timekeeping.c 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50

51 52
	/* The current time */
	struct timespec xtime;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
	struct timespec wall_to_monotonic;
68 69 70
	/* time spent in suspend */
	struct timespec total_sleep_time;

71 72
};

73
static struct timekeeper timekeeper;
74 75 76 77 78 79 80 81 82 83 84 85 86 87

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
88
	u64 tmp, ntpinterval;
89 90 91 92 93 94 95

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
96
	ntpinterval = tmp;
97 98
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
99 100 101 102 103 104 105 106
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
107
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
108
	timekeeper.raw_interval =
109
		((u64) interval * clock->mult) >> clock->shift;
110 111

	timekeeper.xtime_nsec = 0;
112
	timekeeper.shift = clock->shift;
113 114

	timekeeper.ntp_error = 0;
115
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
116 117 118 119 120 121 122

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
123
}
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

155
	/* return delta convert to nanoseconds. */
156 157 158
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

159 160
/*
 * This read-write spinlock protects us from races in SMP while
161
 * playing with xtime.
162
 */
A
Adrian Bunk 已提交
163
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
164 165 166



167 168 169
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
170
static struct timespec raw_time;
171

172 173 174
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

175 176 177
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
178
	timekeeper.xtime.tv_sec += leapsecond;
179
	timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
180 181
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			 timekeeper.clock, timekeeper.mult);
182
}
183 184

/**
185
 * timekeeping_forward_now - update clock to the current time
186
 *
187 188 189
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
190
 */
191
static void timekeeping_forward_now(void)
192 193
{
	cycle_t cycle_now, cycle_delta;
194
	struct clocksource *clock;
195
	s64 nsec;
196

197
	clock = timekeeper.clock;
198
	cycle_now = clock->read(clock);
199
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
200
	clock->cycle_last = cycle_now;
201

202 203
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
204 205 206 207

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

208
	timespec_add_ns(&timekeeper.xtime, nsec);
209

210
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
211
	timespec_add_ns(&raw_time, nsec);
212 213 214
}

/**
215
 * getnstimeofday - Returns the time of day in a timespec
216 217
 * @ts:		pointer to the timespec to be set
 *
218
 * Returns the time of day in a timespec.
219
 */
220
void getnstimeofday(struct timespec *ts)
221 222 223 224
{
	unsigned long seq;
	s64 nsecs;

225 226
	WARN_ON(timekeeping_suspended);

227 228 229
	do {
		seq = read_seqbegin(&xtime_lock);

230
		*ts = timekeeper.xtime;
231
		nsecs = timekeeping_get_ns();
232

233 234 235
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

236 237 238 239 240 241 242
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

243 244 245 246 247 248 249 250 251
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
252 253 254 255
		secs = timekeeper.xtime.tv_sec +
				timekeeper.wall_to_monotonic.tv_sec;
		nsecs = timekeeper.xtime.tv_nsec +
				timekeeper.wall_to_monotonic.tv_nsec;
256
		nsecs += timekeeping_get_ns();
257 258
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
287
		*ts = timekeeper.xtime;
288
		tomono = timekeeper.wall_to_monotonic;
289
		nsecs = timekeeping_get_ns();
290 291
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
292 293 294 295 296 297 298 299

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

		seq = read_seqbegin(&xtime_lock);

		*ts_raw = raw_time;
324
		*ts_real = timekeeper.xtime;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

343 344 345 346
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
347
 * NOTE: Users should be converted to using getnstimeofday()
348 349 350 351 352
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

353
	getnstimeofday(&now);
354 355 356 357 358 359 360 361 362 363 364
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
365
int do_settimeofday(const struct timespec *tv)
366
{
367
	struct timespec ts_delta;
368 369 370 371 372 373 374
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

375
	timekeeping_forward_now();
376

377 378
	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
379 380
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
381

382
	timekeeper.xtime = *tv;
383

384
	timekeeper.ntp_error = 0;
385 386
	ntp_clear();

387 388
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
389 390 391 392 393 394 395 396 397 398 399

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
	unsigned long flags;

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	timekeeping_forward_now();

418
	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
419 420
	timekeeper.wall_to_monotonic =
				timespec_sub(timekeeper.wall_to_monotonic, *ts);
421 422 423 424

	timekeeper.ntp_error = 0;
	ntp_clear();

425 426
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
427 428 429 430 431 432 433 434 435 436

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

437 438 439 440 441
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
442
static int change_clocksource(void *data)
443
{
444
	struct clocksource *new, *old;
445

446
	new = (struct clocksource *) data;
447

448
	timekeeping_forward_now();
449 450 451 452 453 454 455 456
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
457

458 459 460 461 462 463 464 465 466 467
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
468
		return;
469
	stop_machine(change_clocksource, clock, NULL);
470 471
	tick_clock_notify();
}
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
487

