blk-mq.c 67.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

203 204
	rq->cmd = rq->__cmd;

205 206 207 208 209 210
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
211 212
	rq->timeout = 0;

213 214 215 216
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

217
	ctx->rq_dispatched[op_is_sync(op)]++;
218
}
219
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220

221 222
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
223 224 225 226
{
	struct request *rq;
	unsigned int tag;

227
	tag = blk_mq_get_tag(data);
228
	if (tag != BLK_MQ_TAG_FAIL) {
229 230 231
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
232

233 234 235 236
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
237 238 239 240
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
241 242 243 244
			rq->tag = tag;
			rq->internal_tag = -1;
		}

245
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
246 247 248 249 250
		return rq;
	}

	return NULL;
}
251
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
252

253 254
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
255
{
256
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
257
	struct request *rq;
258
	int ret;
259

260
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
261 262
	if (ret)
		return ERR_PTR(ret);
263

264
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
265

266 267 268 269
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
270
		return ERR_PTR(-EWOULDBLOCK);
271 272 273 274

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
275 276
	return rq;
}
277
EXPORT_SYMBOL(blk_mq_alloc_request);
278

M
Ming Lin 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

304 305 306 307
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
308
	hctx = q->queue_hw_ctx[hctx_idx];
309 310 311 312
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
313 314 315
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
316
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
317
	if (!rq) {
318 319
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
320 321 322
	}

	return rq;
323 324 325 326

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
327 328 329
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

330 331
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
332
{
333
	const int sched_tag = rq->internal_tag;
334 335
	struct request_queue *q = rq->q;

336
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
337
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
338 339

	wbt_done(q->rq_wb, &rq->issue_stat);
340
	rq->rq_flags = 0;
341

342
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
343
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
344 345 346 347
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
348
	blk_mq_sched_restart_queues(hctx);
349
	blk_queue_exit(q);
350 351
}

352
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
353
				     struct request *rq)
354 355 356 357
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
358 359 360 361 362 363
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
364 365 366 367
}

void blk_mq_free_request(struct request *rq)
{
368
	blk_mq_sched_put_request(rq);
369
}
J
Jens Axboe 已提交
370
EXPORT_SYMBOL_GPL(blk_mq_free_request);
371

372
inline void __blk_mq_end_request(struct request *rq, int error)
373
{
M
Ming Lei 已提交
374 375
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
376
	if (rq->end_io) {
J
Jens Axboe 已提交
377
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
378
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
379 380 381
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
382
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
383
	}
384
}
385
EXPORT_SYMBOL(__blk_mq_end_request);
386

387
void blk_mq_end_request(struct request *rq, int error)
388 389 390
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
391
	__blk_mq_end_request(rq, error);
392
}
393
EXPORT_SYMBOL(blk_mq_end_request);
394

395
static void __blk_mq_complete_request_remote(void *data)
396
{
397
	struct request *rq = data;
398

399
	rq->q->softirq_done_fn(rq);
400 401
}

402
static void blk_mq_ipi_complete_request(struct request *rq)
403 404
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
405
	bool shared = false;
406 407
	int cpu;

C
Christoph Hellwig 已提交
408
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
409 410 411
		rq->q->softirq_done_fn(rq);
		return;
	}
412 413

	cpu = get_cpu();
C
Christoph Hellwig 已提交
414 415 416 417
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
418
		rq->csd.func = __blk_mq_complete_request_remote;
419 420
		rq->csd.info = rq;
		rq->csd.flags = 0;
421
		smp_call_function_single_async(ctx->cpu, &rq->csd);
422
	} else {
423
		rq->q->softirq_done_fn(rq);
424
	}
425 426
	put_cpu();
}
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

443
static void __blk_mq_complete_request(struct request *rq)
444 445 446
{
	struct request_queue *q = rq->q;

447 448
	blk_mq_stat_add(rq);

449
	if (!q->softirq_done_fn)
450
		blk_mq_end_request(rq, rq->errors);
451 452 453 454
	else
		blk_mq_ipi_complete_request(rq);
}

