cpuset.c 77.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
62

63 64 65 66 67
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
68
int number_of_cpusets __read_mostly;
69

70
/* Forward declare cgroup structures */
71 72 73
struct cgroup_subsys cpuset_subsys;
struct cpuset;

74 75 76 77 78 79 80 81 82
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
83
struct cpuset {
84 85
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
86
	unsigned long flags;		/* "unsigned long" so bitops work */
87
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
88 89
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

90
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
91

92 93 94 95 96 97
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
98 99
	/* partition number for rebuild_sched_domains() */
	int pn;
100

101 102 103
	/* for custom sched domain */
	int relax_domain_level;

104
	struct work_struct hotplug_work;
L
Linus Torvalds 已提交
105 106
};

107 108 109 110 111 112 113 114 115 116 117 118 119 120
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

T
Tejun Heo 已提交
121 122 123 124 125 126 127 128 129
static inline struct cpuset *parent_cs(const struct cpuset *cs)
{
	struct cgroup *pcgrp = cs->css.cgroup->parent;

	if (pcgrp)
		return cgroup_cs(pcgrp);
	return NULL;
}

130 131 132 133 134 135 136 137 138 139 140 141 142
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
143 144
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
145
	CS_ONLINE,
L
Linus Torvalds 已提交
146 147
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
148
	CS_MEM_HARDWALL,
149
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
150
	CS_SCHED_LOAD_BALANCE,
151 152
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
153 154 155
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
156 157 158 159 160
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
161 162
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
163
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
164 165 166 167
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
168
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
169 170
}

171 172 173 174 175
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
176 177 178 179 180
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

181 182
static inline int is_memory_migrate(const struct cpuset *cs)
{
183
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 185
}

186 187 188 189 190 191 192 193 194 195
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
196
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
197 198
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
199 200
};

201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_cgrp: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)		\
	cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)	\
		if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))

214 215 216 217 218 219 220 221 222 223 224 225 226 227
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
 * @pos_cgrp: used for iteration
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 * with RCU read locked.  The caller may modify @pos_cgrp by calling
 * cgroup_rightmost_descendant() to skip subtree.
 */
#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs)	\
	cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
		if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))

L
Linus Torvalds 已提交
228
/*
229 230 231 232 233 234 235 236 237 238 239 240 241 242
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
243 244
 *
 * Calls to the kernel memory allocator can not be made while holding
245
 * callback_mutex, as that would risk double tripping on callback_mutex
246 247 248
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
249
 * If a task is only holding callback_mutex, then it has read-only
250 251
 * access to cpusets.
 *
252 253 254
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
255
 *
256
 * The cpuset_common_file_read() handlers only hold callback_mutex across
257 258 259
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
260 261
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
262 263
 */

264
static DEFINE_MUTEX(cpuset_mutex);
265
static DEFINE_MUTEX(callback_mutex);
266

267 268 269 270 271 272 273 274 275 276 277
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

278 279 280
/*
 * CPU / memory hotplug is handled asynchronously.
 */
281 282
static struct workqueue_struct *cpuset_propagate_hotplug_wq;

283
static void cpuset_hotplug_workfn(struct work_struct *work);
284
static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
285
static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
286 287 288

static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

289 290
/*
 * This is ugly, but preserves the userspace API for existing cpuset
291
 * users. If someone tries to mount the "cpuset" filesystem, we
292 293
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
294 295
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
296
{
297
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
298
	struct dentry *ret = ERR_PTR(-ENODEV);
299 300 301 302
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
303 304
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
305 306 307
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
308 309 310 311
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
312
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
313 314 315
};

/*
316
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
317 318 319
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
320 321
 * return cpu_online_mask.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_mask.
L
Linus Torvalds 已提交
322 323
 *
 * One way or another, we guarantee to return some non-empty subset
324
 * of cpu_online_mask.
L
Linus Torvalds 已提交
325
 *
326
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
327 328
 */

329 330
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
331
{
332
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
333
		cs = parent_cs(cs);
L
Linus Torvalds 已提交
334
	if (cs)
335
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
336
	else
337 338
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
L
Linus Torvalds 已提交
339 340 341 342
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
343 344 345
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
346
 * found any online mems, return node_states[N_MEMORY].
L
Linus Torvalds 已提交
347 348
 *
 * One way or another, we guarantee to return some non-empty subset
349
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
350
 *
351
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
352 353 354 355
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
356
	while (cs && !nodes_intersects(cs->mems_allowed,
357
					node_states[N_MEMORY]))
T
Tejun Heo 已提交
358
		cs = parent_cs(cs);
L
Linus Torvalds 已提交
359
	if (cs)
360
		nodes_and(*pmask, cs->mems_allowed,
361
					node_states[N_MEMORY]);
L
Linus Torvalds 已提交
362
	else
363 364
		*pmask = node_states[N_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
L
Linus Torvalds 已提交
365 366
}

367 368 369
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
370
 * Called with callback_mutex/cpuset_mutex held
371 372 373 374 375 376 377 378 379 380 381 382 383 384
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
385 386 387 388 389
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
390
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
391 392 393 394
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
395
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
396 397 398 399 400
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