488 489 490 491 492 493 494 495 496 497 498 499 500
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
501
		nsecs = timekeeping_get_ns_raw();
502
		*ts = raw_time;
503 504 505 506 507 508 509 510

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


511
/**
512
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
513
 */
514
int timekeeping_valid_for_hres(void)
515 516 517 518 519 520 521
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

522
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
523 524 525 526 527 528

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

529 530 531 532 533 534 535 536 537 538 539
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

540
/**
541
 * read_persistent_clock -  Return time from the persistent clock.
542 543
 *
 * Weak dummy function for arches that do not yet support it.
544 545
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
546 547 548
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
549
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
550
{
551 552
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

570 571 572 573 574
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
575
	struct clocksource *clock;
576
	unsigned long flags;
577
	struct timespec now, boot;
578 579

	read_persistent_clock(&now);
580
	read_boot_clock(&boot);
581 582 583

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
584
	ntp_init();
585

586
	clock = clocksource_default_clock();
587 588
	if (clock->enable)
		clock->enable(clock);
589
	timekeeper_setup_internals(clock);
590

591 592
	timekeeper.xtime.tv_sec = now.tv_sec;
	timekeeper.xtime.tv_nsec = now.tv_nsec;
593 594
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
595
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
596 597
		boot.tv_sec = timekeeper.xtime.tv_sec;
		boot.tv_nsec = timekeeper.xtime.tv_nsec;
598
	}
599
	set_normalized_timespec(&timekeeper.wall_to_monotonic,
600
				-boot.tv_sec, -boot.tv_nsec);
601 602
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
603 604 605 606
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
607
static struct timespec timekeeping_suspend_time;
608

609 610 611 612 613 614 615 616 617
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
618
	if (!timespec_valid(delta)) {
619
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
620 621 622 623
					"sleep delta value!\n");
		return;
	}

624
	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
625 626
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, *delta);
627 628
	timekeeper.total_sleep_time = timespec_add(
					timekeeper.total_sleep_time, *delta);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
	unsigned long flags;
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

	timekeeper.ntp_error = 0;
	ntp_clear();
659 660
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
661 662 663 664 665 666 667 668

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();
}


669 670 671 672 673 674 675
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
676
static void timekeeping_resume(void)
677 678
{
	unsigned long flags;
679 680 681
	struct timespec ts;

	read_persistent_clock(&ts);
682

683 684
	clocksource_resume();

685 686
	write_seqlock_irqsave(&xtime_lock, flags);

687 688
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
689
		__timekeeping_inject_sleeptime(&ts);
690 691
	}
	/* re-base the last cycle value */
692 693
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
694 695 696 697 698 699 700 701
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
702
	hrtimers_resume();
703 704
}

705
static int timekeeping_suspend(void)
706 707
{
	unsigned long flags;
708 709
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
710

711
	read_persistent_clock(&timekeeping_suspend_time);
712

713
	write_seqlock_irqsave(&xtime_lock, flags);
714
	timekeeping_forward_now();
715
	timekeeping_suspended = 1;
716 717 718 719 720 721 722

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
723
	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
724 725 726 727 728 729 730 731 732 733 734 735
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
736 737 738
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
739
	clocksource_suspend();
740 741 742 743 744

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
745
static struct syscore_ops timekeeping_syscore_ops = {
746 747 748 749
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

750
static int __init timekeeping_init_ops(void)
751
{
752 753
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
754 755
}

756
device_initcall(timekeeping_init_ops);
757 758 759 760 761

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
762
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
763 764 765 766 767 768 769 770 771 772 773 774
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
775
	 * here.  This is tuned so that an error of about 1 msec is adjusted
776 777
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
778
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
779 780 781 782 783 784 785 786
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
787
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
788
	tick_error -= timekeeper.xtime_interval >> 1;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
813
static void timekeeping_adjust(s64 offset)
814
{
815
	s64 error, interval = timekeeper.cycle_interval;
816 817
	int adj;

818 819 820 821 822 823 824
	/*
	 * The point of this is to check if the error is greater then half
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
825 826
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
827 828
	 * larger then half an interval.
	 *
829
	 * Note: It does not "save" on aggravation when reading the code.
830
	 */
831
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
832
	if (error > interval) {
833 834 835 836 837 838
		/*
		 * We now divide error by 4(via shift), which checks if
		 * the error is greater then twice the interval.
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
839
		error >>= 2;
840 841 842 843 844
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
845
		 * The proper fix is to avoid rounding up by using
846 847 848 849
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
850 851 852
		if (likely(error <= interval))
			adj = 1;
		else
853
			adj = timekeeping_bigadjust(error, &interval, &offset);
854
	} else if (error < -interval) {
855
		/* See comment above, this is just switched for the negative */
856 857 858 859 860 861
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
862
			adj = timekeeping_bigadjust(error, &interval, &offset);
863
	} else /* No adjustment needed */
864 865
		return;