455 456 457 458 459 460 461 462
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
463
void blk_mq_complete_request(struct request *rq, int error)
464
{
465 466 467
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
468
		return;
469 470
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
471
		__blk_mq_complete_request(rq);
472
	}
473 474
}
EXPORT_SYMBOL(blk_mq_complete_request);
475

476 477 478 479 480 481
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

482
void blk_mq_start_request(struct request *rq)
483 484 485
{
	struct request_queue *q = rq->q;

486 487
	blk_mq_sched_started_request(rq);

488 489
	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
490
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
491 492
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
493

494 495 496
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
497
		wbt_issue(q->rq_wb, &rq->issue_stat);
498 499
	}

500
	blk_add_timer(rq);
501

502 503 504 505 506 507
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

508 509 510 511 512 513
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
514 515 516 517
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518 519 520 521 522 523 524 525 526

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
527
}
528
EXPORT_SYMBOL(blk_mq_start_request);
529

530
static void __blk_mq_requeue_request(struct request *rq)
531 532 533 534
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
535
	wbt_requeue(q->rq_wb, &rq->issue_stat);
536
	blk_mq_sched_requeue_request(rq);
537

538 539 540 541
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
542 543
}

544
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 546 547 548
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
549
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 551 552
}
EXPORT_SYMBOL(blk_mq_requeue_request);

553 554 555
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
556
		container_of(work, struct request_queue, requeue_work.work);
557 558 559 560 561 562 563 564 565
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 568
			continue;

569
		rq->rq_flags &= ~RQF_SOFTBARRIER;
570
		list_del_init(&rq->queuelist);
571
		blk_mq_sched_insert_request(rq, true, false, false, true);
572 573 574 575 576
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
577
		blk_mq_sched_insert_request(rq, false, false, false, true);
578 579
	}

580
	blk_mq_run_hw_queues(q, false);
581 582
}

583 584
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
585 586 587 588 589 590 591 592
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
593
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594 595 596

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
597
		rq->rq_flags |= RQF_SOFTBARRIER;
598 599 600 601 602
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
603 604 605

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
606 607 608 609 610
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
611
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 613 614
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

615 616 617 618 619 620 621 622
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

643 644
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
645 646
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
647
		return tags->rqs[tag];
648
	}
649 650

	return NULL;
651 652 653
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

654
struct blk_mq_timeout_data {
655 656
	unsigned long next;
	unsigned int next_set;
657 658
};

659
void blk_mq_rq_timed_out(struct request *req, bool reserved)
660
{
J
Jens Axboe 已提交
661
	const struct blk_mq_ops *ops = req->q->mq_ops;
662
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663 664 665 666 667 668 669 670 671 672

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
673 674
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
675

676
	if (ops->timeout)
677
		ret = ops->timeout(req, reserved);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
693
}
694

695 696 697 698
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
699

700 701 702 703 704
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
705 706 707 708
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
709
		return;
710
	}
711

712 713
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
714
			blk_mq_rq_timed_out(rq, reserved);
715 716 717 718
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
719 720
}

721
static void blk_mq_timeout_work(struct work_struct *work)
722
{
723 724
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
725 726 727 728 729
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
745 746
		return;

747
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748

749 750 751
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
752
	} else {
753 754
		struct blk_mq_hw_ctx *hctx;

755 756 757 758 759
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
760
	}
761
	blk_queue_exit(q);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
785 786 787 788 789 790
		if (el_ret == ELEVATOR_NO_MERGE)
			continue;

		if (!blk_mq_sched_allow_merge(q, rq, bio))
			break;

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

827 828 829 830
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
831
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
832
{
833 834 835 836
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
837

838
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
839
}
840
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
841

842 843 844 845
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
846

847
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
848 849
}

850 851
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
868 869 870 871
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
872 873 874 875 876 877 878
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

918
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
919 920 921
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
922 923
	LIST_HEAD(driver_list);
	struct list_head *dptr;
924
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
925