401 402 403 404 405 406
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
407 408 409 410 411 412 413 414 415 416 417 418 419
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
420 421 422 423 424 425 426 427
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
428
	free_cpumask_var(trial->cpus_allowed);
429 430 431
	kfree(trial);
}

L
Linus Torvalds 已提交
432 433 434 435 436 437 438
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
439
 * cpuset_mutex held.
L
Linus Torvalds 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
454
	struct cgroup *cont;
L
Linus Torvalds 已提交
455
	struct cpuset *c, *par;
456 457 458
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
459 460

	/* Each of our child cpusets must be a subset of us */
461 462 463 464
	ret = -EBUSY;
	cpuset_for_each_child(c, cont, cur)
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
465 466

	/* Remaining checks don't apply to root cpuset */
467
	ret = 0;
468
	if (cur == &top_cpuset)
469
		goto out;
L
Linus Torvalds 已提交
470

T
Tejun Heo 已提交
471
	par = parent_cs(cur);
472

L
Linus Torvalds 已提交
473
	/* We must be a subset of our parent cpuset */
474
	ret = -EACCES;
L
Linus Torvalds 已提交
475
	if (!is_cpuset_subset(trial, par))
476
		goto out;
L
Linus Torvalds 已提交
477

478 479 480 481
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
482 483
	ret = -EINVAL;
	cpuset_for_each_child(c, cont, par) {
L
Linus Torvalds 已提交
484 485
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
486
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
487
			goto out;
L
Linus Torvalds 已提交
488 489 490
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
491
			goto out;
L
Linus Torvalds 已提交
492 493
	}

494 495 496 497
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
	 * have empty cpus_allowed or mems_allowed.
	 */
498
	ret = -ENOSPC;
499
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
500 501 502
	    (cpumask_empty(trial->cpus_allowed) ||
	     nodes_empty(trial->mems_allowed)))
		goto out;
503

504 505 506 507
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
508 509
}

510
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
511
/*
512
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
513 514 515 516
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
517
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
518 519
}

520 521 522 523 524 525 526 527
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

528 529
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
530
{
531 532
	struct cpuset *cp;
	struct cgroup *pos_cgrp;
533

534 535 536 537 538
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
539
			continue;
540
		}
541 542 543 544

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
545
	rcu_read_unlock();
546 547
}

P
Paul Jackson 已提交
548
/*
549 550 551 552 553 554 555 556 557
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
558
 *
L
Li Zefan 已提交
559
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
560 561 562 563 564 565 566
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
567
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
568 569
 *
 * The three key local variables below are:
570
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
602
static int generate_sched_domains(cpumask_var_t **domains,
603
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
604 605 606 607 608
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
609
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
610
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
611
	int ndoms = 0;		/* number of sched domains in result */
612
	int nslot;		/* next empty doms[] struct cpumask slot */
613
	struct cgroup *pos_cgrp;
P
Paul Jackson 已提交
614 615

	doms = NULL;
616
	dattr = NULL;
617
	csa = NULL;
P
Paul Jackson 已提交
618 619 620

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
621 622
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
623
		if (!doms)
624 625
			goto done;

626 627 628
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
629
			update_domain_attr_tree(dattr, &top_cpuset);
630
		}
631
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
632 633

		goto done;
P
Paul Jackson 已提交
634 635 636 637 638 639 640
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

641 642
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
643
		/*
644 645 646 647 648 649
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
650
		 */
651 652
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
653
			continue;
654

655 656 657 658 659 660 661
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
		pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

690 691 692 693
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
694
	doms = alloc_sched_domains(ndoms);
695
	if (!doms)
696 697 698 699 700 701
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
702
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
703 704 705

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
706
		struct cpumask *dp;
P
Paul Jackson 已提交
707 708
		int apn = a->pn;

709 710 711 712 713
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

714
		dp = doms[nslot];
715 716 717 718 719 720 721 722 723 724

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
725
			}
726 727
			continue;
		}
P
Paul Jackson 已提交
728

729
		cpumask_clear(dp);
730 731 732 733 734 735
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
736
				cpumask_or(dp, dp, b->cpus_allowed);
737 738 739 740 741
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
742 743
			}
		}
744
		nslot++;
P
Paul Jackson 已提交
745 746 747
	}
	BUG_ON(nslot != ndoms);

748 749 750
done:
	kfree(csa);

751 752 753 754 755 756 757
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

758 759 760 761 762 763 764 765
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
766 767 768 769 770
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
771
 *
772
 * Call with cpuset_mutex held.  Takes get_online_cpus().
773
 */
774
static void rebuild_sched_domains_locked(void)
775 776
{
	struct sched_domain_attr *attr;
777
	cpumask_var_t *doms;
778 779
	int ndoms;

780
	lockdep_assert_held(&cpuset_mutex);
781
	get_online_cpus();
782 783 784 785 786 787 788

	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

789
	put_online_cpus();
790
}
791
#else /* !CONFIG_SMP */
792
static void rebuild_sched_domains_locked(void)
793 794 795
{
}