866 867 868 869 870 871 872
	WARN_ONCE(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj > timekeeper.clock->mult +
						timekeeper.clock->maxadj),
			"Adjusting %s more then 11%% (%ld vs %ld)\n",
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
922
	timekeeper.mult += adj;
923 924 925
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
926
				timekeeper.ntp_error_shift;
927 928
}

L
Linus Torvalds 已提交
929

930 931 932 933 934 935 936 937 938 939 940 941
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
942
	u64 raw_nsecs;
943 944 945 946 947 948 949 950 951 952 953 954

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
955
		timekeeper.xtime.tv_sec++;
956 957 958
		second_overflow();
	}

959 960 961
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
	raw_nsecs += raw_time.tv_nsec;
962 963 964 965
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
		raw_time.tv_sec += raw_secs;
966
	}
967
	raw_time.tv_nsec = raw_nsecs;
968 969 970

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
971 972
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
973 974 975 976 977
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
978

979 980 981 982 983
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
984
static void update_wall_time(void)
985
{
986
	struct clocksource *clock;
987
	cycle_t offset;
988
	int shift = 0, maxshift;
989 990 991 992 993

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

994
	clock = timekeeper.clock;
J
John Stultz 已提交
995 996

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
997
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
998 999
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1000
#endif
1001 1002
	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1003

1004 1005 1006 1007 1008 1009 1010
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1011
	 */
1012 1013 1014 1015 1016
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
1017
	while (offset >= timekeeper.cycle_interval) {
1018
		offset = logarithmic_accumulation(offset, shift);
1019 1020
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1021 1022 1023
	}

	/* correct the clock when NTP error is too big */
1024
	timekeeping_adjust(offset);
1025

1026 1027 1028 1029
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1030
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1042 1043 1044
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1045
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1046 1047
	}

J
John Stultz 已提交
1048 1049 1050

	/*
	 * Store full nanoseconds into xtime after rounding it up and
1051 1052
	 * add the remainder to the error difference.
	 */
1053 1054 1055 1056
	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
						timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1057 1058
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
1059

J
John Stultz 已提交
1060 1061 1062 1063
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
1064 1065 1066
	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
		timekeeper.xtime.tv_sec++;
J
John Stultz 已提交
1067 1068
		second_overflow();
	}
L
Linus Torvalds 已提交
1069

1070
	/* check to see if there is a new clocksource to use */
1071 1072
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
1073
}
T
Tomas Janousek 已提交
1074 1075 1076 1077 1078

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1079
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1080 1081 1082 1083 1084 1085 1086 1087
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1088
	struct timespec boottime = {
1089
		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1090
				timekeeper.total_sleep_time.tv_sec,
1091
		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1092
				timekeeper.total_sleep_time.tv_nsec
1093
	};
1094 1095

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1096
}
1097
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
1119
		*ts = timekeeper.xtime;
1120
		tomono = timekeeper.wall_to_monotonic;
1121
		sleep = timekeeper.total_sleep_time;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		nsecs = timekeeping_get_ns();

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1148 1149 1150 1151 1152 1153
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1154
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1155
}
1156
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1157

1158 1159
unsigned long get_seconds(void)
{
1160
	return timekeeper.xtime.tv_sec;
1161 1162 1163
}
EXPORT_SYMBOL(get_seconds);

1164 1165
struct timespec __current_kernel_time(void)
{
1166
	return timekeeper.xtime;
1167
}
1168

1169 1170 1171 1172 1173 1174 1175
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1176

1177
		now = timekeeper.xtime;
1178 1179 1180 1181 1182
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1183 1184 1185 1186 1187 1188 1189 1190

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1191

1192
		now = timekeeper.xtime;
1193
		mono = timekeeper.wall_to_monotonic;
1194 1195 1196 1197 1198 1199
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1212 1213

/**
1214 1215
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1216 1217
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1218
 * @sleep:	pointer to timespec to be set with time in suspend
1219
 */
1220 1221
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1222 1223 1224 1225 1226
{
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
1227
		*xtim = timekeeper.xtime;
1228
		*wtom = timekeeper.wall_to_monotonic;
1229
		*sleep = timekeeper.total_sleep_time;
1230 1231
	} while (read_seqretry(&xtime_lock, seq));
}
T
Torben Hohn 已提交
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
		seq = read_seqbegin(&xtime_lock);
1243
		wtom = timekeeper.wall_to_monotonic;
1244 1245 1246 1247
	} while (read_seqretry(&xtime_lock, seq));
	return timespec_to_ktime(wtom);
}

T
Torben Hohn 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}