926 927 928 929 930 931
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

932 933 934
	/*
	 * Now process all the entries, sending them to the driver.
	 */
935
	queued = 0;
936
	while (!list_empty(list)) {
937
		struct blk_mq_queue_data bd;
938

939
		rq = list_first_entry(list, struct request, queuelist);
940 941 942
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
943 944 945 946 947 948 949

			/*
			 * We failed getting a driver tag. Mark the queue(s)
			 * as needing a restart. Retry getting a tag again,
			 * in case the needed IO completed right before we
			 * marked the queue as needing a restart.
			 */
950
			blk_mq_sched_mark_restart(hctx);
951 952
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
				break;
953
		}
954 955
		list_del_init(&rq->queuelist);

956 957
		bd.rq = rq;
		bd.list = dptr;
958
		bd.last = list_empty(list);
959 960

		ret = q->mq_ops->queue_rq(hctx, &bd);
961 962 963
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
964
			break;
965
		case BLK_MQ_RQ_QUEUE_BUSY:
966
			blk_mq_put_driver_tag(hctx, rq);
967
			list_add(&rq->queuelist, list);
968
			__blk_mq_requeue_request(rq);
969 970 971 972
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
973
			rq->errors = -EIO;
974
			blk_mq_end_request(rq, rq->errors);
975 976 977 978 979
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
980 981 982 983 984

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
985
		if (!dptr && list->next != list->prev)
986
			dptr = &driver_list;
987 988
	}

989
	hctx->dispatched[queued_to_index(queued)]++;
990 991 992 993 994

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
995
	if (!list_empty(list)) {
996
		spin_lock(&hctx->lock);
997
		list_splice_init(list, &hctx->dispatch);
998
		spin_unlock(&hctx->lock);
999

1000 1001 1002 1003 1004 1005 1006 1007
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1008 1009 1010 1011 1012 1013
		 *
		 * If RESTART is set, then let completion restart the queue
		 * instead of potentially looping here.
		 */
		if (!blk_mq_sched_needs_restart(hctx))
			blk_mq_run_hw_queue(hctx, true);
1014
	}
1015 1016 1017 1018

	return ret != BLK_MQ_RQ_QUEUE_BUSY;
}

1019 1020 1021 1022 1023 1024 1025 1026 1027
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1028
		blk_mq_sched_dispatch_requests(hctx);
1029 1030 1031
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1032
		blk_mq_sched_dispatch_requests(hctx);
1033 1034 1035 1036
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1037 1038 1039 1040 1041 1042 1043 1044
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1045 1046
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1047 1048

	if (--hctx->next_cpu_batch <= 0) {
1049
		int next_cpu;
1050 1051 1052 1053 1054 1055 1056 1057 1058

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1059
	return hctx->next_cpu;
1060 1061
}

1062 1063
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1064 1065
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1066 1067
		return;

1068
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1069 1070
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1071
			__blk_mq_run_hw_queue(hctx);
1072
			put_cpu();
1073 1074
			return;
		}
1075

1076
		put_cpu();
1077
	}
1078

1079
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1080 1081
}

1082
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1083 1084 1085 1086 1087
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1088
		if (!blk_mq_hctx_has_pending(hctx) ||
1089
		    blk_mq_hctx_stopped(hctx))
1090 1091
			continue;

1092
		blk_mq_run_hw_queue(hctx, async);
1093 1094
	}
}
1095
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1117 1118
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1119
	cancel_work(&hctx->run_work);
1120
	cancel_delayed_work(&hctx->delay_work);
1121 1122 1123 1124
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1135 1136 1137
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1138

1139
	blk_mq_run_hw_queue(hctx, false);
1140 1141 1142
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1163
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1164 1165 1166 1167
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1168 1169
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1170 1171 1172
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1173
static void blk_mq_run_work_fn(struct work_struct *work)
1174 1175 1176
{
	struct blk_mq_hw_ctx *hctx;

1177
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1178

1179 1180 1181
	__blk_mq_run_hw_queue(hctx);
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1194 1195
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1196