796
static int generate_sched_domains(cpumask_var_t **domains,
797 798 799 800 801 802
			struct sched_domain_attr **attributes)
{
	*domains = NULL;
	return 1;
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
803

804 805
void rebuild_sched_domains(void)
{
806
	mutex_lock(&cpuset_mutex);
807
	rebuild_sched_domains_locked();
808
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
809 810
}

C
Cliff Wickman 已提交
811 812 813 814 815
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
816
 * Call with cpuset_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
817 818 819
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
820
 */
821 822
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
823
{
824
	return !cpumask_equal(&tsk->cpus_allowed,
C
Cliff Wickman 已提交
825 826
			(cgroup_cs(scan->cg))->cpus_allowed);
}
827

C
Cliff Wickman 已提交
828 829 830 831 832 833 834 835 836
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
837
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
838
 */
839 840
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
841
{
842
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
843 844
}

845 846 847
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
848
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
849
 *
850
 * Called with cpuset_mutex held
851 852 853 854
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
855 856
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
857
 */
858
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
859 860 861 862 863 864
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
865 866
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
867 868
}

C
Cliff Wickman 已提交
869 870 871 872 873
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
874 875
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
876
{
877
	struct ptr_heap heap;
C
Cliff Wickman 已提交
878 879
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
880

881
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
882 883 884
	if (cs == &top_cpuset)
		return -EACCES;

885
	/*
886
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
887 888 889
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
890
	 */
891
	if (!*buf) {
892
		cpumask_clear(trialcs->cpus_allowed);
893
	} else {
894
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
895 896
		if (retval < 0)
			return retval;
897

898
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
899
			return -EINVAL;
900
	}
901
	retval = validate_change(cs, trialcs);
902 903
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
904

P
Paul Menage 已提交
905
	/* Nothing to do if the cpus didn't change */
906
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
907
		return 0;
C
Cliff Wickman 已提交
908

909 910 911 912
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

913
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
914

915
	mutex_lock(&callback_mutex);
916
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
917
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
918

P
Paul Menage 已提交
919 920
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
921
	 * that need an update.
P
Paul Menage 已提交
922
	 */
923 924 925
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
926

P
Paul Menage 已提交
927
	if (is_load_balanced)
928
		rebuild_sched_domains_locked();
929
	return 0;
L
Linus Torvalds 已提交
930 931
}

932 933 934 935 936 937 938 939
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
940
 *    Call holding cpuset_mutex, so current's cpuset won't change
941
 *    during this call, as manage_mutex holds off any cpuset_attach()
942 943
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
944
 *    our task's cpuset.
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

961
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
962 963
}

964
/*
965 966 967 968 969 970 971 972 973 974 975
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
976
	bool need_loop;
977

978 979 980 981 982 983 984 985 986 987
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
988 989 990 991 992 993 994 995
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
996

997 998
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
999

1000 1001
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1002 1003

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1004
	tsk->mems_allowed = *newmems;
1005 1006 1007 1008

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

1009
	task_unlock(tsk);
1010 1011 1012 1013 1014
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1015
 * memory_migrate flag is set. Called with cpuset_mutex held.
1016 1017 1018 1019 1020 1021 1022 1023
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;
1024
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1025 1026

	cs = cgroup_cs(scan->cg);
1027
	guarantee_online_mems(cs, &newmems);
1028

1029
	cpuset_change_task_nodemask(p, &newmems);
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

1043 1044
static void *cpuset_being_rebound;

1045 1046 1047 1048
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1049
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1050
 *
1051
 * Called with cpuset_mutex held
1052 1053
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1054
 */
1055 1056
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
L
Linus Torvalds 已提交
1057
{
1058
	struct cgroup_scanner scan;
1059

1060
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1061

1062 1063 1064
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1065
	scan.heap = heap;
1066
	scan.data = (nodemask_t *)oldmem;
1067 1068

	/*
1069 1070 1071 1072
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1073
	 * the global cpuset_mutex, we know that no other rebind effort
1074
	 * will be contending for the global variable cpuset_being_rebound.
1075
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1076
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1077
	 */
1078
	cgroup_scan_tasks(&scan);
1079

1080
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1081
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1082 1083
}

1084 1085 1086
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1087 1088 1089 1090
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1091
 *
1092
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1093 1094 1095 1096
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1097 1098
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1099
{
1100
	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1101
	int retval;
1102
	struct ptr_heap heap;
1103

1104 1105 1106
	if (!oldmem)
		return -ENOMEM;

1107
	/*
1108
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1109 1110
	 * it's read-only
	 */
1111 1112 1113 1114
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1115 1116 1117 1118 1119 1120 1121 1122

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1123
		nodes_clear(trialcs->mems_allowed);
1124
	} else {
1125
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1126 1127 1128
		if (retval < 0)
			goto done;

