946 1947 1948 1949 1950
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

1951 1952
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
1953 1954 1955 1956 1957
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
1958
					   max_data, td_tag);
1959 1960 1961

			tx_desc++;
			i++;
1962 1963
			desc_count++;

1964 1965 1966 1967 1968
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

1969 1970
			dma += max_data;
			size -= max_data;
1971

1972
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
1984 1985
		desc_count++;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2009 2010 2011
	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
						 tx_ring->queue_index),
						 first->bytecount);
2012
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

	/* Algorithm to optimize tail and RS bit setting:
	 * if xmit_more is supported
	 *	if xmit_more is true
	 *		do not update tail and do not mark RS bit.
	 *	if xmit_more is false and last xmit_more was false
	 *		if every packet spanned less than 4 desc
	 *			then set RS bit on 4th packet and update tail
	 *			on every packet
	 *		else
	 *			update tail and set RS bit on every packet.
	 *	if xmit_more is false and last_xmit_more was true
	 *		update tail and set RS bit.
	 *
	 * Optimization: wmb to be issued only in case of tail update.
	 * Also optimize the Descriptor WB path for RS bit with the same
	 * algorithm.
	 *
	 * Note: If there are less than 4 packets
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
	if (skb->xmit_more  &&
	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						    tx_ring->queue_index))) {
		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		tail_bump = false;
	} else if (!skb->xmit_more &&
		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						       tx_ring->queue_index)) &&
		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
		   (tx_ring->packet_stride < WB_STRIDE) &&
		   (desc_count < WB_STRIDE)) {
		tx_ring->packet_stride++;
	} else {
		tx_ring->packet_stride = 0;
		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		do_rs = true;
	}
	if (do_rs)
		tx_ring->packet_stride = 0;

	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
						  I40E_TX_DESC_CMD_EOP) <<
						  I40E_TXD_QW1_CMD_SHIFT);

2061
	/* notify HW of packet */
2062
	if (!tail_bump)
2063
		prefetchw(tx_desc + 1);
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	if (tail_bump) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(i, tx_ring->tail);
	}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2112
	int tso, count;
J
Jesse Brandeburg 已提交
2113

2114 2115 2116
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2117
	count = i40e_xmit_descriptor_count(skb);
2118 2119 2120
	if (i40e_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
2121
		count = i40e_txd_use_count(skb->len);
2122 2123
		tx_ring->tx_stats.tx_linearize++;
	}
2124 2125 2126 2127 2128 2129 2130 2131 2132

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2133
		return NETDEV_TX_BUSY;
2134
	}
2135 2136

	/* prepare the xmit flags */
2137
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2138 2139 2140
		goto out_drop;

	/* obtain protocol of skb */
2141
	protocol = vlan_get_protocol(skb);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2152
	tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2153 2154 2155 2156 2157 2158 2159

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2160 2161 2162 2163
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2164

2165 2166 2167 2168 2169
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2170 2171 2172
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2173 2174
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2193
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}