1197
	blk_mq_stop_hw_queue(hctx);
1198 1199
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1200 1201 1202
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1203 1204 1205
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1206
{
J
Jens Axboe 已提交
1207 1208
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1209 1210
	trace_block_rq_insert(hctx->queue, rq);

1211 1212 1213 1214
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1215
}
1216

1217 1218
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1219 1220 1221
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1222
	__blk_mq_insert_req_list(hctx, rq, at_head);
1223 1224 1225
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1226 1227
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1239
		BUG_ON(rq->mq_ctx != ctx);
1240
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1241
		__blk_mq_insert_req_list(hctx, rq, false);
1242
	}
1243
	blk_mq_hctx_mark_pending(hctx, ctx);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1280 1281 1282 1283
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1300 1301 1302
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1303 1304 1305 1306 1307 1308
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1309

1310
	blk_account_io_start(rq, true);
1311 1312
}

1313 1314 1315 1316 1317 1318
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1319 1320 1321
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1322
{
1323
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1324 1325 1326 1327 1328 1329 1330
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1331 1332
		struct request_queue *q = hctx->queue;

1333 1334 1335 1336 1337
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1338

1339
		spin_unlock(&ctx->lock);
1340
		__blk_mq_finish_request(hctx, ctx, rq);
1341
		return true;
1342
	}
1343
}
1344

1345 1346
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1347 1348 1349 1350
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1351 1352
}

1353
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1354 1355 1356 1357 1358 1359 1360
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1361 1362 1363
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1364

1365
	if (q->elevator)
1366 1367
		goto insert;

1368 1369 1370 1371 1372
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1373 1374 1375 1376 1377 1378
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1379 1380
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1381
		return;
1382
	}
1383

1384 1385 1386 1387 1388 1389
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1390
		return;
1391
	}
1392

1393
insert:
1394
	blk_mq_sched_insert_request(rq, false, true, true, false);
1395 1396
}

1397 1398 1399 1400 1401
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1402
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1403
{
1404
	const int is_sync = op_is_sync(bio->bi_opf);
1405
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1406
	struct blk_mq_alloc_data data = { .flags = 0 };
1407
	struct request *rq;
1408
	unsigned int request_count = 0, srcu_idx;
1409
	struct blk_plug *plug;
1410
	struct request *same_queue_rq = NULL;
1411
	blk_qc_t cookie;
J
Jens Axboe 已提交
1412
	unsigned int wb_acct;
1413 1414 1415 1416

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1417
		bio_io_error(bio);
1418
		return BLK_QC_T_NONE;
1419 1420
	}

1421 1422
	blk_queue_split(q, &bio, q->bio_split);

1423 1424 1425
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1426

1427 1428 1429
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1430 1431
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1432 1433 1434
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1435 1436
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1437
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1438 1439 1440
	}

	wbt_track(&rq->issue_stat, wb_acct);
1441

1442
	cookie = request_to_qc_t(data.hctx, rq);
1443 1444

	if (unlikely(is_flush_fua)) {
1445
		blk_mq_put_ctx(data.ctx);
1446
		blk_mq_bio_to_request(rq, bio);
1447
		blk_mq_get_driver_tag(rq, NULL, true);
1448
		blk_insert_flush(rq);
1449 1450
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1451 1452
	}

1453
	plug = current->plug;
1454 1455 1456 1457 1458
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1459 1460 1461
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1462 1463 1464 1465

		blk_mq_bio_to_request(rq, bio);

		/*
1466
		 * We do limited plugging. If the bio can be merged, do that.
1467 1468
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1469
		 */
1470
		if (plug) {
1471 1472
			/*
			 * The plug list might get flushed before this. If that
1473 1474 1475
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1476 1477
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1478
				list_del_init(&old_rq->queuelist);
1479
			}
1480 1481 1482 1483 1484
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1485
			goto done;
1486 1487 1488