1129
		if (!nodes_subset(trialcs->mems_allowed,
1130
				node_states[N_MEMORY])) {
1131 1132 1133
			retval =  -EINVAL;
			goto done;
		}
1134
	}
1135 1136
	*oldmem = cs->mems_allowed;
	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1137 1138 1139
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1140
	retval = validate_change(cs, trialcs);
1141 1142 1143
	if (retval < 0)
		goto done;

1144 1145 1146 1147
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1148
	mutex_lock(&callback_mutex);
1149
	cs->mems_allowed = trialcs->mems_allowed;
1150 1151
	mutex_unlock(&callback_mutex);

1152
	update_tasks_nodemask(cs, oldmem, &heap);
1153 1154

	heap_free(&heap);
1155
done:
1156
	NODEMASK_FREE(oldmem);
1157 1158 1159
	return retval;
}

1160 1161 1162 1163 1164
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1165
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1166
{
1167
#ifdef CONFIG_SMP
1168
	if (val < -1 || val >= sched_domain_level_max)
1169
		return -EINVAL;
1170
#endif
1171 1172 1173

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1174 1175
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1176
			rebuild_sched_domains_locked();
1177 1178 1179 1180 1181
	}

	return 0;
}

1182 1183 1184 1185 1186 1187 1188 1189
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1190
 * holding cpuset_mutex at this point.
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
1203
 * Called with cpuset_mutex held
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1222 1223
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1224 1225 1226
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1227
 *
1228
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1229 1230
 */

1231 1232
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1233
{
1234
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1235
	int balance_flag_changed;
1236 1237 1238
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1239

1240 1241 1242 1243
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1244
	if (turning_on)
1245
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1246
	else
1247
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1248

1249
	err = validate_change(cs, trialcs);
1250
	if (err < 0)
1251
		goto out;
P
Paul Jackson 已提交
1252

1253 1254 1255 1256
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1257
	balance_flag_changed = (is_sched_load_balance(cs) !=
1258
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1259

1260 1261 1262
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1263
	mutex_lock(&callback_mutex);
1264
	cs->flags = trialcs->flags;
1265
	mutex_unlock(&callback_mutex);
1266

1267
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1268
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1269

1270 1271 1272
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1273 1274 1275
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1276 1277
}

1278
/*
A
Adrian Bunk 已提交
1279
 * Frequency meter - How fast is some event occurring?
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1376
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1377
static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1378
{
1379
	struct cpuset *cs = cgroup_cs(cgrp);
1380 1381
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1382

1383 1384 1385
	mutex_lock(&cpuset_mutex);

	ret = -ENOSPC;
1386
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1387
		goto out_unlock;
1388

1389 1390
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
1391 1392 1393 1394 1395 1396 1397
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1398
		 */
1399
		ret = -EINVAL;
1400
		if (task->flags & PF_NO_SETAFFINITY)
1401 1402 1403 1404
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1405
	}
1406

1407 1408 1409 1410 1411
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1412 1413 1414 1415
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1416
}
1417

1418 1419 1420
static void cpuset_cancel_attach(struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
{
1421
	mutex_lock(&cpuset_mutex);
1422
	cgroup_cs(cgrp)->attach_in_progress--;
1423
	mutex_unlock(&cpuset_mutex);
1424
}
L
Linus Torvalds 已提交
1425

1426
/*
1427
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1428 1429 1430 1431 1432
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1433
static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1434
{
1435
	/* static bufs protected by cpuset_mutex */
1436 1437
	static nodemask_t cpuset_attach_nodemask_from;
	static nodemask_t cpuset_attach_nodemask_to;
1438
	struct mm_struct *mm;
1439 1440
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1441 1442 1443
	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1444

1445 1446
	mutex_lock(&cpuset_mutex);

1447 1448 1449 1450 1451 1452 1453 1454
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
		guarantee_online_cpus(cs, cpus_attach);

	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1465

1466 1467 1468 1469 1470 1471
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_from = oldcs->mems_allowed;
	cpuset_attach_nodemask_to = cs->mems_allowed;
1472
	mm = get_task_mm(leader);
1473
	if (mm) {
1474
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1475
		if (is_memory_migrate(cs))
1476 1477
			cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
					  &cpuset_attach_nodemask_to);
1478 1479
		mmput(mm);
	}
1480 1481

	cs->attach_in_progress--;
1482 1483 1484 1485 1486 1487 1488 1489

	/*
	 * We may have raced with CPU/memory hotunplug.  Trigger hotplug
	 * propagation if @cs doesn't have any CPU or memory.  It will move
	 * the newly added tasks to the nearest parent which can execute.
	 */
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		schedule_cpuset_propagate_hotplug(cs);
1490 1491

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1492 1493 1494 1495 1496
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1497
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1498 1499 1500 1501
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1502
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1503
	FILE_SCHED_LOAD_BALANCE,
1504
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1505 1506
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1507 1508
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1509 1510
} cpuset_filetype_t;

1511 1512 1513 1514
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1515
	int retval = -ENODEV;
1516