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1489
			blk_mq_try_issue_directly(old_rq, &cookie);
1490 1491 1492
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1493
			blk_mq_try_issue_directly(old_rq, &cookie);
1494 1495
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1496
		goto done;
1497 1498
	}

1499 1500 1501
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1502
		blk_mq_sched_insert_request(rq, false, true,
1503
						!is_sync || is_flush_fua, true);
1504 1505
		goto done;
	}
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1516 1517
done:
	return cookie;
1518 1519 1520 1521 1522 1523
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1524
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1525
{
1526
	const int is_sync = op_is_sync(bio->bi_opf);
1527
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1528 1529
	struct blk_plug *plug;
	unsigned int request_count = 0;
1530
	struct blk_mq_alloc_data data = { .flags = 0 };
1531
	struct request *rq;
1532
	blk_qc_t cookie;
J
Jens Axboe 已提交
1533
	unsigned int wb_acct;
1534 1535 1536 1537

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1538
		bio_io_error(bio);
1539
		return BLK_QC_T_NONE;
1540 1541
	}

1542 1543
	blk_queue_split(q, &bio, q->bio_split);

1544 1545 1546 1547 1548
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1549

1550 1551 1552
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1553 1554
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1555 1556 1557
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1558 1559
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1560
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1561 1562 1563
	}

	wbt_track(&rq->issue_stat, wb_acct);
1564

1565
	cookie = request_to_qc_t(data.hctx, rq);
1566 1567

	if (unlikely(is_flush_fua)) {
1568
		blk_mq_put_ctx(data.ctx);
1569
		blk_mq_bio_to_request(rq, bio);
1570
		blk_mq_get_driver_tag(rq, NULL, true);
1571
		blk_insert_flush(rq);
1572 1573
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1574 1575 1576 1577 1578 1579 1580
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1581 1582
	plug = current->plug;
	if (plug) {
1583 1584
		struct request *last = NULL;

1585
		blk_mq_bio_to_request(rq, bio);
1586 1587 1588 1589 1590 1591 1592

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1593
		if (!request_count)
1594
			trace_block_plug(q);
1595 1596
		else
			last = list_entry_rq(plug->mq_list.prev);
1597 1598 1599

		blk_mq_put_ctx(data.ctx);

1600 1601
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1602 1603
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1604
		}
1605

1606
		list_add_tail(&rq->queuelist, &plug->mq_list);
1607
		return cookie;
1608 1609
	}

1610 1611 1612
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1613
		blk_mq_sched_insert_request(rq, false, true,
1614
						!is_sync || is_flush_fua, true);
1615 1616
		goto done;
	}
1617 1618 1619 1620 1621 1622 1623 1624
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1625 1626
	}

1627
	blk_mq_put_ctx(data.ctx);
1628
done:
1629
	return cookie;
1630 1631
}

1632 1633
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1634
{
1635
	struct page *page;
1636

1637
	if (tags->rqs && set->ops->exit_request) {
1638
		int i;
1639

1640
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1641 1642 1643
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1644
				continue;
J
Jens Axboe 已提交
1645
			set->ops->exit_request(set->driver_data, rq,
1646
						hctx_idx, i);
J
Jens Axboe 已提交
1647
			tags->static_rqs[i] = NULL;
1648
		}
1649 1650
	}

1651 1652
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1653
		list_del_init(&page->lru);
1654 1655 1656 1657 1658
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1659 1660
		__free_pages(page, page->private);
	}
1661
}
1662

1663 1664
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1665
	kfree(tags->rqs);
1666
	tags->rqs = NULL;
J
Jens Axboe 已提交
1667 1668
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1669

1670
	blk_mq_free_tags(tags);
1671 1672
}

1673 1674 1675 1676
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1677
{
1678
	struct blk_mq_tags *tags;
1679

1680
	tags = blk_mq_init_tags(nr_tags, reserved_tags,
S
Shaohua Li 已提交
1681 1682
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1683 1684
	if (!tags)
		return NULL;
1685

1686
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1687
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1688
				 set->numa_node);
1689 1690 1691 1692
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1693

J
Jens Axboe 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

	INIT_LIST_HEAD(&tags->page_list);

1719 1720 1721 1722
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1723
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1724
				cache_line_size());
1725
	left = rq_size * depth;
1726

1727
	for (i = 0; i < depth; ) {
1728 1729 1730 1731 1732
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1733
		while (this_order && left < order_to_size(this_order - 1))
1734 1735 1736
			this_order--;

		do {
1737
			page = alloc_pages_node(set->numa_node,
1738
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1739
				this_order);
1740 1741 1742 1743 1744 1745 1746 1747 1748
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1749
			goto fail;
1750 1751

		page->private = this_order;
1752
		list_add_tail(&page->lru, &tags->page_list);
1753 1754

		p = page_address(page);
1755 1756 1757 1758
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1759
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1760
		entries_per_page = order_to_size(this_order) / rq_size;
1761
		to_do = min(entries_per_page, depth - i);
1762 1763
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1764 1765 1766
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1767 1768
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1769
						rq, hctx_idx, i,
1770
						set->numa_node)) {
J
Jens Axboe 已提交
1771
					tags->static_rqs[i] = NULL;
1772
					goto fail;
1773
				}
1774 1775
			}

1776 1777 1778 1779
			p += rq_size;
			i++;
		}
	}
1780
	return 0;
1781

1782
fail:
1783 1784
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1785 1786
}

J
Jens Axboe 已提交
1787 1788 1789 1790 1791
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1792
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1793
{
1794
	struct blk_mq_hw_ctx *hctx;
1795 1796 1797
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1798
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1799
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1800 1801 1802 1803 1804 1805 1806 1807 1808

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1809
		return 0;
1810

J
Jens Axboe 已提交
1811 1812 1813
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1814 1815

	blk_mq_run_hw_queue(hctx, true);
1816
	return 0;
1817 1818
}

1819
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1820
{
1821 1822
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1823 1824
}

1825
/* hctx->ctxs will be freed in queue's release handler */
1826 1827 1828 1829
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1830 1831
	unsigned flush_start_tag = set->queue_depth;

1832 1833
	blk_mq_tag_idle(hctx);

1834 1835 1836 1837 1838
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1839 1840 1841
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1842 1843 1844
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1845
	blk_mq_remove_cpuhp(hctx);
1846
	blk_free_flush_queue(hctx->fq);
1847
	sbitmap_free(&hctx->ctx_map);
1848 1849
}

M
Ming Lei 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1859
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1869
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1870 1871 1872
		free_cpumask_var(hctx->cpumask);
}

1873 1874 1875
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1876
{
1877
	int node;
1878
	unsigned flush_start_tag = set->queue_depth;
1879 1880 1881 1882 1883

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1884
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1885 1886 1887 1888 1889
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1890
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1891

1892
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1893 1894

	hctx->tags = set->tags[hctx_idx];
1895 1896

	/*
1897 1898
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1899
	 */
1900 1901 1902 1903
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1904

1905 1906
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1907
		goto free_ctxs;
1908

1909
	hctx->nr_ctx = 0;
1910

1911 1912 1913
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1914

1915 1916 1917
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1918

1919 1920 1921 1922 1923
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1924

1925 1926 1927
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1928
	return 0;
1929

1930 1931 1932 1933 1934
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1935
 free_bitmap:
1936
	sbitmap_free(&hctx->ctx_map);
1937 1938 1939
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1940
	blk_mq_remove_cpuhp(hctx);
1941 1942
	return -1;
}
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1958 1959
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1960 1961 1962 1963 1964

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1965
		hctx = blk_mq_map_queue(q, i);
1966

1967 1968 1969 1970 1971
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1972
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1973 1974 1975
	}
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1998 1999 2000 2001 2002
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2003 2004
}

2005 2006
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2007
{
2008
	unsigned int i, hctx_idx;
2009 2010
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2011
	struct blk_mq_tag_set *set = q->tag_set;
2012