1517 1518 1519
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1520 1521

	switch (type) {
L
Linus Torvalds 已提交
1522
	case FILE_CPU_EXCLUSIVE:
1523
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1524 1525
		break;
	case FILE_MEM_EXCLUSIVE:
1526
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1527
		break;
1528 1529 1530
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1531
	case FILE_SCHED_LOAD_BALANCE:
1532
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1533
		break;
1534
	case FILE_MEMORY_MIGRATE:
1535
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1536
		break;
1537
	case FILE_MEMORY_PRESSURE_ENABLED:
1538
		cpuset_memory_pressure_enabled = !!val;
1539 1540 1541 1542
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1543
	case FILE_SPREAD_PAGE:
1544
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1545 1546
		break;
	case FILE_SPREAD_SLAB:
1547
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1548
		break;
L
Linus Torvalds 已提交
1549 1550
	default:
		retval = -EINVAL;
1551
		break;
L
Linus Torvalds 已提交
1552
	}
1553 1554
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1555 1556 1557
	return retval;
}

1558 1559 1560 1561
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1562
	int retval = -ENODEV;
1563

1564 1565 1566
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1567

1568 1569 1570 1571 1572 1573 1574 1575
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1576 1577
out_unlock:
	mutex_unlock(&cpuset_mutex);
1578 1579 1580
	return retval;
}

1581 1582 1583 1584 1585 1586
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
1587 1588
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1589
	int retval = -ENODEV;
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1601 1602 1603 1604
	 *
	 * Flushing cpuset_hotplug_work is enough to synchronize against
	 * hotplug hanlding; however, cpuset_attach() may schedule
	 * propagation work directly.  Flush the workqueue too.
1605 1606
	 */
	flush_work(&cpuset_hotplug_work);
1607
	flush_workqueue(cpuset_propagate_hotplug_wq);
1608

1609 1610 1611
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1612

1613
	trialcs = alloc_trial_cpuset(cs);
1614 1615
	if (!trialcs) {
		retval = -ENOMEM;
1616
		goto out_unlock;
1617
	}
1618

1619 1620
	switch (cft->private) {
	case FILE_CPULIST:
1621
		retval = update_cpumask(cs, trialcs, buf);
1622 1623
		break;
	case FILE_MEMLIST:
1624
		retval = update_nodemask(cs, trialcs, buf);
1625 1626 1627 1628 1629
		break;
	default:
		retval = -EINVAL;
		break;
	}
1630 1631

	free_trial_cpuset(trialcs);
1632 1633
out_unlock:
	mutex_unlock(&cpuset_mutex);
1634 1635 1636
	return retval;
}

L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1649
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1650
{
1651
	size_t count;
L
Linus Torvalds 已提交
1652

1653
	mutex_lock(&callback_mutex);
1654
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1655
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1656

1657
	return count;
L
Linus Torvalds 已提交
1658 1659
}

1660
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1661
{
1662
	size_t count;
L
Linus Torvalds 已提交
1663

1664
	mutex_lock(&callback_mutex);
1665
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1666
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1667

1668
	return count;
L
Linus Torvalds 已提交
1669 1670
}

1671 1672 1673 1674 1675
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1676
{
1677
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1683
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1701
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1702 1703 1704 1705 1706
out:
	free_page((unsigned long)page);
	return retval;
}

1707 1708 1709 1710 1711 1712 1713 1714 1715
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1716 1717
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1733 1734 1735

	/* Unreachable but makes gcc happy */
	return 0;
1736
}
L
Linus Torvalds 已提交
1737

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1748 1749 1750

	/* Unrechable but makes gcc happy */
	return 0;
1751 1752
}

L
Linus Torvalds 已提交
1753 1754 1755 1756 1757

/*
 * for the common functions, 'private' gives the type of file
 */

1758 1759 1760 1761
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1762 1763
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1764 1765 1766 1767 1768 1769
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1770 1771
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1789 1790 1791 1792 1793 1794 1795
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1796 1797 1798 1799 1800 1801 1802 1803 1804
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1805 1806
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1822
		.mode = S_IRUGO,
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1838

1839 1840 1841 1842 1843 1844 1845
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1846

1847 1848
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1849 1850

/*
1851
 *	cpuset_css_alloc - allocate a cpuset css
1852
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1853 1854
 */

1855
static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
L
Linus Torvalds 已提交
1856
{
T
Tejun Heo 已提交
1857
	struct cpuset *cs;
L
Linus Torvalds 已提交
1858

T
Tejun Heo 已提交
1859
	if (!cont->parent)
1860
		return &top_cpuset.css;
1861

T
Tejun Heo 已提交
1862
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1863
	if (!cs)
1864
		return ERR_PTR(-ENOMEM);
1865 1866 1867 1868
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1869

P
Paul Jackson 已提交
1870
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1871
	cpumask_clear(cs->cpus_allowed);
1872
	nodes_clear(cs->mems_allowed);
1873
	fmeter_init(&cs->fmeter);
1874
	INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1875
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1876