2013 2014 2015 2016 2017
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2018
	queue_for_each_hw_ctx(q, hctx, i) {
2019
		cpumask_clear(hctx->cpumask);
2020 2021 2022 2023 2024 2025
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2026
	for_each_possible_cpu(i) {
2027
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2028
		if (!cpumask_test_cpu(i, online_mask))
2029 2030
			continue;

2031 2032
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2033 2034
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2035 2036 2037 2038 2039 2040
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2041
			q->mq_map[i] = 0;
2042 2043
		}

2044
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2045
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2046

2047
		cpumask_set_cpu(i, hctx->cpumask);
2048 2049 2050
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2051

2052 2053
	mutex_unlock(&q->sysfs_lock);

2054
	queue_for_each_hw_ctx(q, hctx, i) {
2055
		/*
2056 2057
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2058 2059
		 */
		if (!hctx->nr_ctx) {
2060 2061 2062 2063
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2064 2065 2066
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2067
			hctx->tags = NULL;
2068 2069 2070
			continue;
		}

M
Ming Lei 已提交
2071 2072 2073
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2074 2075 2076 2077 2078
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2079
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2080

2081 2082 2083
		/*
		 * Initialize batch roundrobin counts
		 */
2084 2085 2086
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2087 2088
}

2089
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2090 2091 2092 2093
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2105 2106 2107

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2108
		queue_set_hctx_shared(q, shared);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2119 2120 2121 2122 2123 2124
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2125 2126 2127 2128 2129 2130 2131 2132 2133
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2134 2135 2136 2137 2138 2139 2140 2141 2142

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2143
	list_add_tail(&q->tag_set_list, &set->tag_list);
2144

2145 2146 2147
	mutex_unlock(&set->tag_list_lock);
}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2159 2160
	blk_mq_sched_teardown(q);

2161
	/* hctx kobj stays in hctx */
2162 2163 2164 2165
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2166
		kfree(hctx);
2167
	}
2168

2169 2170
	q->mq_map = NULL;

2171 2172 2173 2174 2175 2176
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2177
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2193 2194
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2195
{
K
Keith Busch 已提交
2196 2197
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2198

K
Keith Busch 已提交
2199
	blk_mq_sysfs_unregister(q);
2200
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2201
		int node;
2202

K
Keith Busch 已提交
2203 2204 2205 2206
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2207 2208
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2209
		if (!hctxs[i])
K
Keith Busch 已提交
2210
			break;
2211

2212
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2213 2214 2215 2216 2217
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2218

2219
		atomic_set(&hctxs[i]->nr_active, 0);
2220
		hctxs[i]->numa_node = node;
2221
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2222 2223 2224 2225 2226 2227 2228 2229

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2230
	}
K
Keith Busch 已提交
2231 2232 2233 2234
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2235 2236
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2253 2254 2255
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2256 2257
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2258
		goto err_exit;
K
Keith Busch 已提交
2259 2260 2261 2262 2263 2264

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2265
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2266 2267 2268 2269

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2270

2271
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2272
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2273 2274 2275

	q->nr_queues = nr_cpu_ids;

2276
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2277

2278 2279 2280
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2281 2282
	q->sg_reserved_size = INT_MAX;

2283
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2284 2285 2286
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2287 2288 2289 2290 2291
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2292 2293 2294 2295 2296
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2297 2298 2299 2300 2301
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2302 2303
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2304

2305
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2306

2307
	get_online_cpus();
2308 2309
	mutex_lock(&all_q_mutex);

2310
	list_add_tail(&q->all_q_node, &all_q_list);
2311
	blk_mq_add_queue_tag_set(set, q);
2312
	blk_mq_map_swqueue(q, cpu_online_mask);
2313

2314
	mutex_unlock(&all_q_mutex);
2315
	put_online_cpus();
2316

2317 2318 2319 2320 2321 2322 2323 2324
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2325
	return q;
2326