T
Tejun Heo 已提交
1877 1878 1879 1880 1881 1882
	return &cs->css;
}

static int cpuset_css_online(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);
T
Tejun Heo 已提交
1883
	struct cpuset *parent = parent_cs(cs);
1884 1885
	struct cpuset *tmp_cs;
	struct cgroup *pos_cg;
T
Tejun Heo 已提交
1886 1887 1888 1889

	if (!parent)
		return 0;

1890 1891
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1892
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1893 1894 1895 1896
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1897

1898
	number_of_cpusets++;
1899

T
Tejun Heo 已提交
1900
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1901
		goto out_unlock;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
1916 1917 1918 1919
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_cg, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
1920
			goto out_unlock;
1921
		}
1922
	}
1923
	rcu_read_unlock();
1924 1925 1926 1927 1928

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
1929 1930
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
1931 1932 1933 1934 1935 1936 1937
	return 0;
}

static void cpuset_css_offline(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);

1938
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
1939 1940 1941 1942 1943

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
1944
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1945

1946
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1947 1948
}

P
Paul Jackson 已提交
1949 1950 1951
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1952
 * will call rebuild_sched_domains_locked().
P
Paul Jackson 已提交
1953 1954
 */

1955
static void cpuset_css_free(struct cgroup *cont)
L
Linus Torvalds 已提交
1956
{
1957
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1958

1959
	free_cpumask_var(cs->cpus_allowed);
1960
	kfree(cs);
L
Linus Torvalds 已提交
1961 1962
}

1963 1964
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
1965
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
1966 1967
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
1968
	.css_free = cpuset_css_free,
1969
	.can_attach = cpuset_can_attach,
1970
	.cancel_attach = cpuset_cancel_attach,
1971 1972
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
1973
	.base_cftypes = files,
1974 1975 1976
	.early_init = 1,
};

L
Linus Torvalds 已提交
1977 1978 1979 1980 1981 1982 1983 1984
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1985
	int err = 0;
L
Linus Torvalds 已提交
1986

1987 1988 1989
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1990
	cpumask_setall(top_cpuset.cpus_allowed);
1991
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1992

1993
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1994
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1995
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1996 1997 1998

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1999 2000
		return err;

2001 2002 2003
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2004
	number_of_cpusets = 1;
2005
	return 0;
L
Linus Torvalds 已提交
2006 2007
}

2008 2009 2010 2011 2012 2013 2014 2015
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
2016 2017
static void cpuset_do_move_task(struct task_struct *tsk,
				struct cgroup_scanner *scan)
2018
{
2019
	struct cgroup *new_cgroup = scan->data;
2020

2021
	cgroup_lock();
2022
	cgroup_attach_task(new_cgroup, tsk);
2023
	cgroup_unlock();
2024 2025 2026 2027 2028 2029 2030
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
2031
 * Called with cpuset_mutex held
2032
 * callback_mutex must not be held, as cpuset_attach() will take it.
2033 2034 2035 2036 2037 2038
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
2039
	struct cgroup_scanner scan;
2040

2041 2042 2043 2044 2045
	scan.cg = from->css.cgroup;
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cpuset_do_move_task;
	scan.heap = NULL;
	scan.data = to->css.cgroup;
2046

2047
	if (cgroup_scan_tasks(&scan))
2048 2049 2050 2051
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

2052
/*
2053
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2054 2055
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2056 2057
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2058
 */
2059 2060 2061 2062 2063 2064 2065 2066
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2067
	parent = parent_cs(cs);
2068
	while (cpumask_empty(parent->cpus_allowed) ||
2069
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2070
		parent = parent_cs(parent);
2071 2072 2073 2074

	move_member_tasks_to_cpuset(cs, parent);
}

2075
/**
2076
 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
2077
 * @cs: cpuset in interest
2078
 *
2079 2080 2081
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2082
 */
2083
static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
2084
{
2085 2086
	static cpumask_t off_cpus;
	static nodemask_t off_mems, tmp_mems;
2087
	struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2088
	bool is_empty;
2089

2090
	mutex_lock(&cpuset_mutex);
2091

2092 2093
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2094

2095 2096 2097 2098 2099 2100
	/* remove offline cpus from @cs */
	if (!cpumask_empty(&off_cpus)) {
		mutex_lock(&callback_mutex);
		cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
		mutex_unlock(&callback_mutex);
		update_tasks_cpumask(cs, NULL);
2101 2102
	}

2103 2104 2105 2106 2107 2108 2109
	/* remove offline mems from @cs */
	if (!nodes_empty(off_mems)) {
		tmp_mems = cs->mems_allowed;
		mutex_lock(&callback_mutex);
		nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
		mutex_unlock(&callback_mutex);
		update_tasks_nodemask(cs, &tmp_mems, NULL);
2110
	}
2111

2112 2113
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2114

2115 2116 2117 2118 2119 2120 2121 2122 2123
	mutex_unlock(&cpuset_mutex);

	/*
	 * If @cs became empty, move tasks to the nearest ancestor with
	 * execution resources.  This is full cgroup operation which will
	 * also call back into cpuset.  Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);
2124 2125 2126

	/* the following may free @cs, should be the last operation */
	css_put(&cs->css);
2127 2128
}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
/**
 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
 * @cs: cpuset of interest
 *
 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
 * memory masks according to top_cpuset.
 */
static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
{
	/*
	 * Pin @cs.  The refcnt will be released when the work item
	 * finishes executing.
	 */
	if (!css_tryget(&cs->css))
		return;
2144

2145 2146 2147 2148 2149 2150 2151
	/*
	 * Queue @cs->hotplug_work.  If already pending, lose the css ref.
	 * cpuset_propagate_hotplug_wq is ordered and propagation will
	 * happen in the order this function is called.
	 */
	if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
		css_put(&cs->css);
2152 2153
}

2154
/**
2155
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2156
 *
2157 2158 2159 2160 2161
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2162
 *
2163 2164 2165
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
 * descendants.
2166
 *
2167 2168
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2169
 */
2170
static void cpuset_hotplug_workfn(struct work_struct *work)
2171
{
2172 2173 2174 2175
	static cpumask_t new_cpus, tmp_cpus;
	static nodemask_t new_mems, tmp_mems;
	bool cpus_updated, mems_updated;
	bool cpus_offlined, mems_offlined;
2176

2177
	mutex_lock(&cpuset_mutex);
2178

2179 2180 2181
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2182

2183 2184 2185
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
				       &new_cpus);
2186

2187 2188 2189
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
	nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
	mems_offlined = !nodes_empty(tmp_mems);
2190

2191 2192 2193 2194 2195 2196 2197
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2198

2199 2200 2201 2202 2203 2204 2205 2206
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		tmp_mems = top_cpuset.mems_allowed;
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
		update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
	}
2207

2208 2209 2210
	/* if cpus or mems went down, we need to propagate to descendants */
	if (cpus_offlined || mems_offlined) {
		struct cpuset *cs;
2211
		struct cgroup *pos_cgrp;
2212

2213 2214 2215 2216
		rcu_read_lock();
		cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
			schedule_cpuset_propagate_hotplug(cs);
		rcu_read_unlock();
2217
	}
2218

2219
	mutex_unlock(&cpuset_mutex);
2220

2221 2222 2223
	/* wait for propagations to finish */
	flush_workqueue(cpuset_propagate_hotplug_wq);

2224 2225 2226 2227 2228 2229
	/* rebuild sched domains if cpus_allowed has changed */
	if (cpus_updated) {
		struct sched_domain_attr *attr;
		cpumask_var_t *doms;
		int ndoms;

2230
		mutex_lock(&cpuset_mutex);
2231
		ndoms = generate_sched_domains(&doms, &attr);
2232
		mutex_unlock(&cpuset_mutex);
2233 2234

		partition_sched_domains(ndoms, doms, attr);
2235 2236 2237
	}
}

2238
void cpuset_update_active_cpus(bool cpu_online)
2239
{
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2252 2253
}

2254
#ifdef CONFIG_MEMORY_HOTPLUG
2255
/*
2256 2257
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2258
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2259
 */
2260 2261
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2262
{
2263
	schedule_work(&cpuset_hotplug_work);
2264
	return NOTIFY_OK;
2265 2266 2267
}
#endif

L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273 2274 2275
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
2276
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2277
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2278

2279
	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2280

2281 2282 2283
	cpuset_propagate_hotplug_wq =
		alloc_ordered_workqueue("cpuset_hotplug", 0);
	BUG_ON(!cpuset_propagate_hotplug_wq);
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2289
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2290
 *
2291
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2292
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2293
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2294 2295 2296
 * tasks cpuset.
 **/

2297
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2298
{
2299
	mutex_lock(&callback_mutex);
2300
	task_lock(tsk);
2301
	guarantee_online_cpus(task_cs(tsk), pmask);
2302
	task_unlock(tsk);
2303
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2304 2305
}

2306
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2307 2308 2309 2310 2311 2312
{
	const struct cpuset *cs;

	rcu_read_lock();
	cs = task_cs(tsk);
	if (cs)
2313
		do_set_cpus_allowed(tsk, cs->cpus_allowed);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2329 2330 2331
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2332 2333 2334
	 */
}

L
Linus Torvalds 已提交
2335 2336
void cpuset_init_current_mems_allowed(void)
{
2337
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2338 2339
}

2340 2341 2342 2343 2344 2345
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2346
 * subset of node_states[N_MEMORY], even if this means going outside the
2347 2348 2349 2350 2351 2352 2353
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2354
	mutex_lock(&callback_mutex);
2355
	task_lock(tsk);
2356
	guarantee_online_mems(task_cs(tsk), &mask);
2357
	task_unlock(tsk);
2358
	mutex_unlock(&callback_mutex);
2359 2360 2361 2362

	return mask;
}

2363
/**
2364 2365
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2366
 *
2367
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2368
 */
2369
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2370
{
2371
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2372 2373
}

2374
/*
2375 2376 2377 2378
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2379
 */
2380
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2381
{
T
Tejun Heo 已提交
2382 2383
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2384 2385 2386
	return cs;
}