2327
err_hctxs:
K
Keith Busch 已提交
2328
	kfree(q->queue_hw_ctx);
2329
err_percpu:
K
Keith Busch 已提交
2330
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2331 2332
err_exit:
	q->mq_ops = NULL;
2333 2334
	return ERR_PTR(-ENOMEM);
}
2335
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2336 2337 2338

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2339
	struct blk_mq_tag_set	*set = q->tag_set;
2340

2341 2342 2343 2344
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2345 2346
	wbt_exit(q);

2347 2348
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2349 2350
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2351 2352 2353
}

/* Basically redo blk_mq_init_queue with queue frozen */
2354 2355
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2356
{
2357
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2358

2359 2360
	blk_mq_sysfs_unregister(q);

2361 2362 2363 2364 2365 2366
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2367
	blk_mq_map_swqueue(q, online_mask);
2368

2369
	blk_mq_sysfs_register(q);
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2380 2381 2382 2383
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2384 2385 2386 2387 2388 2389 2390 2391 2392
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2393
	list_for_each_entry(q, &all_q_list, all_q_node)
2394 2395
		blk_mq_freeze_queue_wait(q);

2396
	list_for_each_entry(q, &all_q_list, all_q_node)
2397
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2398 2399 2400 2401

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2402
	mutex_unlock(&all_q_mutex);
2403 2404 2405 2406
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2407
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2423 2424 2425 2426
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2427 2428 2429 2430 2431 2432 2433
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2434 2435
}

2436 2437 2438 2439
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2440 2441
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2442 2443 2444 2445 2446 2447
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2448
		blk_mq_free_rq_map(set->tags[i]);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2488 2489 2490 2491 2492 2493
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2494 2495
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2496 2497
	int ret;

B
Bart Van Assche 已提交
2498 2499
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2500 2501
	if (!set->nr_hw_queues)
		return -EINVAL;
2502
	if (!set->queue_depth)
2503 2504 2505 2506
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2507
	if (!set->ops->queue_rq)
2508 2509
		return -EINVAL;

2510 2511 2512 2513 2514
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2515

2516 2517 2518 2519 2520 2521 2522 2523 2524
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2525 2526 2527 2528 2529
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2530

K
Keith Busch 已提交
2531
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2532 2533
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2534
		return -ENOMEM;
2535

2536 2537 2538
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2539 2540 2541
	if (!set->mq_map)
		goto out_free_tags;

2542 2543 2544 2545 2546 2547 2548 2549 2550
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2551
		goto out_free_mq_map;
2552

2553 2554 2555
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2556
	return 0;
2557 2558 2559 2560 2561

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2562 2563
	kfree(set->tags);
	set->tags = NULL;
2564
	return ret;
2565 2566 2567 2568 2569 2570 2571
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2572 2573
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2574

2575 2576 2577
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2578
	kfree(set->tags);
2579
	set->tags = NULL;
2580 2581 2582
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2583 2584 2585 2586 2587 2588
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2589
	if (!set)
2590 2591
		return -EINVAL;

2592 2593 2594
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2595 2596
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2597 2598
		if (!hctx->tags)
			continue;
2599 2600 2601 2602
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2603 2604 2605 2606 2607 2608 2609 2610
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2611 2612 2613 2614 2615 2616 2617
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2618 2619 2620
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2621 2622 2623
	return ret;
}

K
Keith Busch 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2690
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2691
				     struct blk_mq_hw_ctx *hctx,
2692 2693 2694 2695
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2696
	unsigned int nsecs;
2697 2698
	ktime_t kt;

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2717 2718 2719 2720 2721 2722 2723 2724
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2725
	kt = nsecs;
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2748 2749 2750 2751 2752
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2753 2754 2755 2756 2757 2758 2759
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2760
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2761 2762
		return true;

J
Jens Axboe 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2806 2807 2808 2809
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2810 2811 2812 2813 2814

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2825 2826
static int __init blk_mq_init(void)
{
2827 2828
	blk_mq_debugfs_init();

2829 2830
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2831

2832 2833 2834
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2835 2836 2837
	return 0;
}
subsys_initcall(blk_mq_init);