2387
/**
2388 2389
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2390
 * @gfp_mask: memory allocation flags
2391
 *
2392 2393 2394 2395 2396 2397
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2398 2399
 * Otherwise, no.
 *
2400 2401 2402
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2403
 *
2404 2405
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2406 2407 2408 2409 2410 2411 2412
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2413
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2414 2415
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2416
 * GFP_KERNEL allocations are not so marked, so can escape to the
2417
 * nearest enclosing hardwalled ancestor cpuset.
2418
 *
2419 2420 2421 2422 2423 2424 2425
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2426
 *
2427
 * The first call here from mm/page_alloc:get_page_from_freelist()
2428 2429 2430
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2431 2432 2433 2434 2435 2436
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2437 2438
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2439
 *	TIF_MEMDIE   - any node ok
2440
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2441
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2442 2443
 *
 * Rule:
2444
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2445 2446
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2447
 */
2448
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2449
{
2450
	const struct cpuset *cs;	/* current cpuset ancestors */
2451
	int allowed;			/* is allocation in zone z allowed? */
2452

2453
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2454
		return 1;
2455
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2456 2457
	if (node_isset(node, current->mems_allowed))
		return 1;
2458 2459 2460 2461 2462 2463
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2464 2465 2466
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2467 2468 2469
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2470
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2471
	mutex_lock(&callback_mutex);
2472 2473

	task_lock(current);
2474
	cs = nearest_hardwall_ancestor(task_cs(current));
2475 2476
	task_unlock(current);

2477
	allowed = node_isset(node, cs->mems_allowed);
2478
	mutex_unlock(&callback_mutex);
2479
	return allowed;
L
Linus Torvalds 已提交
2480 2481
}

2482
/*
2483 2484
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2485 2486
 * @gfp_mask: memory allocation flags
 *
2487 2488 2489 2490 2491
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2492 2493 2494 2495 2496 2497 2498
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2499 2500
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2501 2502 2503 2504
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2505
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2506 2507 2508 2509 2510
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2511 2512 2513 2514 2515 2516
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2517 2518 2519
	return 0;
}

2520
/**
2521 2522
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2547
static int cpuset_spread_node(int *rotor)
2548 2549 2550
{
	int node;

2551
	node = next_node(*rotor, current->mems_allowed);
2552 2553
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2554
	*rotor = node;
2555 2556
	return node;
}
2557 2558 2559

int cpuset_mem_spread_node(void)
{
2560 2561 2562 2563
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2564 2565 2566 2567 2568
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2569 2570 2571 2572
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2573 2574 2575
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2576 2577
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2578
/**
2579 2580 2581 2582 2583 2584 2585 2586
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2587 2588
 **/

2589 2590
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2591
{
2592
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2593 2594
}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
	struct dentry *dentry;

	dentry = task_cs(tsk)->css.cgroup->dentry;
	spin_lock(&cpuset_buffer_lock);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

	if (!dentry) {
		strcpy(cpuset_name, "/");
	} else {
		spin_lock(&dentry->d_lock);
		strlcpy(cpuset_name, (const char *)dentry->d_name.name,
			CPUSET_NAME_LEN);
		spin_unlock(&dentry->d_lock);
	}

2619 2620 2621 2622 2623 2624 2625
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
	       tsk->comm, cpuset_name, cpuset_nodelist);
	spin_unlock(&cpuset_buffer_lock);
}

2626 2627 2628 2629 2630 2631
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2632
int cpuset_memory_pressure_enabled __read_mostly;
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2655
	fmeter_markevent(&task_cs(current)->fmeter);
2656 2657 2658
	task_unlock(current);
}

2659
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2660 2661 2662 2663
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2664 2665
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2666
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2667
 *    anyway.
L
Linus Torvalds 已提交
2668
 */
P
Paul Jackson 已提交
2669
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2670
{
2671
	struct pid *pid;
L
Linus Torvalds 已提交
2672 2673
	struct task_struct *tsk;
	char *buf;
2674
	struct cgroup_subsys_state *css;
2675
	int retval;
L
Linus Torvalds 已提交
2676

2677
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2678 2679
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2680 2681 2682
		goto out;

	retval = -ESRCH;
2683 2684
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2685 2686
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2687

L
Li Zefan 已提交
2688
	rcu_read_lock();
2689 2690
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2691
	rcu_read_unlock();
L
Linus Torvalds 已提交
2692
	if (retval < 0)
L
Li Zefan 已提交
2693
		goto out_put_task;
L
Linus Torvalds 已提交
2694 2695
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2696
out_put_task:
2697 2698
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2699
	kfree(buf);
2700
out:
L
Linus Torvalds 已提交
2701 2702 2703 2704 2705
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2706 2707
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2708 2709
}

2710
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2716
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2717

2718
/* Display task mems_allowed in /proc/<pid>/status file. */
2719 2720 2721
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2722
	seq_nodemask(m, &task->mems_allowed);
2723
	seq_printf(m, "\n");
2724
	seq_printf(m, "Mems_allowed_list:\t");
2725
	seq_nodemask_list(m, &task->mems_allowed);
2726
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2727
}